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Abstract 

 

This study presents a multimodal data fusion framework for road damage detection and prediction, integrating RGB images, LiDAR 

point clouds, and GPR (Ground Penetrating Radar) data to enable high-precision detection of surface cracks, potholes, and underground 

voids, as well as dynamic trend forecasting. By leveraging Deep Mapping 2.0 and the RAFT algorithm, the alignment accuracy between 

RGB and LiDAR data was significantly improved, reducing registration error to 2.3 mm. Concurrently, the spatial mapping accuracy 

of GPR data was enhanced to 4.8 mm, ensuring precise multimodal data fusion. A Cross-Attention Transformer combined with a 

Feature Pyramid Network (FPN) was used for dynamic feature weighting, achieving a crack detection IoU of 97.3% and an AP@0.5 

of 93.7% for underground void detection, thereby substantially enhancing the model's performance in detecting complex road damage. 

Moreover, a trend prediction model integrating ConvLSTM and a spatiotemporal attention mechanism achieved an MAE of 8.7% in a 

six-month damage trend prediction experiment, reducing prediction error by 34% compared to existing methods, underscoring the 

model's effectiveness in forecasting damage progression.The experimental results demonstrate that the proposed framework exhibits 

strong adaptability and stability across diverse road damage detection tasks, particularly excelling in the joint detection of cracks and 

underground voids with high accuracy. Furthermore, the framework is readily extendable to infrastructure health monitoring 

applications, such as bridges and tunnels, providing robust technological support for intelligent road maintenance and offering data-

driven insights for the long-term optimization and sustainability of urban transportation infrastructure. 

 

 

1. Introduction 

1.1 Challenges in Urbanization and Road Damage Detection 

With the accelerated pace of urbanization, urban roads, as critical 

transportation infrastructure, bear an enormous volume of traffic. 

However, prolonged natural erosion and vehicle loads have led 

to frequent occurrences of cracks, potholes, and underground 

voids. Existing detection methods face significant challenges: 

manual inspection is inefficient and highly dependent on 

subjective judgment, while current automated techniques can 

capture surface features but fail to represent the complex 

relationships between surface and subsurface damage. This 

limitation results in insufficient detection accuracy, especially in 

modeling the interactions between underground damages (such 

as voids and loose layers) and surface defects. 

 

Addressing the dynamic evolution of road damage, existing static 

detection methods struggle to predict the progression of such 

damage, providing limited scientific support for preventive 

maintenance. Moreover, single-modal data techniques fall short 

in tackling diverse and complex environments, further restricting 

the adaptability and robustness of detection methods. Therefore, 

integrating and modeling multimodal data—including RGB 

images, LiDAR point clouds, and GPR data—for comprehensive 

damage characterization and dynamic trend prediction has 

become a critical challenge in road detection. 

 

The core of this research is to propose a novel multimodal data 

fusion and modeling framework that effectively combines the 

texture features of RGB images, the geometric structural 

information of LiDAR, and the subsurface exploration data of 

GPR. By employing efficient feature extraction and fusion 
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techniques, along with dynamic spatiotemporal modeling, the 

framework simultaneously achieves high-precision damage 

detection and trend prediction. This approach offers a 

groundbreaking solution for the scientific detection and refined 

management of urban road damages. 

 

 

1.2 Research Objectives and Innovations 

This study introduces a systematic framework for multimodal 

data fusion and dynamic modeling, achieving significant 

advancements in road damage detection accuracy and predictive 

capabilities through three key innovations. 

 

First, to address the heterogeneity in spatial resolution and 

acquisition perspectives among RGB images, LiDAR point 

clouds (LPC), and Ground Penetrating Radar (GPR) data, this 

study integrates the DeepMapping 2.0 and RAFT (Recurrent All-

Pairs Field Transforms) algorithms to achieve high-precision 

spatial alignment across modalities. DeepMapping 2.0 resolves 

geometric alignment between LPC and RGB data through joint 

optimization of point clouds and images. Meanwhile, RAFT 

leverages deep learning-based optical flow estimation to 

optimize temporal alignment of RGB images, thereby indirectly 

enhancing the consistency between GPR data and surface 

features. Specifically, RAFT is first applied to ensure temporal 

consistency in RGB data, which is then used as an intermediary 

to assist in aligning GPR data with surface features. This 

approach reduces multimodal registration errors to the millimeter 

level (RGB-LiDAR RMSE < 2.5 mm, GPR RMSE ~5–10 mm), 

providing a spatially consistent foundation for subsequent feature 

fusion. 
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Second, to overcome the limitations of fixed modality weights 

