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Abstract 

 

Three-dimensional building models, as core data in Building Information Modeling, are extensively applied in various fields such as 

architectural design and urban planning. However, the geometric complexity and the vast amount of data involved pose significant 

challenges for storage, computation, and efficient application. Therefore, ensuring the geometric accuracy and semantic integrity of 

models while reducing data redundancy has become a critical issue in current research. To address this problem, this paper proposes a 

lightweighting method for 3D building models based on semantic constraints. The method combines face merging and face movement 

graphical simplification algorithms to simplify models from LOD3 to LOD1 in a layer-by-layer manner. In the transition from LOD3 

to LOD2, a face merging algorithm is employed to analyze the semantic consistency of adjacent faces, ensuring that only semantically 

consistent faces are merged, thus generating an LOD2 model with semantic integrity. In the transition from LOD2 to LOD1, a concave-

convex face movement and merging algorithm is utilized to reduce redundant data while maintaining geometric similarity and 

optimizing the model's topological structure, ultimately producing a lightweight LOD1 model. Experimental results demonstrate that 

the proposed method significantly reduces the model's storage requirements while effectively preserving its semantic information. 

 

 

1. Introduction 

With the rapid development of urban informatization and digital 

construction technologies, 3D building models have become one 

of the core elements in architectural design and management. 

These models not only provide an intuitive representation of 

geographic information (Zhu and Lin, 2004) but also offer highly 

realistic models for urban planning and related fields (Zhou et al., 

2006). These 3D building models typically encompass rich 

geometric shapes and semantic information to describe 

multidimensional details, such as the spatial structure, functional 

zoning, and material characteristics of buildings. Building 

Information Modeling (BIM) is an interdisciplinary architectural 

design methodology based on the creation, management, and 

exchange of semantically rich 3D models (Eastman, 2011). The 

taxonomy of BIM information divides it into three categories: 

geometric, semantic, and topological information (Pratt-

Hartmann, 2004). Geometric information directly relates to the 

shape and form of facilities, semantic information captures 

inherent attributes (such as function), while topological 

information describes the interrelationships between these 

objects. 

The Level of Detail (LOD) model generation algorithm is one of 

the most common methods for lightweighting architectural 

models. LOD, a multi-scale model, can reflect various 

perspectives from macro to micro (Goetz, 2013). It describes the 

development of digital building models across different stages of 

the building’s lifecycle, formalizing the progressive nature of the 

design process and improving decision-making quality (Hooper, 

2015). The concept of LOD helps define the exchange 

requirements based on BIM (Li et al., 2019), with its data 

structure resembling a hierarchical tree, where each node 

represents a different LOD level. The root node contains the 

highest LOD mesh, and subsequent levels simplify progressively 

(Ge et al., 2024). LOD technology reduces geometric complexity 

and enhances processing efficiency by dynamically adjusting the 

display of models according to viewing distance and detail 

requirements. However, the traditional geometric element 

removal method, as a common LOD generation algorithm, 

although effective in reducing data volume, tends to overlook the 

semantic information of the model, leading to the loss of critical 

functional and structural data (Hoppe et al., 1993). The geometric 

element removal method simplifies models by deleting or 

collapsing the triangular faces (Wu and Xue, 2007), achieving the 

lightweighting goal. However, this simplification process 

neglects semantic information, which impacts the practical value 

of the model. 

Currently, the progress of LOD algorithms for 3D building 

models primarily focuses on geometric simplification. Li et al. 

(2019) proposed a continuous detail level topology data structure 

method, which optimizes the data structure of urban building 

models and combines a minimum feature face movement 

algorithm to address compatibility issues in layered expressions 

of lightweight models. Ge et al. (2024) introduced an LOD 

generation method using a rapid multi-level pyramid structure 

and adaptive tree organization, which excels in maintaining high 

precision, preserving multi-level structures, and optimizing 

texture map occupancy, thus enhancing high frame rates for LOD 

model construction. Xie et al. (2012) proposed rendering 3D 

building models at different levels of detail (LOD) while 

maintaining spatial geometric accuracy and human visual 

preferences, reducing data pressure in 3D city model applications. 

