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Abstract 

 

Soil loss presents significant threats to environmental safety and agricultural security in the Poyang Lake Basin. Therefore, accurately 

assessing the spatio-temporal distribution of soil loss and identifying its key driving factors is essential. Utilizing the Google Earth 

Engine (GEE) platform and multi-source remote sensing data, this study estimates annual average soil loss and examines its spatio-

temporal dynamics through the Revised Universal Soil loss Equation (RUSLE). The analysis incorporates rainfall erosivity (R factor) 

from CHIRPS precipitation data, soil erodibility (K factor) from OpenLandMap, topographic factors (LS factor) from DEM data, 

vegetation cover (C factor) from Landsat7/8 NDVI, and conservation practices (P factor) from MODIS land cover data. The results 

indicate significant changes in soil loss patterns from 2001 to 2020, with average annual soil loss decreasing from 13.4 t/hm² in 2001-

2010 to 7.2 t/hm² in 2011-2020, reflecting a trend line coefficient of -0.5. Areas of severe erosion were identified at the confluence of 

the Yangtze River and Poyang Lake, particularly in Zhaisang, Lianxi, and Lushan Districts, as well as in flood-prone regions southeast 

of Poyang Lake and urban areas in Nanchang City. Within the same year, soil loss distribution correlates with precipitation and slope. 

While over 20 years, strong relationships were found between soil loss and cropland (with a Pearson correlation coefficient of 0.58) 

and impervious surfaces (-0.72), indicating that human activities primarily drive soil loss in the Poyang Lake Basin. The research 

findings align with previous studies that utilized the RUSLE model to calculate soil erosion in Poyang Lake, based on historical and 

geospatial data from various domestic sources. This demonstrates the effectiveness of GEE and remote sensing in assessing soil loss, 

providing reliable data to support the sustainable use and protection of land in the watershed. 

 

 

1. INTRODUCTION 

Soil loss is a widespread environmental issue globally, leading 

not only to the loss of soil resources but also having profound 

impacts on water quality, ecosystems, and agricultural 

production. Therefore, efficiently and accurately assessing soil 

loss over large spatial scales and analyzing its spatio-temporal 

distribution characteristics are crucial for soil loss control and 

conservation decision-making (Li et al., 2014). With the rapid 

development of GIS and remote sensing technologies, methods 

for monitoring and assessing soil loss are continuously evolving。

Luvai et al. (Luvai et al., 2022) categorized soil loss assessment 

methods into physical models, empirical models, and conceptual 

models based on differences in model parameters, assessment 

approaches, and principle. 

 

Physical models describe the soil loss processes in watersheds by 

providing solutions to fundamental physical equations (Roshani 

et al., 2006) ， Examples include the Water Erosion and 

Prediction Project (WEEP) developed by the USDA, the 

EUROSEM model designed for simulating and predicting soil 

loss, and the GUEST model for assessing soil loss and 

sedimentation processes (Flanagan et al., 1995; MISRA & ROSE, 

1996; Roshani et al., 2006); Empirical models, which combine 

inductive logic, expert experience, and experimental results, are 

user-friendly, require less data and computation, and are 

therefore widely applied (Efthimiou et al., 2016; Merritt et al., 

2003), Common examples include the Universal soil loss 

Equation (USLE), the Modified Universal Soil Loss Equation 

(MUSLE), and the Revised Universal Soil Loss Equation 

(RUSLE), the latter being the primary model used in this study 

(Renard et al., 1997; Williams & Berndt, 1977; Wischmeier & 

Smith, 1978), Conceptual models aim to describe the 

mechanisms behind water and sediment exchange within a 

watershed, such as the Chemical Runoff and Erosion from 

Agricultural Management Systems (CREAMS) model (Knisel, 

1980) and the Large Scale Catchment Model (LASCAM) (Viney 

& Sivapalan, 1999). 

