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Abstract 

 

In urban emergency response scenarios, the efficient deployment of Unmanned Aerial Vehicles (UAVs) is critical for timely and 

effective disaster management. In this paper, a 3D voxel-based collaborative path planning framework for UAVS is proposed, aimed 

at optimizing task completion time while ensuring obstacle avoidance and comprehensive area coverage. The study leverages voxel 

data for its simplicity and efficiency in handling large-scale urban environments, transforming traditional triangular mesh data into a 

voxel-based map for enhanced UAV navigation. The proposed methodology encompasses three key components: navigation map 

construction, local coverage path planning, and global coverage path planning. For local coverage, an improved Boustrophedon Cell 

Decomposition (BCD) algorithm is introduced, tailored for UAV operations, while global coverage is addressed through a multi-

traveling salesman problem (MTSP) approach, optimized using the Jump Point Search (JPS) algorithm and Genetic Algorithm (GA). 

The experimental results verify the validity of this framework, compared to the conventional A* algorithm, the algorithm put forward 

in this study decreases the total route length by 23.80%, while also improving path smoothness. This study provides a robust foundation 

for multi-UAV collaborative operations in urban emergency response, offering improvements in efficiency and coverage. 

 

1 Introduction 

In modern society, transport accidents of dangerous goods have 

become an urgent challenge in the field of public safety and 

traffic management, and congestion on urban roads during peak 

hours has exacerbated the situation, causing serious 

consequences and making rescue operations difficult. Against 

this backdrop and under the national policy of vigorously 

promoting low-altitude economy, drone technology emerges 

prominently. Its flexibility and adaptability bring prospects for 

accident reconnaissance. However, a UAV often appears to be 

inadequate when faced with complex tasks. Consequently, the 

collaborative operation of multiple UAVs has become an 

inevitable trend (Sun, Tang, & Lao, 2017). 

 

Since accidents occur frequently in cities, the study takes cities 

as the scenario, minimize task time as the goal, and 

comprehensively consider key elements such as obstacle 

avoidance and scanning area range (Zheng, Wang, & Li, 2018). 

This study focuses on the flight paths and search collaborative 

paths for drones to improve the efficiency of emergency resource 

utilization and provide innovative ideas and effective solutions to 

alleviate this severe situation. The subsequent sections of this 

paper are structured as follows: Section 2 presents the previous 

work related to this study. Section 3 introduces the main methods. 

Section 4 presents the experiments conducted and the final results. 

Section 5 summarizes the study and prospects the future work. 

 

2 Related Work 

2.1 Path planning for a single UAV 

UAV path planning can be classified into point-to-point path 

planning and coverage path planning according to the type of 

mission. The objective of point-to-point path planning is to 

design a path from the source point to the destination point, 

considering crucial constraints like obstacle avoidance and safety, 

so as to minimize the cost. On the other hand, coverage path 

planning involves optimizing the UAV's flight path to cover a 

mission area where the target points are not predetermined. Since 

the focus of this paper is to construct a sub -region distance 

matrix by obtaining the shortest path length through point - to - 

point path planning, the emphasis is placed on point-to-point path 

planning. 

 