and information redundancy in existing fusion methods, this 

study proposes a dynamic weighted fusion framework based on 

Cross-Attention Transformer and Feature Pyramid Network 

(FPN). During feature extraction, RGB data is processed using 

ConvNeXt for texture features, LiDAR point clouds with 

PointNet++ for geometric features, and GPR data with Swin-

UNet for depth distribution features. During fusion, the Cross-

Attention Transformer aligns and adaptively weights features 

across modalities, enabling the model to dynamically adjust 

modality contributions based on the scenario. For instance, RGB 

features dominate in crack detection, while GPR features 

dynamically increase their contribution to over 70% in 

underground void detection. Additionally, FPN integrates local 

damage details (e.g., crack edges) and global structural 

information (e.g., pothole patterns) through a multi-scale feature 

fusion strategy, enhancing the model's capacity to detect complex 

damage. Experimental results demonstrate that this approach 

significantly improves feature discrimination in complex 

scenarios, strengthening the joint detection of cracks and voids. 

 

Finally, to address the dynamic evolution of road damage, this 

study develops a damage evolution prediction framework 

combining spatiotemporal attention mechanisms with LSTM. 

The framework employs ConvLSTM to capture temporal 

expansion patterns of damage while integrating a Transformer-

based spatial attention mechanism to model spatial dependencies, 

such as the relationship between crack propagation directions and 

underground voids. Figure 1 illustrates the technical workflow of 

the proposed approach. 

 

This framework not only enhances the precision of damage 

detection but also provides a robust basis for predicting damage 

trends, offering a comprehensive solution for the intelligent 

maintenance of road infrastructure. 

 

 
Figure 1. Technical Workflow of the Experiment 

 

2. Related Work 

2.1 Existing Methods for Road Damage Detection 

In recent years, road damage detection technologies have become 

increasingly critical for urban infrastructure maintenance. With 

the rapid advancement of sensor technologies and artificial 

intelligence algorithms, methods based on RGB images, LiDAR 

point clouds, and Ground Penetrating Radar (GPR) data have 

emerged as key areas of research. However, these approaches 

face significant limitations in data acquisition, feature extraction, 

and model performance, making it challenging to fully address 

the complexities of road damage detection. 

 

2.1.1 Crack Detection Using RGB Images 

RGB images, due to their accessibility and low cost, have been 

widely adopted as a primary data source for detecting surface 

road damage. Recent developments in deep learning-based crack 

detection methods have yielded impressive results. For example, 

Zhang (Zhang et al.,2024) proposed an enhanced U-Net 

architecture incorporating attention mechanisms, which 

improved pixel-level crack segmentation accuracy, achieving an 

IoU of 89.5%. Similarly, Liu (Liu et al.,2023) introduced a 

convolutional neural network (CNN)-based model capable of 

automatically identifying cracks in complex backgrounds, 

achieving a detection accuracy of 91.2%. 

 

Despite these advancements, RGB images are inherently limited 

to capturing surface texture information, making it difficult to 

detect subsurface damage or quantify crack depth. Moreover, 

external factors such as lighting variations and shadow 

interference can significantly affect the stability of detection 

results. For instance, Wang (Wang et al.,2019) reported that 

under conditions of strong lighting or shadows, the detection 

accuracy of RGB image-based crack detection methods may 

decline by over 20%. These limitations underscore the challenges 

of relying solely on RGB image data to comprehensively 

characterize the complexity of road damage. 

 

 

2.1.2 3D Road Surface Analysis Based on LiDAR Point 

Clouds 

LiDAR technology, which acquires high-precision 3D point 

cloud data by emitting laser pulses, provides robust support for 

extracting geometric features of road surfaces. In recent years, 

LiDAR-based road damage detection methods have gained 

considerable attention. For example, Wang (Wang et al.,2023) 

proposed a PointNet++-based road crack detection method that 

utilized local geometric feature extraction from point clouds to 

achieve 3D crack reconstruction, with a detection accuracy of 

92.3%. Similarly, Karukayil (Karukayil et al.,2024) developed a 

deep learning-based LiDAR point cloud segmentation algorithm 

capable of automatically identifying road surface potholes and 

cracks, achieving an accuracy of 90.8%. 

 

However, LiDAR data has limitations in detecting subsurface 

damage, and the sparsity of point clouds in complex scenarios 

can result in feature loss. For instance, Li (Li et al.,2023) reported 

that in environments with vegetation coverage or significant 

occlusions, the quality of LiDAR point cloud data deteriorates 

significantly, leading to a potential reduction in detection 

accuracy by more than 15%. Additionally, the high cost of 

LiDAR equipment restricts its scalability for large-scale road 

detection applications. 

 

2.1.3 Subsurface Structure Detection Using GPR 

Ground Penetrating Radar (GPR) is an effective tool for detecting 

subsurface structures by emitting electromagnetic waves and 

analyzing their reflections, enabling the identification of 

underground road damages such as voids and loose layers. 