 

Since 2017, the emergence of the Google Earth Engine (GEE) 

platform has enabled efficient and precise processing and 

analysis of large-scale remote sensing data due to its powerful 

cloud computing capabilities (Gorelick et al., 2017). 
Consequently, analyzing the spatio-temporal dynamics of soil 

loss and its driving factors using the GEE platform and multi-

source remote sensing data has become a primary method in 

recent soil loss research. For instance, Demir et al. utilized the 

RUSLE-GEE method to predict soil loss before (2020) and after 

(2022) a wildfire, revealing that soil loss varied with land use 

changes during these periods (Demir & Dursun, 2024); Islam 

employed GEE platform data to predict annual soil loss in 

Nigeria using the RUSLE model (Islam, 2022); Jodhani 

combined the GEE platform with the RUSLE model to 

quantitatively assess soil loss and sediment yield under various 

conditions, using GEE primarily to qualitatively generate soil 

loss spectral indices for assessing soil loss and land degradation 

in the western region of the Gujarat River Basin in India (Jodhani 

et al., 2023).  Papaiordanidis studied the seasonal spatio-temporal 

variations of soil loss in the Pindos Mountains of Greece using 

the GEE platform and RUSLE model, estimating the correlation 

between seasonal components of RUSLE (precipitation and 
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vegetation) and average RUSLE values (Papaiordanidis et al., 

2020). 

 

The Poyang Lake Basin holds significant importance as a vital 

area for fishery and food production in China, the analysis of soil 

loss issues within this region is of paramount significance. This 

study leverages the capabilities of the Google Earth Engine (GEE) 

platform, combined with multi-source remote sensing data, to 

construct the Revised Universal Soil Loss Equation (RUSLE) 

model. This approach facilitates an efficient and accurate 

analysis of the spatio-temporal dynamics of soil loss in the 

Poyang Lake Basin from 2001 to 2020.  

 

By systematically identifying and evaluating the key driving 

factors influencing soil loss, the research aims to elucidate the 

complex interactions between anthropogenic activities, land use 

changes, and climatic conditions. The findings of this study are 

intended to provide a robust scientific basis for developing 

effective soil protection strategies and sustainable management 

practices in the Poyang Lake Basin. 

 

2. STUDY AREA 

Jiangxi Province has a varied topography including plains, 

mountains, and hills. It experiences a subtropical humid monsoon 

climate characterised by simultaneous rainfall and heat, with 

frequent heavy rainfall in summer leading to potential flooding. 

The centrally located Poyang Lake is the largest freshwater lake 

in China and serves as an important seasonal, hydrological, and 

throughput lake within the Yangtze River Basin. It plays a crucial 

role in regulating the water level of the Yangtze River, 

conserving water resources, improving local climatic conditions, 

and maintaining the ecological balance of the surrounding areas 
(Chronicles, 2003). 

 

With economic development and population growth, the Poyang 

Lake Basin has experienced excessive land exploitation, 

resulting in ecological degradation. The increase in agricultural 

activities has exacerbated soil loss issues, which not only affects 

the sustainability of agricultural production but also negatively 

impacts the water quality and ecosystems of the lake. Given the 

significance of the Poyang Lake Basin in agriculture, ecological 

protection, and water resource management, a comprehensive 

study of the spatio-temporal dynamics of soil loss and its driving 

factors in this region holds substantial scientific and practical 

importance. 

 

 

Figure 1. Study Area - Poyang Lake Basin 

3. METHODOLOGY 

The overall technical approach of this study is illustrated in 

Figure 2. First, key factors for the RUSLE model are calculated 

based on various geographic datasets available on the GEE 

platform. These factors are then incorporated into the RUSLE 

model to quantitatively assess soil loss in the Poyang Lake Basin. 

The annual average soil loss dataare then analysed to determine 

overall trends, and GIS spatial analysis techniques are used to 

identify hotspots of soil loss and their spatial distribution 

characteristics. Finally, correlation analysis is performed on land 

use/land cover (LULC) data and climate data from ERA5_Land 

to analyse the driving factors and  identify the key elements 

influencing soil loss. 