Zhang et al. (2022) introduced an enhanced A* algorithm for the 

three-dimensional complex network environment, which 

improved the search efficiency of the algorithm. Mardani, 

Chiaberge, & Giaccone (2019) introduced two Quality of service 

(QoS) optimization methods based on the A* algorithm in UAV 

path planning. They carried out simulations using actual UAVs 

in real - world areas as well as test settings. The outcomes of these 

simulations indicated that the algorithm they proposed was 

capable of yielding the optimal path. Ma & Li (2023) proposed 

an enhanced artificial potential field method (APF) and adopted 

it to UAV path planning to address the problems of local optimal 

solutions, unreachable targets, non-smooth paths, and excessive 

gravity in the traditional APF. Lv, Chen, & Tian (2021) and 

Sonny, Yeduri, & Cenkeramaddi (2023) devised a three - 

dimensional path for UAVs operating within complicated 

environments. Moreover, an enhanced PSO algorithm was put 

forward for UAV path planning, with the aim of meeting the user 

rate requirements. On this basis, Gao & Bai (2023) investigated 

the problem that regarding the path planning of UAVs under 

complex - terrain conditions. They proposed a quantum squirrel 

search algorithm (QSSA) to address the premature convergence 

and search stagnation issues of the squirrel search algorithm in 

3d path planning. Compared with the whale optimization 

algorithm (WOA), GWO, and squirrel search algorithm (SSA), 

the QSSA performed better. Wu et al. (2021) represented 

obstacles as small cubes, established environmental information, 

and proposed three algorithms for multi-path planning: the ACO 

clustering algorithm based on congestion classes, the improved 

ACO for multi-path planning, and the clustering improved ACO 
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multi-path planning algorithm, to enhance the flight probability 

of UAVs. From the summary of the above work, it can be found 

that existing UAV path planning algorithms face significant 

limitations in complex urban environments. Many algorithms are 

designed only for specific simple scenes, and it is difficult to 

comprehensively consider the interaction of multiple complex 

factors in the urban environment. In this study, the efficiency of 

path planning and the accuracy of positioning and navigation of 

a single UAV in a complex urban environment were improved by 

reasonable selection of grid size, adoption of obstacle expansion 

processing mode and establishment of accurate coordinate 

transformation relationship. 

 

2.2 Multi-UAV collaborative path planning 

Cooperative path planning (CPP), which is composed of three 

aspects: mission type, frame structure and environment. It has its 

own internal division, in which the types of tasks can be divided 

into rendezvous tasks, assignment tasks, covering tasks. A 

rendezvous mission is defined as a scenario in which multiple 

UAVs depart from a common base and reach a shared target 

simultaneously. To fulfill the criteria of time synchronization and 

heading alignment, it is essential to generate a set of paths that 

are free from potential collisions among the UAVs. The 

assignment task refers to the assignment of different target points 

by multiple UAVs. It is necessary to allocate the target and UAVs 

reasonably and generate a collision-free path. The overlay task 

refers to multiple UAVs covering the entire mission space, which 

needs to consider the region division and sub-region allocation 

and generate a collision-free path. The frame structure can be 

classified as centralized, decentralized, and hybrid. Regarding 

the centralized framework, the central UAV gathers information 

from other UAVs and makes corresponding decisions. The path 

planning under this framework is often close to the global optimal 

solution, which is suitable for completing small-scale tasks. The 

distributed framework structure uses the information of adjacent 

UAVs to make decisions. The path planning under this 

framework is robust and scalable, but it may not be the optimal 

solution, which is suitable for completing large-scale tasks. The 

hybrid frame structure is mixed by the above two, and the UAV 

is grouped, and the centralized type is used within the group, and 

the decentralized type is used between the groups. The 

environment is divided into known environment and unknown 

environment. This paper focuses on CPP problems covering tasks, 

centralized, known environments. 

 

Li, Li, & Yu (2018) developed the coordinated coverage path 

planning problem of multiple UAVs in a plateau environment 

and proposed a two-step strategy. First, parallel search tactic was 

adopted to optimize the path distance of each UAVs and resolve 

the global route planning problem. Secondly, the GA is employed 

to partition the region of search and optimize the quantity of 

UAVs needed. Shen et al. (2023) investigated the cooperative 

coverage path planning problem of multiple UAV under 

earthquake scenarios to find the target with the maximum target 

probability, and proposed an improved path search optimization 

algorithm based on depth-first search and spanning tree. Du et al. 

(2021) developed the coverage operations of multi-solar UAV 

and advanced a coverage path optimization model that is based 

on the search method of the undirected graph, which enabled 

UAS to visit nodes of undirected graphs in turn according to 

certain constraints, and used mixed integer linear programming 

to solve the optimal access order to minimize the total job 

completion time. Lin et al. (2018) proposed a coevolutionary 

algorithm based on ant colony algorithm to generate the raster 

access order of drones by raster processing of physical mountain 

maps, with the aim of shortest execution time and maximum 

coverage in a three-dimensional mountain environment. From 

the above work, it can be concluded that in the research of multi-

UAV collaborative path planning, the shortcomings of the 

existing algorithm in the collaborative optimization of task 

assignment and path planning are that it does not consider the 

difference of the overall UAV group endurance and load capacity, 

which is easy to cause some UAVs to be overworked and some 

to be idle. In this study, the flight plan is determined by 

comprehensively considering the task completion time and 

endurance time, effectively reducing the path length, improving 

the path smoothness and UAV resource utilization efficiency, 

and better meeting the needs of urban emergency response. 