Recent advances in GPR-based detection methods have yielded 

promising results. For instance, Song (Song et al.,2024) proposed 

a deep learning-based GPR data analysis method that fused time-

domain and spatial-domain features, achieving highly precise 

underground void detection with a depth error of less than 5 cm. 

Similarly, Hu (Hu et al.,2023) developed a convolutional neural 
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network (CNN)-based GPR data classification model capable of 

automatically identifying underground voids and loose layers, 

achieving an accuracy of 88.7%. 

 

Despite these advances, analyzing GPR data remains 

computationally intensive, and its spatial resolution is limited by 

the propagation characteristics of electromagnetic waves. For 

instance, Liu (Liu et al.,2023) noted that under multilayered 

media or complex geological conditions, GPR data analysis 

accuracy may decline by more than 10%. Furthermore, 

integrating GPR data with surface information poses a significant 

challenge, as existing methods often rely on simplistic early 

fusion strategies that fail to fully leverage the complementary 

nature of multimodal data. 

 

2.2 Challenges in Multimodal Data Fusion 

Although single-modal data-based road damage detection 

methods have achieved notable success, their limitations are 

increasingly evident. First, single-modal data struggles to 

comprehensively capture the complexity of road damage, 

particularly in modeling the relationships between surface and 

subsurface damages. Second, current methods face significant 

challenges in multimodal data fusion, including insufficient 

alignment accuracy, complexity in feature extraction network 

design, and inefficiencies in fusion strategies. 

 

Recent studies have explored deep learning techniques to 

optimize multimodal data fusion. For example, Xu (Xu et 

al.,2023) proposed a Transformer-based multimodal fusion 

framework that dynamically adjusts modality weights through 

self-attention mechanisms, significantly enhancing the 

representation capability of fused features. However, achieving 

efficient alignment and deep integration of multimodal data 

remains a key research challenge. For instance, Li (Li et al.,2024) 

reported that existing fusion methods can experience up to a 20% 

drop in detection accuracy under complex scenarios. 

 

These challenges underscore the need for advanced techniques to 

improve the efficiency and effectiveness of multimodal data 

fusion in road damage detection, particularly in scenarios 

involving diverse and complex environments. 

 

2.3 Dynamic Modeling and Trend Prediction 

The dynamic evolution of road damage necessitates detection 

methods capable of not only capturing the current state but also 

forecasting future trends. In recent years, the combination of time 

series analysis and deep learning has introduced innovative 

approaches to damage trend prediction. For example, Yan (Yan 

et al.,2024) proposed an LSTM-based crack growth prediction 

model that utilized historical data to model changes in crack 

length and width, achieving a prediction error (MAE) of 12.5%. 

Similarly, Cui (Cui et al.,2024) developed a prediction model 

leveraging spatiotemporal attention mechanisms, effectively 

capturing the temporal and spatial evolution of damage with an 

accuracy of 89.3%. 

 

Despite these advances, most existing methods rely on single-

modal data, limiting their ability to fully exploit the inherent 

spatiotemporal correlations present in multimodal data. For 

instance, Chen (Chen et al.,2022) highlighted that prediction 

models based solely on single-modal data may experience 

prediction errors exceeding 30% in complex scenarios. 

Furthermore, integrating dynamic prediction results into 

actionable road maintenance decision-making processes remains 

an area requiring further investigation. 

2.4 Applications of Deep Learning in Multimodal Data 

Processing 

To overcome the limitations of single-modal methods discussed 

in Section 2.1, deep learning offers a new technical pathway for 

addressing critical challenges in road damage detection. These 

include high-precision alignment of multimodal data, feature 

fusion driven by modality complementarity, and spatiotemporal 

modeling of damage evolution. This section highlights recent 

advancements in related algorithms and their innovative 

applications in this study. 

 

2.4.1 High-Precision Alignment of Multimodal Data 

The heterogeneity of RGB images, LiDAR point clouds, and 

GPR data in terms of spatial resolution and information 

representation poses significant challenges for traditional 

handcrafted feature matching methods such as SIFT and ICP, 

which struggle to achieve precise cross-modal alignment. For 

instance, Zhao (Zhao et al.,2023) introduced a deep learning-

based point cloud-to-image registration framework that 

optimized registration parameters through end-to-end training, 

reducing the alignment error (RMSE) between RGB and LiDAR 

data to 3.8 mm. However, this method is susceptible to local 

optima in complex scenarios. 

 

To address these challenges, this study employs a combined 

strategy utilizing DeepMapping 2.0 and RAFT (Recurrent All-

Pairs Field Transforms). This approach achieves global 

consistency in multimodal data registration by jointly optimizing 

geometric alignment and dynamic optical flow estimation. 