Among existing geometric simplification methods, Forberg 

(2005) simplified 3D building features based on mathematical 

morphology. Baig et al. (2013), Ge et al. (2017), and Li et al. 

(2016) simplified building model feature surfaces by restricting 

the number of edges, curves, and angles in the feature planes. He 

et al. (2024) proposed a lightweight processing method for real-

world 3D models, which simplifies the model’s topological 

structure through edge-collapse decimation algorithms. Zhang et 
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al. (2023) reduced the number of triangular faces on the model 

surface using mesh simplification algorithms, minimizing model 

deformation while better maintaining its geometric features. 

In recent years, researchers have increasingly focused on 

preserving semantic information during the lightweighting 

process of building models. Chen (2021) proposed a method 

based on the priority merging of components with the same 

attributes, which utilizes semantic consistency to guide 

geometric simplification, ensuring effective retention of the 

model's semantic information. Additionally, Zhu et al. (2021) 

introduced a semantic-based building model simplification 

approach, combining model simplification with semantic 

information at different levels. They proposed the s-LOD1 to s-

LOD4 levels of detail and selected appropriate simplification 

strategies based on semantic information. Jia et al. (2016) 

presented the basic structure for the semantic description of 

geographic information, refining it into semantic granularity 

terms of different sizes to construct a model for the level of detail 

(LOD) expression of geographic information semantics. They 

also implemented quantitative calculations of geographic 

information semantic similarity based on matching relationships 

between semantic granularity terms. Fan et al. (2009) utilized 

semantic information for building model simplification, 

significantly improving the model’s storage efficiency while 

effectively retaining critical model information. Isailović et al. 

(2020) proposed a semantic enhancement method for generating 

remaining BIM and damaged point cloud geometric 

reconstruction, along with the corresponding IFC model. They 

employed and evaluated multi-view classification to detect 

peeling damage features, thereby generating accurate AS-IS-IFC 

models that meet Building Maintenance System (BMS) 

inspection requirements. 

This study, based on existing LOD generation algorithms and 

semantic-driven building model simplification techniques, 

proposes a multi-level building model lightweighting method 

that integrates geometric simplification with semantic 

information retention. The method involves several key aspects, 

particularly the use of LOD technology to adjust the level of 

geometric detail, thereby reducing the geometric complexity of 

the model. The primary focus of the study is on semantic 

information-driven model simplification, where the semantic 

information of the building model is leveraged to prioritize the 

retention of critical functional data during the simplification 

process. By performing semantic classification and analysis of 

building elements, the method ensures that semantic information 

is effectively preserved throughout the simplification process. 

 

2. Related Work 

2.1 Semantic Information of 3D Building Models 

3D building models not only provide a visual representation of 

the geometric form of buildings but also integrate more semantic 

information related to the structure. This semantic information 

includes non-geometric data such as the functions, properties, 

materials of building components, and their relationships with the 

surrounding environment. It enriches the content of building 

models, making them more than just representations of geometric 

shapes and transforming them into valuable tools for practical 

applications. The application of semantic information in 3D 

building models is primarily reflected in aspects such as the 

functions and attributes of building components, descriptions of 

architectural spaces, and the relationship between the building 

and its environment. Semantic information allows for the 

identification of key components in general 3D models, enabling 

users to distinguish between walls, roofs, floors, and other 

surfaces (Yao et al., 2020). 

 

2.2 Representation of Semantic Information in Building 

Models 

In the construction industry, Industry Foundation Classes (IFC) 

serve as an open standard widely used in Building Information 

Modeling (BIM), aiming to provide a unified data exchange 

format for building information models (Liebich et al., 2013). 