 

 

Figure 2. Technical Roadmap 

 

3.1 Data Collection 

As shown in Table 1, this study utilizes various data sources 

primarily derived from publicly available datasets on the GEE 

platform. The Rainfall Erosivity Factor is calculated based on 

CHIRPS precipitation data. The Soil Erodibility Factor is derived 

from soil texture data obtained from OpenLandMap. The Slope 

Length and Steepness Factor is calculated using Digital Elevation 

Model (DEM) data to determine slope length and gradient. The 

Cover and Management Factor is computed by extracting the 

Normalized Difference Vegetation Index (NDVI) from Landsat 

7/8 data. The Support Practice Factor is derived from land cover 

information extracted from MODIS/MCD12Q2 data. Finally, 

key driving factors influencing soil loss are analyzed using land 

use type data from Professor Huang Xin of Wuhan University 

(Yang & Huang, 2021) and the ERA5_LAND dataset. 

 

Datatype Dataset Time 
Resol

ution 

Purpose of 

calculation 

Rainfall data 
UCSB-

CHG/CHIRPS/PENTAD 
1981 0.05° 

Rainfall 

Erosivity 

Factor 

Soil texture 

OpenLandMap/SOL/SO

L_TEXTURE-

CLASS_USDA-

TT_M/v02 

1950-

2018 
250m 

Soil 

Erodibility 

Factor 

Digital 

elevation data 
USGS/SRTMGL1_003 2000 30m 

Slope Length 

and Steepness 

Factor 

Landsat7/8 

LANDSAT/LE07/C02/T

1_L2 

LANDSAT/LC08/C02/T

1_L2 

1985-

2022 
30m 

Cover and 

Management 

Factor 

Land Cover 

Dynamics 

data 

MODIS/006/MCD12Q1 
2001-

2020 
500m 

Support 

Practice 

Factor 
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land cover 

dataset 

projects/lulc-

datase/assets/LULC_Hua

ngXin/ 

1990-

2023 
30m 

Driving 

Factor 

Analysis 

Climate data 
ECMWF/ERA5_LAND/

MONTHLY_AGGR 
1950- 1km 

Driving 

Factor 

Analysis 

Table 1. Data source 

 

3.2 The RUSLE Model 

The Revised Universal Soil Loss Equation (RUSLE) is a widely 

utilized empirical model designed to estimate soil loss rates 

caused by water (Renard et al., 1997). It serves as an essential 

tool for researchers, land managers, and policymakers in 

assessing soil loss risk and implementing effective soil 

conservation practices. RUSLE is an enhancement of the original 

Universal Soil Loss Equation (USLE), incorporating 

advancements in understanding soil loss processes and 

improving parameterization. The RUSLE is mathematically 

expressed as follows: 

 

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶 × 𝑃 (1) 

 

Where A represents the predicted soil loss (tons per hectare per 

year), R denotes the rainfall erosivity factor, K indicates the soil 

erodibility factor, LS refers to the slope length and steepness 

factor, C signifies the cover and management factor, and P 

represents the support practice factor. 

 

Rainfall Erosivity Factor (R): This factor quantifies the impact of 

rainfall on soil loss, reflecting both the intensity and duration of 

rainfall events. It is typically derived from historical precipitation 

data and can be calculated using various methods that consider 

rainfall characteristics. In this paper, the relationship between 

annual precipitation and the R factor, as derived by Singh et al., 

is utilized (as shown in Equation (2)). The R factor is calculated 

using annual precipitation data from the CHIRPS dataset 

available on the GEE platform (Singh et al., 1981)。 

 

𝑅𝑖 = 0.363𝑃𝑖 + 79 (2) 

 

Where 𝑃𝑖 represents the average annual rainfall for the 𝑖-th year , 

and 𝑅𝑖 denotes the R factor for the 𝑖-th year. 

 

Soil Erodibility Factor (K): The K factor represents the 

susceptibility of soil to erosion, based on its physical and 

chemical properties. It is determined through laboratory analysis 

of soil samples or by referencing established soil databases that 

provide K values for different soil types. In this paper, the K 

Factor values are assigned based on the 12 soil categories from 

the b0 dataset in the OpenLandMap Soil Texture Class available 

on the GEE platform, utilizing the findings from the research 

conducted by Bouguerra et al. (as shown in Table 2) (Bouguerra 

et al., 2017). 