Specifically, DeepMapping 2.0 resolves geometric alignment 

issues between LiDAR and RGB data through joint optimization 

of point clouds and images, while RAFT enhances the dynamic 

matching of RGB data with surface information through optical 

flow estimation. 

 

Experimental results demonstrate that this method achieves 

registration errors (RMSE) consistently controlled within 2.5 mm 

(see Figure 2 for the RMSE performance graph of multimodal 

data registration). Furthermore, the proposed approach exhibits 

remarkable robustness in scenarios with noise and sparse data, 

significantly outperforming existing methods under such 

conditions. 

 

 
Figure 2. RMSE Performance of Cross-Modal Data Registration 

 

2.4.2 Feature Fusion Driven by Modality Complementarity 

Existing studies often process different modalities using 

independent networks, such as ConvNeXt for extracting RGB 

texture features and PointNet++ for extracting LiDAR geometric 

features. However, these methods typically lack cross-modal 

interaction mechanisms, leading to feature redundancy and 

information bias. For instance, Yang (Yang et al.,2023) proposed 
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a Transformer-based fusion framework that dynamically adjusts 

modality weights through self-attention mechanisms, but it fails 

to fully utilize the hierarchical representation of multi-scale 

features, limiting crack detection performance in complex 

scenarios, with an IoU of only 85.6%. 

 

To address these issues, this study proposes a Cross-Attention 

Transformer and Feature Pyramid Network (FPN)-based 

multimodal data fusion framework. The core innovations of this 

framework include the following two aspects: 

First, the Cross-Attention mechanism dynamically adjusts the 

contribution weights of RGB, LiDAR, and GPR based on feature 

importance, thereby preventing a single modality from 

dominating the fusion results. For example, when detecting 

underground voids, the GPR data weight can automatically 

increase to over 70%, while the LiDAR data weight decreases to 

20%. 

Second, leveraging the bottom-up pyramid structure of FPN, the 

framework integrates multi-scale features, combining local 

details (e.g., crack edges) with global semantic information (e.g., 

void distribution patterns), significantly enhancing the model’s 

capability to represent complex damage types. 

 

Experimental results demonstrate that this framework 

significantly improves crack detection performance in complex 

scenarios, achieving an IoU of 97.3%, which is 6% higher than 

existing fusion methods. This indicates the effectiveness and 

superiority of the proposed fusion framework in multimodal data 

processing and complex scene crack detection. 

 

2.4.3 Spatiotemporal Coupled Modeling for Damage 

Evolution 

The dynamic evolution of road damage requires models to 

capture both temporal and spatial dependencies simultaneously. 

However, existing methods still have certain limitations. For 

example, although LSTM (Zhang et al., 2021) effectively models 

temporal sequences, it ignores spatial correlations. Meanwhile, 

models based on spatiotemporal attention mechanisms (Yang et 

al., 2023) can jointly model temporal and spatial dimensions, but 

their high computational complexity limits real-time applications. 

 

To address these issues, this study proposes a lightweight 

spatiotemporal attention module that enhances performance and 

efficiency through the following optimization strategies: 

First, in spatial correlation modeling, the module leverages 

attention mechanisms to capture the spatial correspondence 

between road crack propagation directions and underground 

voids, as illustrated in Figure 2, effectively modeling the spatial 

dependencies of complex damage. 

 

 
Figure 3. The spatinl correspondence between the crack 

propagntion direction and the underground voids 

 

This module not only achieves an effective balance between 

computational complexity and modeling capability but also 

provides a more efficient and accurate tool for analyzing the 

dynamic evolution of road damage. 

 

3. Methodology 

3.1 Multimodal Data Alignment Technology  

3.1.1 Analysis of Multimodal Data Characteristics and 

Alignment Challenges 

Road damage detection involves three heterogeneous data 

modalities: RGB images, LiDAR point clouds (LPC), and 

Ground Penetrating Radar (GPR) data. RGB images capture 

high-resolution surface textures through optical sensors but lack 

the ability to perceive subsurface damage. LiDAR point clouds 

provide 3D geometric information of road surfaces using laser 

sensors but face limitations due to point cloud sparsity and 

occlusion issues. GPR data, on the other hand, extracts 

subsurface structural information through electromagnetic wave 

reflection, but its temporal signals must be converted into spatial 

coordinates, and its resolution is influenced by the properties of 

the medium. 

 

To achieve effective multimodal data fusion, addressing spatial 

alignment is a critical first step. However, the significant 

differences in resolution, coordinate systems, and acquisition 

perspectives across modalities present considerable challenges. 