 

3 Methodology 

In this paper we study the subregion division, coverage path 

planning and task assignment algorithms, and proposes a multi-

UAV collaborative coverage emergency search scenario 

algorithm to minimize the task completion time. In this section, 

the paper will elaborate the process of multi-UAV urban 

emergency rescue based on voxel map, which includes three parts: 

navigation map construction, path planning for local coverage 

and global overlay path planning. 

 

3.1 Navigation map construction 

3.1.1 Three-dimensional raster map construction:  

 

Because the original vector-based map is inefficient for path 

planning, in this study we use the three-dimensional raster map 

for path planning by discretizing the environment. The three 

elements of its construction are grid size, obstacle handling 

method and mathematical representation method. 

 

• Grid size selection: The resolution of the grid affects the 

accuracy of the map and the cost of path planning, and the 

appropriate grid size is related to the size of the UAV, the safe 

distance, and the actual working environment. Taking these 

factors into consideration, the grid size is finally selected as 

Formula (1)  

 

𝑙 =
𝑎+1

2max⁡(𝑏,𝑐)
                   (1) 

 

where  a = the outer cuboid side length of the drone 

b = the minimum safe distance between drone 

c = the smallest safe distance that should be maintained 

between the drone and the building. 

 

• Obstacle processing mode: When rasterizing the original map, 

there are two processing modes: reducing and expanding the 

partial occupied state grid. To guarantee the flight safety of the 

UAV, the obstacle expansion processing mode is chosen. 

• Mathematical representation method: After processing 

obstacles, the rasterized map has only two states of unoccupied 

and occupied, which are represented by 0 and 1 codes 

respectively to guide drone flight and mission execution. 

 

3.1.2 Coordinate conversion 

 

Coordinate conversion is to match the grid map coordinate 

system with the actual application coordinate system to ensure 

accurate positioning and navigation of the UAV. 

 

• Three-dimensional grid map coordinate establishment: We 

select the point with the smallest coordinates in the map model 

coordinate system as the origin, coordinates (x, y, z) represent 
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the grid in the x + 1 column y + 1 row in the z + 1 layer, and 

select the center point of each grid as the representative point. 

 

• Conversion of three-dimensional raster index coordinates to 

map model coordinates: This paper uses the following 

formulas for converting three-dimensional raster map 

coordinates to map model coordinates (UTM coordinates). 

Formula (2) is used for converting three - dimensional raster 

map coordinates from the original coordinate system to map 

model coordinates, Formula (3) is used for converting map 

model coordinates from the original coordinate system to three 

- dimensional raster map coordinates, where (x', y', z') is the 

smallest coordinate in the map model coordinate system, and l 

is the grid size. 

 

{

𝑥′ = 𝑥′𝑚𝑖𝑛 + (𝑥 + 0.5) ∗ 𝑙

𝑦′ = 𝑦′𝑚𝑖𝑛 + (𝑦 + 0.5) ∗ 𝑙

𝑧′ = 𝑧′𝑚𝑖𝑛 + (𝑧 + 0.5) ∗ 𝑙

           (2) 

 

{
 
 

 
 𝑥 =

|x′−𝑥𝑚𝑖𝑛|

𝑙
− 1

𝑦 =
|y′−𝑦𝑚𝑖𝑛|

𝑙
− 1

𝑧 =
|z′−𝑧𝑚𝑖𝑛|

𝑙
− 1

               (3) 

 

3.2 Local coverage path planning 

3.2.1 Visibility analysis based on building models 

 

Visible field analysis is crucial for planning the flight path of 

UAVs, and building occlusion should be taken into account when 

calculating the coverage area. Visible field analysis theoretical 

basis: Visible field is affected by UAV height, visible field angle 

and building distribution, and the calculation methods include ray 

projection technology and digital elevation model (DEM). 