 

value Description K factor 

1 CI（Clay） 0.0288 

2 SICI（Silt Clay Loam） 0.0341 

3 SaCI（Sandy Clay Loam） 0.036 

4 ClLo（Clay Loam） 0.0394 

5 SiClLo（Silt Clay Loam） 0.0423 

6 SaClLo（Sandy Clay Loam） 0.0264 

7 Lo（Loam） 0.0394 

8 SiLo（Silt Loam） 0.0499 

9 SaLo（Sandy Loam） 0.05 

10 Si（Silt） 0.045 

11 LoSa（Loamy Sand） 0.017 

12 Sa（Sand） 0.0053 

Table 2. K factor in different soil texture 

 

Slope Length and Steepness Factor (LS): This factor accounts for 

the influence of topography on soil loss. It is calculated using 

digital elevation models (DEMs) to assess slope length and 

steepness。This study calculates the LS factor using the 30m 

DEM data from the GEE platform, following the formula 

proposed by Wischmeier et al (Wischmeier & Smith, 1978) (as 

shown in Equation (3)): 

 

𝐿𝑆 = (√𝐿 ×
0.305

100
) × (0.76 + 0.53 × 𝑆 + 0.076 × 𝑆2 (3) 

 

Where 𝐿 represents the slope length，while 𝑆 denotes the slope 

percentage (%). 

 

Cover and Management Factor (C): The C factor reflects the 

protective effect of vegetation and land management practices on 

soil loss. It is influenced by the type of vegetation, its density, 

and the management practices employed. Therefore, it is 

common practice to first calculate the NDVI (Normalized 

Difference Vegetation Index) values based on remote sensing 

imagery data (as shown in Equation (4)). Subsequently, the C 

factor (cover and management factor) is computed using the 

formula proposed by Knijff et al (Knijff et al., 2000) (as shown 

in Equation (5))： 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (4) 

 

𝐶 = exp (−𝛼 (
𝑁𝐷𝑉𝐼

𝛽 − 𝑁𝐷𝑉𝐼
)) (5) 

 

where NIR represents the near-infrared reflectance, and RED 

represents the red reflectance; 𝛼 and 𝛽 define the NDVI curve, 

and 𝛼 = 2 and 𝛽 = 1. 

 

Support Practice Factor (P): This factor indicates the 

effectiveness of soil conservation practices, such as contour 

farming, terracing, or the use of cover crops, in reducing soil loss. 

P values are determined based on the specific practices 

implemented in a given area. Kassie et al. proposed a method that 

combines the effects of topography with watershed 

characteristics and land use/land cover, allowing for the 

assignment of appropriate P factors based on different land use 

types and actual terrain conditions (Kassie et al., 2018). In this 

study, we have integrated land use types and slope to establish 

the P factor, with the setting principles outlined in Table 3(The 

values of “LC_Type1” in the MODIS/006/MCD12Q1 dataset 

represent different land cover types, and the specific 

interpretations and definitions of these distinct values are detailed 

in the table provided in the Appendix.): 

 

Slope(°) Value of “LC_Type1” in MODIS/006/MCD12Q1 P Factor 

/ ＜11 0.8 

/ 11 1 

/ 13 1 
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/ ＞14 1 

＜2 12 or 14 0.6 

＜5 12 or 14 0.5 

＜8 12 or 14 0.5 

＜12 12 or 14 0.6 

＜16 12 or 14 0.7 

＜20 12 or 14 0.8 

＞20 12 or 14 0.9 

Table 3. Principles for Setting the P Factor 

 

Based on the formulas, we take the year 2010 as an example and 

utilize multi-source remote sensing data to calculate the five key 

factors in the RUSLE (Revised Universal Soil Loss Equation). 

The results of these calculations are illustrated in Figure 3. 

 

Figure 3. Results Map of Key Factors for RUSLE in 2010. 