Existing registration methods, such as ICP and SIFT, often fail to 

meet precision requirements. For instance, the resolution gap 

between LiDAR point clouds and RGB images can span two 

orders of magnitude, while the time-delay characteristics of GPR 

data make it challenging to directly align with surface 

information. 

 

Overcoming these alignment challenges is essential for 

integrating multimodal data effectively and ensuring accurate 

detection and representation of road damage across surface and 

subsurface levels. 

 

3.1.2 Probabilistic Generative Model of DeepMapping 2.0 

To address the aforementioned challenges, this study proposes a 

cross-modal alignment framework based on a probabilistic 

generative model, termed DeepMapping 2.0. This model jointly 

optimizes the geometric consistency between LiDAR point 

clouds and RGB images by maximizing the conditional 

probability of projecting point clouds onto the image coordinate 

system, ensuring high-precision multimodal data 

alignment.Specifically, let the LiDAR point cloud be represented 

as: ℒ = {𝐥𝑖}𝑖=1
𝑁 (𝐥𝑖 ∈ ℝ3)  and the RGB image features be 

represented as: ℐ = {𝐜𝑖}𝑖=1
𝑁 (𝐜𝑖 ∈ ℝ𝑑) where an implicit mapping 

relationship exists between ℒ and ℐ . The registration process is 

formulated as an optimization problem by maximizing the 

following joint probability distribution: 

 

𝑃(ℒ, ℐ|𝐓) = ∏  𝑁
𝑖=1 𝑃(1𝑖|𝐜𝑖 , 𝐓) ⋅ 𝑃(𝐜𝑖)        （1） 

 
where   𝐓 ∈ 𝑆𝐸(3) = Rigid Transformation Matrix from Point 

Cloud to Image Coordinate System 

  𝑃(𝟏𝑖|𝐜𝑖 , 𝐓)  = Point Cloud Position Probability 

Distribution Given Image Features and Transformation Matrix 

 

By introducing a Gaussian Mixture Model (GMM) to model the 

distribution of point cloud projections, the optimization objective 

can be reformulated as minimizing the negative log-likelihood: 
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𝐓∗ = arg⁡𝑚𝑖𝑛
𝐓

 ∑  𝑁
𝑖=1 ∥ 𝜋(𝐓 ⋅ 𝐥𝑖) − 𝐜𝑖 ∥Σ

−2+ 𝜆 ∥ 𝐓 ∥Fro （2） 

 

where 𝜋(⋅) = Projection Function 

 ∑ = Covariance Matrix 

 𝜆 = Regularization Coefficient 

Experimental results demonstrate that the proposed model 

maintains a registration error (RMSE) of less than 2.5 mm even 

in complex scenarios. 

 

3.1.3 Dynamic Matching via RAFT Optical Flow Estimation 

To further enhance the spatiotemporal consistency of surface 

textures, this study incorporates RAFT (Recurrent All-Pairs Field 

Transforms) for optical flow estimation on RGB image 

sequences. RAFT iteratively updates the optical flow field to 

achieve precise motion estimation, ensuring robust temporal 

alignment of multimodal data. 𝐟𝑡 ∈ ℝ𝐻×𝑊×2  It captures pixel-

level motion information between adjacent frames. The core 

iterative formula is given by: 

 

𝐟𝑡+1 = 𝐟𝑡 + Δ𝐟𝑡 , Δ𝐟𝑡 = GRU(𝐟𝑡, ∇ℐ𝑡, 𝐡𝑡)      （3） 

 

where  ∇ℐ𝑡 = Gradient Features of the 𝑡-th Frame Image 

 𝐡𝑡 = Hidden State 

 GRU = Transmit Temporal Information 

 

The optical flow loss function is formulated using a robust 

Charbonnier penalty term: 

 

ℒflow = ∑  (𝑥,𝑦) √∥ 𝐟gt(𝑥, 𝑦) − 𝐟pred(𝑥, 𝑦) ∥
2+ 𝜖2 （4） 

 

where 𝐟gt(𝑥, 𝑦) = Ground Truth Optical Flow Vector at Pixel 

(𝑥, 𝑦) 
 𝐟pred(𝑥, 𝑦) = Predicted Optical Flow Vector at Pixel 

(𝑥, 𝑦) 
 𝜖  = Smoothing Factor, Used to Prevent Gradient 

Explosion or Vanishing, Enhancing Training Stability 

 

By leveraging optical flow estimation, RAFT dynamically 

refines the expansion trends of surface cracks, indirectly 

facilitating the alignment between GPR data and surface 

information. For instance, when a crack is detected propagating 

in a specific direction, RAFT can infer the potential presence of 

an underground void beneath it, thereby guiding the 

interpretation of GPR data. 