Because the study covers a small area and does not consider the 

relief of terrain, the ray projection technique is chosen. 

 

• Visible field analysis based on 3D raster map: The following 

assumptions are made: the camera is mounted at the central 

position of the UAV with its orientation towards the ground, 

and the ground area exhibits symmetry with respect to the 

projection center. The visiable field based on the building 

model is shown in Figure 1. The radius of the circle formed by 

the intersection of the cone and the ground is given as formula 

4. In a raster map, the potential range of visibility is 

represented by a raster within radius R. 

 

𝑅 =
H𝑡𝑎𝑛𝜃
2                  (4) 

 

where  H = drone observation point altitude 

θ = field angle 

 

 
Figure 1. Visible field based on building models 

 

• Visible field analysis algorithm: In this study, we employ ray - 

projection technology to devise a visible field analysis 

algorithm for fixed observation points. The ground grid within 

the cone is traversed, and a check is carried out to determine 

whether there is a line - of - sight obstruction between each 

grid cell and the drone's observation point. This process 

enables the identification of visible and invisible grids. 

 

3.2.2 Sub-area division 

 

Sub-area division is a key task of multi-UAV collaborative path 

planning, and the influencing factors include geographical 

characteristics and airspace restrictions. 

 

• Modeling coverage area environment: Assume that N 

homogeneous UAVs perform coverage tasks in a rectangular 

region S with constant height H. According to the three-

dimensional raster map, the raster map is sliced considering 

the fixed height, and the fixed height (W) index is calculated 

as Formula (5), where l represents the raster size. 

 

𝑊 =
𝐻

𝑙
− 1                   (5) 

 

• Improved cell decomposition method: The traditional BCD 

algorithm is oriented towards robot ground coverage, and does 

not consider the characteristics of UAV high altitude operation. 

This paper presents an enhanced algorithm, and the scanning 

width becomes w=[W/l] (W is the visible field width of the 

UAV); The function of "scanning band" is changed, and the 

conflict and connectivity between the UAV column and 

obstacles are mainly considered when determining the 

subregion boundary. The scan start column (row) starts at the 

index w/2, and the scan step is w. 

 

3.2.3 Subarea coverage path planning 

 

The goal of this study is to plan the path with the least number of 

turns, the largest coverage area and the shortest path. To 

accomplish the aforementioned objectives, subarea coverage 

path planning is performed based on the following four aspects. 

 

• Subarea coverage path planning strategy selection: This paper 

comprehensively considers the three key aspects of 

minimizing path length, minimizing the quantity of turns and 

maximizing the overlay area, and selects the "bow" coverage 

strategy, because it is suitable to quickly cover square areas 

and reducing the number of turns. 

 

• The optimal scanning direction determined by the shape of the 

sub - area: For a rectangular area, the "bow" - shaped coverage 

has two scanning directions, namely parallel to the long side 

and parallel to the short side. By computing the horizontal and 

vertical spans of the target area and selecting the longer side as 

the direction for parallel scanning, the number of turns can be 

reduced. 

 

• Optimal scanning spacing based on visible field model: The 

scanning spacing affects the coverage path length and 

coverage effect of the subregion, and its value must be evenly 

divided by the quantity of grid columns (rows) occupied by the 

observable field and the maximum scanning spacing is the 

number of grid columns (rows) occupied by the observable 

field of the UAV. 
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• Sub-area coverage path optimization: First, the optimal 

scanning direction is determined, and then the maximum 

scanning distance is optimized to calculate the number of 

invisible points on the ground under the corresponding 

coverage path. In the event that the quantity of invisible points 

exceeds the pre - determined threshold, the scanning distance 

is reduced until the number of invisible points is less than the 

threshold. In this case, the scanning distance is the best 

scanning distance. 

 

 3.3  Global coverage path planning 

3.3.1 Multi-machine task assignment problem modeling  

 

This paper transforms the global coverage problem into multi-

traveling agent problem (MTSP), and describes and models it in 

detail. 