 

3.3 Driving Factor Analysis Methods 

In the driving factor analysis, the analysis of driving factors in 

the horizontal spatial dimension determines the factor that has the 

greatest impact on soil loss in the Poyang Lake Basin by 

calculating the KL divergence values between the soil loss 

imagery and the image data of different factors. KL divergence 

is an asymmetric measure of the difference between two 

probability distributions (Kullback & Leibler, 1951). In the field 

of image processing, KL divergence can be used to measure the 

similarity between images; the smaller the KL value, the more 

similar the distributions of the two images are. The calculation 

formula is as follows (equation 6): 

 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) =  ∑ 𝑃(𝑥) log
𝑃(𝑥)

𝑄(𝑥)
𝑥

(6) 

 

In the equation，P(x) and Q(x) represent the probability density 

functions at point x ；𝐷𝐾𝐿(𝑃 ∥ 𝑄)denotes the KL divergence 

from distribution Q to distribution P. 

 

In the analysis of driving factors along the vertical time 

dimension, the Pearson correlation analysis method(Pearson, 

1900) is employed to quantitatively calculate the correlation 

coefficients between multi-year soil loss data and the 

corresponding land use/land cover (LULC) data, as well as 

climate data such as temperature, precipitation, and evaporation 

during the same time period. This approach helps identify the 

factors that have the greatest impact on soil loss. The calculation 

formula for the Pearson correlation coefficient is as follows 

(Equation 7): 

 

𝑟 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦

(7) 

 

Where 𝐶𝑜𝑣(𝑋, 𝑌) represents the covariance between the 

independent variable X and the dependent variable Y , while 𝜎𝑥 

and 𝜎𝑦 denote the standard deviations of variables X and Y, 

respectively. A higher Pearson correlation coefficient indicates a 

stronger correlation between the two variables. 

 

4. RESULTS 

4.1 Spatio-temporal Dynamics of Soil Loss 

The average soil loss trends in the Poyang Lake Basin from 2001 

to 2020 are shown in Figure 4, which shows significant 

fluctuations in soil erosion over this period. In particular, except 

for the years 2003 and 2010—when soil loss exceeded 20 

t/hm²—the maximum soil loss in other years was limited to 15 

t/hm². This pattern suggests that extreme weather events, 

particularly heavy rainfall and flooding, contributed significantly 

to soil erosion during in these years. 

 

Following 2010, a marked improvement in soil loss conditions is 

evident. The average annual soil loss from 2001 to 2010 was 13.4 

t/hm², while this figure decreased substantially to 7.2 t/hm² from 

2011 to 2020. This reduction indicates the effectiveness of soil 

conservation measures and improved land management practices 

implemented in the region. Overall, the trend line shows a 

consistent decline in soil loss over the past two decades, with a 

slope of -0.5, highlighting a gradual yet significant improvement 

in soil loss conditions within the Poyang Lake Basin. This 

underscores the positive impact of targeted interventions aimed 

at mitigating soil erosion and promoting environmental 

sustainability. The temporal variation trend of soil erosion in 

Poyang Lake is consistent with the results(TAN et al., 2023) 

calculated using the RUSLE model based on historical data from 

meteorological stations in 2023 and geospatial data compiled 

from various domestic websites. 

 

 

Figure 4. The average soil loss trend chart from 2001 to 2020 

(the table content represents the correlation coefficient values of 

the trend line). 

 

The spatial distribution of soil loss in the Poyang Lake Basin over 

time is comprehensively illustrated in Figure 5. Utilizing a 
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classification system based on soil loss levels—specifically "<10, 

10-20, 20-30, 30-40, >40" (measured in t/hm²)—the soil loss 

types within the basin are categorized into five distinct classes: 

Slight, Moderate, High, Very High, and Severe. This 

classification allows for a nuanced understanding of the varying 

degrees of soil erosion across the region. 

 

Analysis of the spatial distribution of soil loss over the years 

reveals that areas experiencing the most severe erosion are 

primarily concentrated in three key locations, as highlighted in 

Figure 5 under "Soil Loss 2020." The first area of concern is the 

junction of the Yangtze River and Poyang Lake, particularly 

within the Zhaisang District, Lianxi District, and Lushan District. 

This region is characterized by its unique hydrological dynamics, 

which contribute to heightened erosion rates. 