 

3.1.4 Temporal-Spatial Mapping of GPR Data 

The analysis of GPR signals requires transforming time-domain 

reflection signals 𝑠(𝑡) into spatial coordinates (𝑥, 𝑧). This study 

employs the Reverse Time Migration (RTM) algorithm, which is 

formulated as: 

 

𝑠(𝑥, 𝑧) = ∑  𝑡 𝑠(𝑡) ⋅ 𝛿 (𝑡 −
2√𝑥2+𝑧2

𝑣
)         （5） 

 

where 𝑣 = Propagation Speed of Electromagnetic Waves in 

the Medium 

 

 𝛿(⋅) = Dirac Function 

 

By leveraging the registered LiDAR point cloud, a surface 

coordinate system is established, enabling GPR data to be 

mapped into a three-dimensional space, forming a voxelized 

representation of underground structures, as illustrated in Figure 

4. 

 

 
Figure 4. 3D voxelated visualization of void reconstruction 

results 

 

3.2 Dynamic Feature Fusion Framework 

3.2.1 Modality-Specific Feature Extraction Networks 

To effectively process the unique characteristics of different data 

modalities, this study designs dedicated feature extraction 

networks tailored to each modality. 

 

For RGB images, we employ the ConvNeXt network, which 

leverages hierarchical convolutions and channel attention 

mechanisms to effectively extract multi-scale texture features. 

The output feature map at the 𝑙-th layer, denoted as 𝐅RGB
𝑙 , is 

formulated as: 

 

𝐅RGB
𝑙 = ConvBlock(𝐅RGB

𝑙−1 ) + Attention(𝐅RGB
𝑙−1 )   （6） 

 

For GPR data, we construct a Swin-UNet network, which 

leverages the sliding window attention mechanism to analyze 

temporal-spatial features. The self-attention computation within 

each window is formulated as: 

 

Attention(𝐐, 𝐊, 𝐕) = Softmax (
𝐐𝐊𝑇

√𝑑
)𝐯      （7） 

 

3.2.2 Synergistic Fusion of Cross-Attention and FPN 

To achieve efficient multimodal feature fusion, this study 

proposes a dynamic weighted fusion strategy. 

 

Cross-Attention Mechanism: RGB features are used as the Query 

(Q), while LiDAR and GPR features serve as the Key (K) and 

Value (V). The attention weight matrix A is computed as: 

 

𝐀 = Softmax (
𝐐𝐊𝑇

√𝑑𝑘
) , 𝐐 = 𝐖𝑄𝐅RGB, 𝐊 = 𝐖𝐾[𝐅LPC, 𝐅GPR]（8） 

 

Feature Pyramid Network (FPN): Multi-scale features are fused 

through a bottom-up pathway.The output feature at layer 𝑙 , 

denoted as 𝐅out
𝑙 ,, is computed as: 

 

𝐅out
𝑙 = Conv(𝐅in

𝑙 + Upsample(𝐅out
𝑙+1))        （9） 

 

Experimental results show that this framework achieves a crack 

detection IoU of 97.3% in complex scenarios, representing an 6% 

improvement over existing methods. 

 

3.3 Spatiotemporal Modeling and Dynamic Prediction 

3.3.1 Spatiotemporal Attention Mechanism 

To capture the spatiotemporal evolution patterns of road damage, 

this study designs a lightweight spatiotemporal attention module, 

which consists of two key components: spatial correlation 

modeling and temporal dependency optimization. 
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For spatial correlation modeling, the module leverages self-

attention mechanisms to extract spatial distribution dependencies 

of damage patterns. The attention weight 𝛼𝑖,𝑗,𝑘,𝑙  for a given 

location（𝑖, 𝑗）with feature representation 𝐅𝑖,𝑗 is computed as: 

 

𝛼𝑖,𝑗,𝑘,𝑙 = Softmax (
𝐅𝑖,𝑗𝐅𝑘,𝑙

𝑇

√𝑑
)                （10） 

 

This mechanism dynamically adjusts weights based on the 

correlation between damage features, effectively capturing the 

spatial correspondence between crack propagation directions and 

underground voids, thereby enhancing the representation 

capability for complex damage patterns. 

 

For temporal dependency optimization, the module employs a 

sliding window approach to extract historical temporal features 

and dynamically refine the current feature extraction strategy. 

The features from the past T frames, denoted as  {𝐅𝑡}𝑡=1
𝑇 , are 

fused through a weighted summation: 

 

𝐅temp = ∑  𝑇
𝑡=1 𝑤𝑡 ⋅ 𝐅𝑡                       （11） 

 

where 𝑤𝑡  = Dynamic Allocation of Temporal Feature 

Importance 

 

This approach effectively captures the dynamic evolution trends 

of road damage over time, providing more accurate support for 

the prediction and analysis of complex damage patterns. 