 

• Problem description: MTSP is an extension of the traveling 

salesman problem. In this study, each subregion covers 

different path lengths and affects task assignment. The starting 

point of the subarea coverage path is considered as the city 

entrance, and the end point is regarded as the city exit. Drone 

swarm starts from the take-off point, flies in at the entrance of 

the subarea, flies out at the exit, and upon the completion of 

the coverage task, it makes its way back to the initial point. 

The task assignment problem can be converted into the 

solution of the MTSP. 

 

• Problem formulation: Let Pi denote the flight path sequence of 

UAV ui, and Ai represent the task set of UAV ui, where 

Ai={ai1,ai2 ,…,aij}, and aij indicates the index of the sub-region 

that UAV ui visits as the j-th sub-region. In this model: 

 

{
𝐴1⋂𝐴2⋂𝐴3⋂ ∙∙∙∙ ⋂𝐴𝑁

𝑆 = {𝑠1, 𝑠2, 𝑠3 ∙∙∙ 𝑠𝑘} = {𝑠𝐴1∪𝐴2∪𝐴3⋅⋅⋅∪𝐴𝑛}
      (6) 

 

where Vi
j represents UAV ui visiting sub-region sj, ui departs 

from the take-off point s0, executes the coverage task 

according to the task set Ai, and then returns to s0. Thus, 

Pi={s0,Vi
j,…,s0}, where j∈Ai. Let dj denote the internal 

coverage path length of sub-region sj, the coverage path length 

between sj
e and sj

o, d0j represent the shortest path length from 

s0 to sj
e, dj0 indicate the shortest path length from sj

o to s0, and 

dpq signify the shortest path length from sp
o to sq

e. 

 

𝐷𝑖 = ⁡𝑑0𝑎𝑖1 + 𝑑𝑎𝑖1 + 𝑑𝑎𝑖1𝑎𝑖2 + 𝑑𝑎𝑖2 +∙∙∙ +𝑑𝑎𝑖𝑚0   (7) 

 

𝐷 = ∑ 𝐷𝑖 ⁡,⁡⁡⁡𝑖 ∈ (1,2,3…𝑛)𝑖
          (8) 

 

where Di represents the total flight path length of UAV ui, let 

D represent the aggregate length of the flight paths of all UAVs. 
The objective is to minimize the total flight path length of the 

UAVs, and the objective function is established as: min D 

 

3.3.2 Subregion distance calculation based on JPS 

algorithm 

 

JPS algorithm is selected to calculate the distance between 

subregions, and the subregion distance matrix is constructed. JPS 

algorithm is an optimized path search algorithm, which reduces 

the number of nodes to be evaluated in the search process by 

identifying and utilizing "jump points", so as to improve the 

search efficiency. The jump point is a node of great significance 

in the path and is usually the key point where the path changes 

direction. The JPS algorithm initiates a search for jump points in 

the horizontal, vertical, and diagonal directions commencing 

from the starting point. The discovered jump points are then 

incorporated into the OpenList. This process is reiterated 

continuously until the target point is located. This method is 

especially suitable for the path planning of grid map, and can 

quickly find the minimum - length path between two points, 

which significantly improves the search efficiency and 

performance. 

 

3.3.3 Task assignment based on Genetic Algorithm 

 

The study uses genetic algorithm to solve MTSP problem. 

Genetic algorithm is a kind of optimization algorithm which 

simulates the process of biological evolution. Through the 

operation of selection, crossover and mutation, it gradually 

selects the individuals with high fitness from the initial 

population, and finally finds the optimal solution. Genetic 

algorithm is suitable for complex optimization problems and can 

effectively avoid local optimization and find global optimal 

solution. 

 

3.3.4 Determination of the final flight plan of the UAVs 

 

The final flight plan of the UAV is subject to the maximum 

acceptable task completion time and the endurance time of the 

UAV. After determining the number of UAVs, subarea coverage 

path and access sequence, the final flight path can be obtained. 

Make paths usable for real-world navigation by prioritizing 

drones to avoid flight conflicts and converting three-dimensional 

raster index coordinates to map model coordinates 

 

4 Experimental process and results 

In this study, we set the maximum altitude the drone could fly to 

78m and the triangular mesh dataset of city of berlin was used. 