 

The second area of significant soil loss is the floodplain located 

to the southeast of Poyang Lake, especially at the intersections of 

Poyang County, Xinjian District, and Yugan County. This 

floodplain is particularly vulnerable to erosion due to its 

susceptibility to flooding and sediment displacement during 

heavy rainfall events. 

 

Lastly, the urban area of Nanchang City also exhibits notable soil 

loss, likely influenced by urbanization and land use changes that 

disrupt natural soil structures. The concentration of severe soil 

loss in these areas underscores the urgent need for targeted soil 

conservation strategies and effective land management practices 

to mitigate erosion and protect the ecological integrity of the 

Poyang Lake Basin. Understanding these spatial dynamics is 

crucial for developing interventions that address the specific 

challenges faced by these vulnerable regions. 

 

 

Figure 5. Soil loss Spatial Distribution Map (in ‘Soil Loss 

2020’, ① represents the junction of the Yangtze River and 

Poyang Lake, ②represents the floodplain area to the southeast 

of Poyang Lake and ③ represents the Nanchang City) 

 

4.2 Driving Factors Analysis of Soil Loss 

This study conducts a comprehensive analysis of the drivers of 

soil loss, examining both horizontal spatial dimensions and 

vertical temporal dimensions. From a horizontal spatial 

perspective, the analysis uses the Kullback-Leibler (KL) 

divergence method to quantify the relationship between the gray-

scale maps of different environmental factors and the gray-scale 

map of soil loss for the year 2010, as shown in Figure 6. The 

results show that the soil loss distribution map has the closest 

correlation with the R Factor (rainfall erosivity) and LS Factor 

(slope length and steepness) maps, both of which have the lowest 

KL Divergence values of 0.49. This finding hightlights the 

improtant role that rainfall and local slope conditions play in 

shaping the spatial distribution of soil loss within the Poyang 

Lake Basin. The strong association between these factors and soil 

loss highlights the importance of understanding hydrological 

dynamics and topographic influences in developing effective soil 

conservation strategies. 

 

 

Figure 6. KL divergence between soil loss and various factors 

 

From a vertical temporal perspective, the time series relationship 

between soil loss data and land use/land cover (LULC) data, as 

well as climate factor data, is depicted in Figure 7 and Figure 8. 

Analysis reveals that prior to 2010, soil loss trends were 

predominantly influenced by precipitation patterns, particularly 

highlighted by two significant flood events in 2010 that led to a 

dramatic spike in soil loss. These floods underscored the 

vulnerability of the Poyang Lake Basin to extreme weather 

events. However, post-2010, the correlation between 

precipitation and soil loss has gradually weakened. Notably, 

during the major flood event in 2020, soil loss exhibited only a 

marginal increase compared to 2019, indicating a shift in the 

dynamics influencing soil erosion. This suggests that other 

factors, such as improved land management practices or changes 

in land use, may have begun to play a more significant role in 

moderating soil loss in the region. 

 

 

Figure 7. Temporal relationship between land use/land cover 

factors and soil loss 
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Figure 8. Temporal relationship between climate factors with 

soil loss 

 

Additionally, the overall correlation coefficients between various 

factors and soil loss from 2001 to 2020 were calculated and 

visualized using a Pearson correlation heatmap, as illustrated in 

Figure 9. The analysis reveals that soil loss in the Poyang Lake 

Basin is predominantly associated with land use types, 

particularly cropland, which exhibits a Pearson correlation 

coefficient of 0.58. This positive correlation suggests that 

increased agricultural activities and land conversion to cropland 

significantly contribute to soil erosion in the region. Conversely, 

impervious surfaces, such as urban infrastructure, show a strong 

negative correlation with soil loss, with a coefficient of -0.72. 

This indicates that areas with more impervious surfaces tend to 

experience reduced soil erosion, likely due to the stabilization of 

soil and reduced runoff. 

 

Furthermore, the factors of shrub, grassland, and barren land 

account for only 0.1% of the total area of the Poyang Lake Basin, 

rendering them insignificant in influencing soil loss dynamics. 

This analysis underscores the conclusion that soil loss in the basin 

is primarily driven by anthropogenic activities, particularly 

agricultural practices, while the influence of climatic factors 

appears to be relatively limited.  