 

3.3.2 LSTM-Based Trend Prediction Model 

To predict the progression of road damage, we construct an 

LSTM-based damage expansion prediction network, where the 

state update equation is given by: 

 
ft = 𝜎(𝐖𝑓[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝑓)

Ct = 𝐟𝑡 ⊙𝐂𝑡−1 + 𝐢𝑡 ⊙ tanh⁡(𝐖𝐶[𝐡𝑡−1, 𝐱𝑡] + 𝐛𝐶)

ℎ𝑡 = 𝐨𝑡 ⊙ tanh⁡(𝐂𝑡)

（12） 

 

Where 𝐱𝑡 = Fusion Feature at Time Step t 
 𝐡𝑡 = Hidden State 

 

The loss function combines Mean Squared Error (MSE) and 

Dynamic Time Warping (DTW) loss, formulated as: 

 

ℒ = ℒMSE + 𝛾ℒDTW                     （13） 

 

Experimental results show that the proposed model achieves an 

MAE of 8.7% in predicting damage trends over the next 3–6 

months, representing a 34% reduction compared to single time-

series models. 

 

4. Experiments and Results 

 

4.1 Experimental Setup 

4.1.1 Dataset and Evaluation Criteria 

This experiment uses a dataset consisting of 1,000 RGB image 

samples with a resolution of 5480×3648. Additionally, the 

dataset includes LiDAR point cloud data (Velodyne VLP-32C) 

and GPR data (MALA ProEx), along with relevant 

environmental measurements. The data is split into training, 

validation, and test sets in a 7:2:1 ratio. 

 

For annotation, RGB images are labeled using the LabelMe tool, 

LiDAR point cloud data is annotated with the 3D reconstruction 

tool CloudCompare, and GPR data is labeled using professional 

underground detection software. These annotation methods 

ensure high-quality and consistent labeling across different 

modalities. 

 

4.1.2 Evaluation Metrics 

The evaluation metrics cover both detection performance and 

prediction error. For detection performance, IoU (Intersection 

over Union), AP@0.5 (Average Precision), IoU-adjusted (0.5), 

and F1-score are used. For prediction error, MAE (Mean 

Absolute Error) and RMSE (Root Mean Squared Error) are 

adopted. These metrics comprehensively assess the model’s 

performance in terms of detection accuracy and prediction error. 

 

4.2 Experimental Results 

4.2.1 Comparison of Multimodal Detection Performance 

In this experiment, we compare the multimodal detection 

performance of different methods. The table presents the 

performance of RGB-only, LiDAR-only, GPR-only, Early 

Fusion, Late Fusion, TransFuser, and our fusion method. We 

evaluate the models using IoU (Intersection over Union), 

AP@0.5 (Average Precision), and F1-score. 

 

Method 
Crack IoU 

(%) 

Void 

AP@0.5 (%) 

F1-score 

(%) 

RGB-only 84.3 72.5 86.1 

LiDAR-only 76.8 85.2 81.3 

GPR-only 68.5 88.7 75.2 

Early Fusion 87.6 89.4 88.9 

Late Fusion 89.1 90.3 89.7 

TransFuser 91.8 92.5 92.1 

Ours 97.3 93.7 96.5 

Table 1. Comparison of Multimodal Detection Performance 

Across Different Methods 

 

In the experimental results, it is evident that as multimodal 

information is fused, detection performance improves 

significantly. Notably, the TransFuser method and our proposed 

fusion method (Ours) exhibit outstanding performance. Our 

fusion method surpasses existing single-modal and other 

multimodal fusion methods in IoU, AP@0.5, and F1-score, 

achieving the highest detection accuracy. These experimental 

results indicate that integrating multi-source data (RGB, LiDAR, 

and GPR) effectively enhances detection accuracy and reliability, 

demonstrating the potential of our multimodal data fusion 

approach in real-world applications. 

 

4.2.3 Verification of Multimodal Alignment Accuracy 

To evaluate the accuracy of the cross-modal alignment module, 

we compare the performance of different registration methods. 

Table 2 presents a comparison of multimodal alignment accuracy. 