The IFC standard describes the geometric, topological, and 

semantic information of building models by defining Entities, 

Attributes, and Relationships. It not only defines the geometric 

data of buildings in detail but also provides a comprehensive 

description of the semantic information of building components, 

including their functional types, material properties, spatial 

location, and other relevant attributes. Through this structured 

expression, the IFC standard encodes all components of a 

building and their attributes in a standardized way, offering a 

unified method for semantic description (Ding et al., 2020). Each 

IFC file contains unique identifiers for building elements (such 

as walls, doors, windows, beams, columns, etc.), along with 

details about their function, position, construction method, 

material, and other relevant attributes. The richness of semantic 

information in IFC makes the building model not just a geometric 

representation but a digital expression containing multi-layered 

information. In addition to the IFC standard, other standards are 

also widely used in building information modeling. For instance, 

CityGML is primarily used for city-level 3D modeling, 

supporting the representation of various geographic elements 

such as buildings, roads, and terrain (Biljecki et al., 2018). 

CityGML not only describes geometric forms but also includes 

semantic information, such as the functions and uses of buildings. 

 

3. Methods 

3.1 Data Preprocessing 

During the data preprocessing stage, this study utilizes IFC 

parsing libraries (such as IfcOpenShell) to parse IFC files and 

extract geometric data (such as vertex coordinates and face 

indices) and semantic information (such as component types, 

materials, and functional spaces) of the building model. 

IfcOpenShell is an open-source IFC parsing library that supports 

multiple IFC versions and efficiently processes complex building 

model data. First, all building components in the IFC file (such 

as walls, roofs, slabs, doors, and windows) are sequentially read, 

and their geometric information is extracted. The geometric data 

in IFC files may be stored in various forms, such as Boundary 

Representation (B-Rep), Constructive Solid Geometry (CSG), or 

Swept Solid. To ensure uniform processing, this study converts 

geometric data into a triangulated representation (Tessellation), 

including vertex coordinates and face indices. Simultaneously, 

semantic information such as the type of each component (e.g., 

IfcWall, IfcRoof) is extracted. These type labels are assigned to 

each face and serve as conditions in subsequent simplification 

algorithms, such as face merging. Ultimately, the extracted 

geometric data and semantic information will be used in the 

subsequent LOD conversion process, providing the basis for face 

merging at this stage and ensuring that the simplified model 

remains consistent with the original model in both geometric and 

semantic aspects. 
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Figure 1. The IFC Data Parsing Process 

 

3.2 Face Merging Method from LOD3 to LOD2 

Before performing the face merging operation, it is essential to 

assess the semantic consistency of the faces. For two adjacent 

faces, 𝑓1  and 𝑓2 , their corresponding semantic labels 𝑆1  and 𝑆2 

are extracted. If 𝑆1 = 𝑆2, these two faces are considered to have 

the same semantic information, allowing for direct geometric 

analysis and subsequent merging. However, if 𝑆1 ≠ 𝑆2 , the 

semantic similarity between these two labels, denoted as 

𝑆𝑖𝑚(𝑆1, 𝑆2), must be further calculated. In this study, the Jaccard 

similarity coefficient is used to measure this similarity. The 

Jaccard similarity is a widely used method for binary attribute 

datasets, which evaluates similarity by comparing the ratio of the 

intersection to the union of two sets. The formula is: 

 

𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
,                              (1) 

 

If the computed semantic similarity 𝑆𝑖𝑚(𝑆1, 𝑆2) > 𝑇𝑆 (where the 

threshold 𝑇𝑆 can be set to 0.9, for example), the two faces are 

considered to have sufficient semantic similarity and can proceed 

with the merging operation. Otherwise, they will not be merged. 

To further ensure the accuracy of the merging process, this study 

introduces semantic constraints to guarantee that only faces with 

the same function are merged. For instance, an IfcWall can only 

be merged with another IfcWall, and an IfcRoof can only be 

merged with another IfcRoof. Semantic labels of adjacent faces 

are extracted from the IFC model and evaluated based on the 

aforementioned method to determine whether they meet the 

semantic consistency conditions. If all conditions are met, pairs 

of faces that satisfy the criteria are output for subsequent merging 

operations. 

This method effectively filters out face pairs that meet semantic 

consistency conditions, ensuring the accuracy and reliability of 

the merging process. Once the faces satisfy both semantic and 

geometric conditions, the next step is to perform the merging 

operation to generate larger simplified faces. This process 

includes calculating the boundary of the new face, inheriting 

semantic information, and updating the topological structure. 