 

 

Figure 9. Driver Factor Analysis Based on Pearson's Method 

 

5. DISCUSSION 

The results of this study indicate the severe agricultural 

environmental problems in the region and highlitht the 

importance of investigating the dynamics of soil erosion in the 

Poyang Lake Basin. The observed decrease in average annual soil 

loss from 13.4 t/hm² in the period of 2001-2010 to 7.2 t/hm² in 

2011-2020 suggests that conservation efforts and land 

management practices implemented during this time may have 

had a positive impact on soil preservation. However, it is 

essential to acknowledge the inherent limitations of this study, 

particularly regarding data availability, model assumptions, and 

potential sources of discrepancy. 

One significant limitation is the reliance on remote sensing data 

and the availability of high-resolution datasets. While the 

integration of multi-source remote sensing data, including 

CHIRPS precipitation data, OpenLandMap soil erodibility, and 

MODIS land cover data, enhances the accuracy of soil loss 

estimations, the quality and resolution of these datasets can vary. 

For instance, the temporal resolution of precipitation data may 

not capture localized rainfall events that significantly influence 

soil erosion. Additionally, the spatial resolution of land cover 

data may not adequately represent small-scale land use changes, 

which can lead to discrepancies in the assessment of soil loss. 

Moreover, the application of the Revised Universal Soil Loss 

Equation (RUSLE) involves several assumptions that may not 

hold true in all contexts. For example, RUSLE presupposes a 

uniform distribution of rainfall and does not account for the 

variability in soil properties across different land use types. This 

simplification may lead to an underestimation or overestimation 

of soil loss in certain areas, particularly in regions with 

heterogeneous landscapes. The correlation of soil loss with 

precipitation and slope within the same year further emphasizes 

the role of climatic and topographic factors; however, it also 

highlights the need for a more nuanced understanding of how 

these factors interact over time. 

The identification of severe erosion hotspots, particularly at the 

confluence of the Yangtze River and Poyang Lake, underscores 

the need for targeted interventions in these vulnerable areas. The 

districts of Zhaisang, Lianxi, and Lushan, along with flood-prone 

regions and urban areas in Nanchang City, require immediate 

attention to mitigate the risks associated with soil erosion. These 

areas are likely influenced by both natural factors, such as 

topography and hydrology, and anthropogenic activities, 

including urbanization and agricultural practices. The strong 

relationships found between soil loss and land use types, 

particularly cropland and impervious surfaces, provide critical 

insights into the drivers of soil erosion in the Poyang Lake Basin. 

However, the positive correlation with cropland (Pearson 

coefficient of 0.58) suggests that agricultural practices may 

contribute to soil degradation, potentially due to tillage, crop 

removal, and inadequate soil management techniques. 

Conversely, the negative correlation with impervious surfaces (-

0.72) indicates that urbanization may play a role in reducing soil 

loss in certain contexts, possibly due to the stabilization of soil 

through construction and infrastructure development. 

Nevertheless, this does not negate the potential for increased 
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runoff and sedimentation associated with urban areas, which can 

exacerbate erosion in surrounding landscapes. 

To address these limitations, future research should focus on 

several key areas. First, there is a need for long-term monitoring 

of soil loss dynamics using high-resolution temporal and spatial 

datasets to capture localized changes more effectively. Second, 

exploring the impacts of climate change on precipitation patterns 

and their subsequent effects on soil erosion will be crucial for 

developing adaptive management strategies. Additionally, 

investigating the effectiveness of various conservation practices 

over time will provide valuable insights into their long-term 

sustainability and impact on soil health. 

Overall, this study highlights the necessity for ongoing 

monitoring and assessment of soil loss in the Poyang Lake Basin, 

particularly in light of changing land use patterns and climate 

variability. The insights gained from this research can inform 

targeted conservation strategies aimed at reducing soil erosion 

and enhancing agricultural sustainability. By continuing to 

leverage advanced remote sensing technologies and data 

analytics, stakeholders can develop more effective strategies to 

protect soil resources and ensure the ecological integrity of the 

Poyang Lake Basin. 