 

Registration 

Method 

RGB-

LiDAR 

RMSE 

(mm) 

GPR 

Mapping 

Error (mm) 

Alignment 

Success Rate 

(%) 

Existing ICP 8.7 23.5 72.3 

SIFT Feature 

Matching 
5.2 18.4 85.1 

DeepMapping 

1.0 
3.8 9.6 92.7 

Ours 

(DeepMapping 

2.0 + RAFT) 

2.3 4.8 96.8 

Table 2. Comparison of Multimodal Alignment Accuracy 
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From the experimental results, it is evident that as multimodal 

alignment methods improve, the alignment accuracy of RGB-

LiDAR and GPR data has significantly increased, particularly in 

our proposed DeepMapping 2.0 + RAFT method. Compared to 

existing methods such as ICP and SIFT feature matching, 

DeepMapping 2.0 + RAFT achieves superior performance in 

RMSE, GPR noise error, and alignment success rate, with the 

lowest error values in alignment accuracy. This demonstrates that 

the integration of deep learning techniques with image 

registration methods can significantly enhance multimodal data 

alignment accuracy, offering broad application potential, 

especially in high-precision localization and environmental 

perception. 

 

4.2.4 Ablation Study 

To evaluate the contribution of each module, we conducted a 

series of ablation experiments to assess performance variations 

across different model configurations. The table presents the 

results for different configurations (Baseline Model, Baseline 

Model + Cross-Attention, Baseline Model + FPN, Baseline 

Model + Spatiotemporal Attention Mechanism) in terms of IoU, 

AP@0.5, and MAE. 

 

Model Variant 
Crack 

IoU (%) 

Void 

AP@0.5 

(%) 

Prediction 

MAE (%) 

Baseline Model 

(without Cross-

Attention) 

91.8 89.3 11.5 

Baseline Model 

+ Cross-

Attention 

94.7 

(+2.6) 
93.2 (+3.9) 9.8 (-1.7) 

+ Feature 

Pyramid 

Network (FPN) 

96.3 

(+1.6) 
93.4 (+0.2) 8.9 (-0.9) 

+ 

Spatiotemporal 

Attention 

Mechanism 

97.3 

(+1.0) 
93.7 (+0.3) 8.7 (-0.2) 

Table 3: Ablation Study Results 

 

From the ablation study results, it can be observed that adding the 

Cross-Attention and FPN modules significantly improves model 

performance, particularly in IoU and AP@0.5 metrics. The 

further introduction of the spatiotemporal attention mechanism 

further enhances the overall model performance, leading to a 

noticeable reduction in prediction MAE. This demonstrates that 

integrating different modules, especially Cross-Attention and 

spatiotemporal attention mechanisms, can significantly improve 

both detection and prediction accuracy, effectively optimizing 

model performance. 

 

5. Discussion 

The proposed multimodal data fusion framework exhibits 

significant advantages in road damage detection and prediction. 

By integrating texture features from RGB images, geometric 

information from LiDAR point clouds, and subsurface sensing 

capabilities from GPR data, the model achieves high-precision 

joint detection of surface cracks, potholes, and underground 

voids. 

 

Experimental results show that the dynamic weighted fusion 

mechanism (Cross-Attention + FPN) enables the model to 

achieve a crack detection IoU of 97.3%, representing a 6% 

improvement over existing single-modal methods. Notably, in 

underground void detection, AP@0.5 increased by 5%. This 

performance improvement is attributed to the complementarity 

of multimodal data: RGB captures surface texture details, LiDAR 

provides 3D deformation information, and GPR reveals 

underground structural features. 

 

For example, in complex damage scenarios where crossing 

cracks and underground voids coexist, the model dynamically 

adjusts modality weights (boosting GPR weight to 73.5%), 

enabling precise damage localization. Additionally, the 

spatiotemporal modeling module, leveraging ConvLSTM and 

attention mechanisms, effectively captures the spatiotemporal 

evolution of road damage. The 6-month trend prediction achieves 

an MAE of 8.7%, 34% lower than existing LSTM-based models, 

providing a scientific foundation for preventive maintenance. 

 

6. Conclusion 

This study proposes an innovative multimodal road damage 

detection and prediction framework, achieving full-dimensional 

perception of surface and subsurface damage through deep 

integration of RGB, LiDAR, and GPR data. The key 

technological breakthroughs include millimeter-level cross-

modal alignment (RGB-LiDAR registration error 2.3mm, GPR 

mapping error 4.8mm), dynamic adaptive fusion (GPR weight 

dynamically increased to 73.5%), and spatiotemporal 

collaborative prediction (6-month trend prediction MAE 8.7%). 

Experimental results show that this method achieves a crack 

detection IoU of 97.3% and extends void detection depth to 35cm, 

significantly outperforming existing methods. 

 

Future research will focus on multisource heterogeneous data 

fusion (e.g., incorporating InSAR for road subsidence 

monitoring), self-supervised learning to reduce reliance on 

labeled data, and integration with digital twin platforms to enable 

damage evolution simulation and virtual validation of 

maintenance strategies. This study provides a new methodology 

for intelligent road damage detection, with the potential to drive 

urban infrastructure maintenance toward intelligent and 

preventive solutions. 
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