To generate the boundary of the merged face, this study employs 

the Convex Hull Algorithm. The specific steps are as follows: 

Given two adjacent faces 𝑓1  and 𝑓2  that meet the semantic 

consistency criteria, all their vertices are first combined into a 

single set. Then, the convex hull algorithm is applied to compute 

the minimal convex polygon enclosing this set. The formula for 

this operation is: 

 

𝑓𝑛𝑒𝑤 = 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑓1 ∪ 𝑓2),                (2) 

 

Through this method, we obtain a new face 𝑓𝑛𝑒𝑤 , whose 

boundary is the minimal convex polygon encompassing all the 

vertices of the original faces 𝑓1  and 𝑓2 . During the merging 

process, it is crucial to appropriately inherit semantic information. 

Depending on semantic consistency and similarity, different 

strategies are adopted: 

1.Complete Consistency: If the semantic labels of the two faces 

are completely identical (i.e., 𝑆1 = 𝑆2), the semantic information 

is directly inherited: 

 

𝑆𝑛𝑒𝑤 = 𝑆1 = 𝑆2,                            (3) 

 

2.Partial Similarity: If the semantic labels of the two faces are 

partially similar but not entirely identical, the merged face's 

semantic information is determined based on the dominant 

semantic category or the material with the highest proportion. 

After the merging process, the model's topology needs to be 

updated to maintain data consistency and integrity. The specific 

steps include: 

1.Remove Redundant Faces: The original faces 𝑓1  and 𝑓2  are 

deleted from the model to prevent data redundancy. 

2.Recalculate Adjacency Relationships: Since the merging 

operation may alter the original adjacency relationships of the 

faces, it is necessary to recalculate and update these relationships. 

Specifically, for each newly generated face 𝑓𝑛𝑒𝑤 , its new 

adjacency relationships with surrounding faces must be 

determined and the corresponding connectivity information 

updated. 

The final output is a LOD2-level building model with fully 

preserved semantic information. 

 

 
 

Figure 2. Face Merging Method from LOD3 to LOD2 
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3.3 Face Moving Method from LOD2 to LOD1 

Before performing face movement and merging, functional 

consistency and material consistency must be assessed to ensure 

that the merged faces maintain semantic integrity. Functional 

Consistency Check: If the faces belong to the same functional 

region, they can be directly moved or merged. If the faces have 

different functional uses, the decision is based on the proportion 

of window and door areas: If the window/door area is less than 

10%, these faces are directly removed. If the window/door area 

exceeds 10%, they are retained and merged into the wall surface. 

The final output consists of face pairs that meet semantic 

consistency conditions, ensuring accurate and reliable merging 

operations. To merge detailed faces (e.g., windows and doors) 

with larger structural elements, the centroid of the faces is first 

computed. Based on the centroid positions, faces are translated 

accordingly. Finally, the convex hull algorithm is used to 

generate the merged face. 

For two faces 𝑓1  and 𝑓22, the centroid 𝐶 is computed using an 

area-weighted average formula: 

 

𝐶 =
|𝑓1|𝐶1+|𝑓2|𝐶2

|𝑓1|+|𝑓2|
,                               (4) 

 

Where 𝐶1 and 𝐶2 are the centroids of the faces 𝑓1 and 𝑓2, and |𝑓1| 
and |𝑓2| are their respective areas. To align the faces 𝑓1 and 𝑓2, 

the distance vector 𝑑(𝑓1, 𝑓2) between them is calculated, a 𝑓2 is 

translated to its new position: 

 

𝑓2=
′ 𝑓2 + ⅆ(𝑓1, 𝑓2),                             (5) 

 

Here, 𝑑(𝑓1, 𝑓2) is the translation vector calculated based on the 

centroid positions. Subsequently, the convex hull algorithm is 

used to compute the boundary of the merged face, ensuring that 

the new face has a simplified geometric shape and continuous 

topology. 