However, the processing of triangular mesh data is rather 

complex, especially when the data volume is large, as it requires 

extensive computation and optimization. On the other hand, 

voxel data has a regular and simple structure with fixed size and 

coordinate positions, much like "pixels" in three-dimensional 

space. It is easy to organize, store and manage. This regularity 

allows for rapid location and access to voxels during the search 

process, thereby reducing data lookup time. Therefore, in this 

study, the triangular mesh data map was transformed into a voxel 

data map for application in UAV navigation. 

 

4.1 Navigation map generation 

To convert a GLB map into a 3D raster map, the size of the raster 

must be determined first. According to the grid size selection 

method in Section 3.1.1, We used the calculation Formula (1) and 

selected a= 0.7m, b= 1.2m, and c=1m. In order to facilitate 

calculation, the mesh size was finally calculated to be 2m. The 

three-dimensional grid map is shown in Figure 2 and Figure 3. 

The three-dimensional grid map has a total of 1602*1703 * 67 

grids. The grid index coordinates of the UAV take-off point are 

(0, 0, 16) and the accident point coordinates are (1300, 1000, 38). 
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Figure 2. 3D raster map of Berlin (Top view) 

 

 
 

Figure 3. 3D raster partial enlarged map of Berlin 

 

4.2 Local coverage path planning 

4.2.1 Subregion division 

 

The search area was partitioned by employing the improved BCD 

algorithm. The relevant parameters were field of view Angle 80 

degrees, ground height 34, search area height 78 and grid size 2. 

 

 
Figure 4. Operation result and schematic diagram of subregion 

division 

 

As shown in the operation results of sub-region division and 

Figure. 4, the red grid indicates the buildings that still exist at the 

height of 78 meters, and other areas covered by different colors 

represent sub-areas. The visible field width of UAV is 73.84m, 

which is converted into 36 grids. The search area is divided into 

16 sub-regions, the size of each sub-region is shown in Table 1, 

among which sub-region 9 is the largest and sub-region 5 the 

smallest. 

 

Table 1 Grid number table of subregions 

subdomain Region1 Region2 Region3 Region4 

Number of 

grids 

108750 13357 13653 14652 

subdomain Region5 Region6 Region7 Region8 

Number of 

grids 

37 17946 20954 27158 

subdomain Region9 Region10 Region11 Region12 

Number of 

grids 

217002 22163 39666 11322 

subdomain Region1

3 

Region15 Region16 Region17 

Number of 

grids 

8769 15133 22110 11760 

 

4.2.2 Subarea coverage path planning 

 

The parameters of the subarea coverage path optimization 

algorithm are set as the initial scan width of 36, the search area 

side length of 75, the field of view Angle of 80 degrees, and the 

threshold value of 0.1%. The optimal scanning spacing of each 

subregion is shown in Table 2. As can be observed from the table, 

when the acceptable proportion of invisible points is 0.1% of the 

sub - region area, the optimal scanning spacing of most molecular 

regions is 36. Finally, under this coverage path, the total quantity 

of invisible points in the search region is 304, and the total area 

of the search area is 562,500, so the coverage rate is 99.95%. 

 

Table 2 Table of sub-area scanning spacing 

subdomain Region1 Region2 Region3 Region4 

sweeps 

pacing 

36 36 36 36 

subdomain Region5 Region6 Region7 Region8 

sweeps 

pacing 

1 36 18 18 

subdomain Region9 Region10 Region11 Region12 

sweeps 

pacing 

36 36 18 36 

subdomain Region13 Region15 Region16 Region17 

sweeps 

pacing 

36 18 36 36 

 

4.3 Planning global coverage paths 

4.3.1 Construction of distance matrix between subregions 

 

Read the entry and exit of the coverage path of each subregion, 

and use the JPS algorithm for point-to-point path planning. As 

shown in Figure 5, the number of path points is the distance 

between subregions. 
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Figure 5. Point-to-point path planning based on JPS algorithm 

 

In addition, the subregion distance matrix also needs to include 

the coverage distance within the subregion, and the number of 

path points covered by the subregion is the coverage distance 

within the subregion, as shown in Table 4. 