 

6. CONCLUSIONS 

In recent years, soil loss has emerged as a critical issue, 

exacerbated by human activities and climate change, which 

adversely affect agricultural practices and the ecological balance. 

Understanding soil loss conditions with high efficiency and 

accuracy is essential for effective research and intervention. This 

study integrates Google Earth Engine (GEE) with multi-source 

remote sensing data to construct the Revised Universal Soil Loss 

Equation (RUSLE) model, which provides a robust method for 

monitoring soil loss. Through a detailed case analysis of the 

Poyang Lake Basin, the study elucidates the temporal and spatial 

variations of soil loss and its driving mechanisms. The main 

findings are as follows: 

 

Temporal Trends: The average annual soil loss in the Poyang 

Lake Basin from 2001 to 2020 exhibits a decreasing trend, with 

a slope of -0.5, indicating a gradual improvement in soil loss 

conditions over the years. 

 

Spatial Distribution: Severe soil loss is concentrated in three 

primary areas: the Zhaisang, Lianxi, and Lushan Districts at the 

Yangtze River and Poyang Lake junction; the flood-prone 

southeastern regions, particularly around Poyang County, 

Xinjian District, and Yugan County; and the urban areas of 

Nanchang City. 

 

Driving Factors: The analysis reveals that the Kullback-Leibler 

(KL) Divergence between soil loss distribution and precipitation 

and slope factors is minimal (0.49), indicating a strong 

relationship with these variables. Additionally, soil loss is 

significantly associated with cropland (0.58) and negatively 

correlated with impervious surfaces (-0.72), suggesting that 

anthropogenic activities are the primary drivers of soil loss, while 

climatic influences are comparatively limited. 

 

The methodologies and findings of this research provide a 

valuable reference for soil loss studies in other basins and offer 

insights for effective soil loss prevention and watershed 

management, thereby supporting the sustainable development of 

the ecological environment. 
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Appendix  

The specific meaning of the different values of "LC_Type1" in 

the MODIS/006/MCD12Q1 dataset in Table 3: 

 

LULC 

Value 

LULC 

Type 
Description 

1 

Evergreen 

Needleleaf 
Forests 

Dominated by evergreen conifer trees 
(canopy >2m). Tree cover >60%. 

2 

Evergreen 

Broadleaf 

Forests 

Dominated by evergreen broadleaf and 

palmate trees (canopy >2m). Tree 

cover >60%. 

3 

Deciduous 

Needleleaf 

Forests 

Dominated by deciduous needleleaf (larch) 

trees (canopy >2m). Tree cover >60%. 

4 

Deciduous 

Broadleaf 

Forests 

Dominated by deciduous broadleaf trees 

(canopy >2m). Tree cover >60%. 

5 
Mixed 

Forests 

Dominated by neither deciduous nor 

evergreen (40-60% of each tree type 
(canopy >2m). Tree cover >60%. 

6 
Closed 

Shrublands 

Dominated by woody perennials (1-2m 

height) >60% cover. 

7 
Open 

Shrublands 

Dominated by woody perennials (1-2m 

height) 10-60% cover. 

8 
Woody 

Savannas 
Tree cover 30-60% (canopy >2m). 

9 Savannas Tree cover 10-30% (canopy >2m). 

10 Grasslands Dominated by herbaceous annuals (<2m). 

11 
Permanent 

Wetlands 

Permanently inundated lands with 30-60% 

water cover and >10% vegetated cover. 

12 Croplands At least 60% of area is cultivated cropland. 

13 

Urban and 
Built-up 

Lands 

At least 30% impervious surface area 
including building materials 

14 

Cropland/N

atural 

Vegetation 

Mosaics 

Mosaics of small-scale cultivation 40-60% 

with natural tree 

15 

Permanent 

Snow and 

Ice 

At least 60% of area is covered by snow and 

ice for at least 10 months of the year. 

16 Barren 
At least 60% of area is non-vegetated barren 

(sand 

17 
Water 

Bodies 

At least 60% of area is covered by permanent 

water bodies. 

255 Unclassified 
Has not received a map label because of 

missing inputs. 
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