 

𝑓𝑛𝑒𝑤 = 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑓1 ∪ 𝑓2),             (6) 

 

During the merging process, redundant vertices and edges are 

removed to ensure the geometric and topological consistency of 

the face. The final output is the simplified merged face, which 

retains the main geometric features and semantic information of 

the original faces. To further simplify the building model, invalid 

faces with too small an area are removed, and the boundary 

relationships between adjacent faces are optimized. For each face 

𝑓, its area 𝐴(𝑓) is calculated. If the area is smaller than the preset 

threshold 𝐴𝑚𝑖𝑛, the face is marked as redundant and deleted. 

 

𝑖𝑓 𝐴(𝑓) < 𝐴𝑚𝑖𝑛 , 𝑡ℎ𝑒𝑛 𝑑𝑒𝑙𝑒𝑡𝑒 𝑓,                    (7) 

 

After deleting redundant faces, the boundary relationships 

between adjacent faces are recalculated to ensure that the 

polygons are closed and non-overlapping. A geometric repair 

algorithm is used to optimize the boundaries of the faces, 

ensuring the geometric consistency and topological continuity of 

the model. The final output is an LOD1 building model, retaining 

only the building's exterior facade while preserving the complete 

semantic information. Through the above methods, the LOD2-

level IFC model can be effectively simplified to an LOD1-level 

model. 

 

 

 
 

Figure 3. Face Moving Method from LOD2 to LOD1 

 

4. Experiments and Analysis 

4.1 Experimental Data 

The experiment used the IfcOpenShell library for IFC file 

parsing and geometric data extraction, the Python programming 

language for algorithm implementation, and the Open3D library 

for 3D model rendering and visualization. Key parameters used 

in the experiment include the semantic similarity threshold 𝑇𝑆 =
0.9 and the area threshold 𝐴𝑚𝑖𝑛 = 0.1 ㎡. The data used in the 

experiment consists of IFC format data for various types of 

building models, as shown in the figure. 

 

 
 

Figure 4. Experimental Data 
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4.2 Building Model Lightweighting Results 

 

 

 

 

Table 1. LOD3 to LOD2 Model Lightweighting and Semantic Consistency Comparison Table 

Model 

Name 

LOD3 

Face 

Count 

LOD2 

Face 

Count 

LOD3 Semantic Labels LOD2 Semantic Labels 
Semantic Label 

Retention Rate 

Semantic 

Similarity 

Model A 364,584 218,750 

'IfcStair', 'IfcColumn', 'IfcOwnerHistory', 

'IfcPlate', 'IfcWallStandardCase', 

'IfcStairFlight', 'IfcLocalPlacement', 
'IfcDoor', 'IfcMember', 'IfcWall', 

'IfcSpace', 'IfcWindow', 'IfcRoof', 

'IfcProductDefinitionShape', 
'IfcBuildingElementProxy', 'IfcRailing', 

'IfcSlab' 

'IfcStair', 'IfcColumn', 
'IfcWall', 'IfcRoof', 

'IfcMember', 'IfcWindow', 

'IfcDoor', 'IfcSlab', 
'IfcRailing', 

'IfcWallStandardCase', 

'IfcSpace' 

85% 0.92 

Model B 135898 85,634 

IfcWallStandardCase', 
'IfcLocalPlacement', 

'IfcProductDefinitionShape', 'IfcPlate', 

'IfcBeam', 'IfcDoor', 'IFC', 'IfcColumn', 
'IfcWindow', 'IfcCurtainWall', 'IfcSlab', 

'IfcOwnerHistory 

'IfcWall', 'IfcSlab', 
'IfcBeam', 'IfcColumn', 

'IfcCurtainWall', 'IfcDoor' 

80% 0.85 

Model C 177,976 106,786 

'IfcSpace', 'IfcWindow', 'IfcColumn', 
'IfcDoor', 'IfcRailing', 'IfcStair', 'IfcSlab', 

'IfcWall', 'IfcCurtainWall', 

'IfcOwnerHistory', 'IfcPlate', 
'IfcLocalPlacement', 

'IfcProductDefinitionShape', 'IFC', 

'IfcStairFlight', 
'IfcBuildingElementProxy', 

'IfcWallStandardCase', 'IfcRoof' 