 

Table 3. Subarea coverage distances 

subdomain Region1 Region2 Region3 Region4 

Covering 

distance 

3098 360 368 395 

subdomain Region5 Region6 Region7 Region8 

Covering 

distance 

37 501 1184 1482 

subdomain Region9 Region10 Region11 Region12 

Covering 

distance 

6270 598 2236 305 

subdomain Region13 Region15 Region16 Region17 

Covering 

distance 

236 832 704 391 

 

The distance matrix of subregion is established by JPS algorithm. 

The first column is the entry to the subarea, and the first column 

is the exit to the subarea. 

 

4.3.2 Task allocation 

 

Based on the distance matrix between subregions, genetic 

algorithm will be used to optimize task allocation. Taking the 

number of drones as 5 for example, relevant parameters are as 

follows: the initial population is 500, tournament size is 5, and 

the variation rate is 0.1. The solution with the smallest total flight 

path length of UAVs in 10 operations was selected as the task 

assignment scheme, as shown in Table 4. 

 

Table4. UAV task assignment based on genetic algorithm (JPS) 

Drone 

number 

Drone access sequence Total grid length 

of UAV path 

UAV1 start, region8, region17, 

Region9, region3, start 

12144 

UAV2 start, region4, region7, 

region5, start 

4191 

UAV3 start, region10, region11, 

region15, start 

6636 

UAV4 start, region1, region2, 

region6, start 

6231 

UAV5 start, region12, region13, 4367 

region16, start 

Drone 

swarm 

 33569 

 

4.4 Comparison of results 

Distance matrix of each subregion obtained by A* algorithm. The 

solution with the smallest total flight path length in 10 operations 

was selected as the task assignment scheme, as shown in Table 5. 

 

Table 5. UAV task assignment based on genetic algorithm (A*) 

Drone 

number 

Drone access sequence Total grid length 

of UAV path 

UAV1 start, region11, region17, 

region16, region13, start 

8894 

UAV2 start, region15, region12, 

region10, start 

6838 

UAV3 start, region7, region6, 

region2, start 

6465 

UAV4 start, region4, region5, 

region3, start 

5403 

UAV5 start, region1, region8, 

region9, start 

16451 

Drone 

swarm 

 44051 

 

4.4.1 Comparison of total path length of UAVs 

 

Under the scenario of assigning 5 UAV tasks by genetic 

algorithm, the minimum total distance using JPS algorithm is 

33569, while the minimum total distance using A* algorithm is 

44051. The total distance of JPS algorithm is reduced by nearly 

23.80% compared with A* algorithm, and the reduction effect is 

particularly significant. 

 

4.4.2 Path smoothness comparison 

 

In the Berlin City voxel map, the starting point of a single drone 

is (0,0,16) and the ending point is (1300,1000,38). The point-to-

point path planning under the JPS algorithm is shown in Figure 

3, and the point-to-point path planning under the A* algorithm is 

shown in Figure 6. It can be clearly found that under the A* 

algorithm, the UAV path has more turns, while under the JPS 

algorithm, the number of turns is less. Therefore, JPS algorithm 

is superior to A* algorithm in path smoothness. 

 

 
Figure 6. Point-to-point path planning based on A* algorithm 
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5 Summary and future work 

In this paper, a 3D voxel-based UAV collaborative path planning 

framework is proposed for urban emergency response. 

Triangular grid data of urban environment is converted into voxel 

data, navigation map is constructed, and path planning is carried 

out locally and globally. Locally, the enhanced CTP algorithm is 

utilized for region division and path planning. Globally, the 

coverage problem is transformed into a MTSP, which is solved 

by the JPS algorithm and genetic algorithm. The experimental 

findings indicate that, when contrasted with the conventional A* 

algorithm, the framework is capable of reducing the total route 

length of the UAV by 23.80%. Moreover, the path generated by 

this framework is smoother. In the future, sparse voxel octree 

method can be used to reduce memory cost and improve path 

planning efficiency. Multi-UAV cooperative path planning 

should clarify relevant methods to avoid flight conflict; Local 

coverage path planning can optimize the scanning spacing with 

heuristic algorithm, so as to further improve the path planning 

framework and improve the application performance of UAVs in 

urban emergency response. 
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