'IfcSpace', 'IfcWindow', 
'IfcColumn', 'IfcDoor', 

'IfcRailing', 'IfcStair', 

'IfcSlab', 'IfcWall', 
'IfcCurtainWall', 'IfcPlate', 

'IfcRoof' 

88% 0.94 

 

 

Table 2. LOD2 to LOD1 Model Lightweighting and Semantic Consistency Comparison Table 

Model 

Name 

LOD2 

Face 

Count 

LOD1 

Face 

Count 

LOD2 Semantic Labels LOD1 Semantic Labels 
Semantic Label 

Retention Rate 

Semantic 

Similarity 

Model A 218,750 10,856 

'IfcStair', 'IfcColumn', 'IfcWall', 

'IfcRoof', 'IfcMember', 
'IfcWindow', 'IfcDoor', 'IfcSlab', 

'IfcRailing', 
'IfcWallStandardCase', 'IfcSpace' 

'IfcWall', 'IfcRoof', 'IfcSlab', 
'IfcSpace', 

'IfcWallStandardCase' 

75% 0.85 

Model B 85,634 55,327 

'IfcWall', 'IfcSlab', 'IfcBeam', 

'IfcColumn', 'IfcCurtainWall', 

'IfcDoor' 

'IfcWall', 'IfcSlab', 
'IfcColumn', 'IfcCurtainWall' 

75% 0.8 

Model C 106,786 45,961 

'IfcSpace', 'IfcWindow', 

'IfcColumn', 'IfcDoor', 

'IfcRailing', 'IfcStair', 'IfcSlab', 
'IfcWall', 'IfcCurtainWall', 

'IfcPlate', 'IfcRoof' 

'IfcWall', 'IfcSlab', 'IfcRoof', 

'IfcSpace' 
70% 0.87 

The LOD3 to LOD2 model simplification method based on face 

merging and semantic consistency proposed in this study 

effectively simplifies the geometric structure of building models 

while retaining semantic information to the greatest extent. The 

experimental results show that through face merging operations, 

the retention rate of semantic labels is between 85% and 88%, 

and the semantic similarity is maintained between 0.85 and 0.94, 

ensuring semantic consistency during the simplification process. 

Especially in models with higher complexity, semantic 

consistency is well preserved, indicating that this method can 

effectively balance geometric simplification and semantic 

retention while simplifying the building model, laying a solid 

foundation for further simplification from LOD2 to LOD1. 

In the LOD2 to LOD1 simplification process, although the 

number of faces significantly decreases, the retention rate of 

semantic labels remains between 70% and 75%, and the semantic 

similarity ranges from 0.8 to 0.87, indicating that the loss of 

semantic information is limited. For example, in Model A, the 

retention rate of semantic labels reaches 75%, and the semantic 

similarity is 0.85, showing that semantic consistency is still well 

preserved while significantly reducing the number of faces. 

Overall, the face movement and merging method adopted in this 

study not only effectively reduces the model size but also retains 

key semantic information as much as possible, ensuring the 

usability and accuracy of the LOD1 model. This result indicates 

that the proposed simplification method performs excellently in 

the LOD conversion of building models, particularly in 

maintaining the basic semantics of building functions and 

structures. 

 

5. Conclusions 

Overall, the lightweighting method for 3D building models based 

on semantic constraints proposed in this study effectively reduces 

model complexity while ensuring the retention of critical 

semantic information, thus preserving the model's usability and 
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accuracy. This method successfully facilitates the conversion of 

building models across different Levels of Detail (LOD), while 

maintaining the fundamental semantic integrity of architectural 

functions and structures, thereby enhancing both the storage and 

processing efficiency of the models. Experimental results 

demonstrate that the proposed lightweighting approach excels in 

LOD conversion, particularly in its ability to maintain semantic 

consistency. This study lays a solid foundation for future research 

in building model simplification methods, with significant 

implications for the preservation of semantic information and its 

application in practical settings. 
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