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Abstract: 

 

Shape reconstruction and rotation axis estimation of small bodies essential for both engineering applications and scientific 

investigations. This paper presents a Structure-from-Motion-based (SFM) method for small body shape reconstruction and rotation 

axis estimation. The method enables fast and autonomous estimation of shape and rotation axis at relatively large distances during the 

approach phase with a limited number of images. Using near-hovering observations, sequential image poses are estimated via 

incremental SFM. The normal vector of the plane where the fitted space circle is located is identified as the small body’s rotation axis 

and transformed into the small body-centered J2000 inertial coordinate system. A global shape model is then generated through dense 

stereo matching. The proposed method is evaluated using both simulated and real mission data. A total of 75 simulation cases are 

designed, accounting for sun phase angle, approach angle, small body shape, and image count per rotation period. Results show that 

over 95% of cases achieve a rotation axis estimation error below 5°. When tens of images are captured per rotation period, the rotation 

axis can be estimated within minutes. Validation with OSIRIS-REx mission data for Bennu yields a rotation axis estimation error of 

approximately 1°, while dense reconstruction shows an average deviation of 2.55 m compared to the SPC shape model. These findings 

demonstrate the method’s effectiveness and suitability for small body exploration. 

 

 

 

1. Introduction 

The research of small bodies has gradually become one of the key 

developmental fields in international deep space exploration 

(Zhang, Xu and Ding, 2021). Shape reconstruction and rotation 

axis estimation of small bodies are essential for both engineering 

applications and scientific investigations. From an engineering 

standpoint, they form the basis for establishing a body-fixed 

coordinate system, enabling precise navigation and mission 

planning for sample-return operations. From a scientific 

perspective, they offer valuable insights into the origin and 

evolution of small bodies, deepening our understanding of their 

formation processes and long-term development. 

 

According to the imaging effect of the target small body, 

existing methods for estimating the rotation axis of small bodies 

can be classified into three categories: the light curve-based, the 

silhouette-based and the image feature-based methods. In the 

early approach phase, when the small body appears as only a few 

pixels in an image, its brightness variations over time can be used 

to construct a light curve. This curve depends on the object’s 

shape, rotation state, and surface scattering properties. The 

convex inversion method leverages this principle, using least 

squares fitting to estimate both the convex shape model and 

rotation axis orientation. While widely applied for long-distance 

axis estimation (Chamberlain, Sykes and Esquerdo, 2007; 

Mottola et al., 2014), this method requires images spanning 

multiple rotation periods at varying sun phase angles and is 

computationally inefficient (Muinonen et al., 2015). Moreover, 

its accuracy is limited, making it primarily useful for generating 

an initial estimate.  

 

As the spacecraft moves closer, the small body’s silhouette 

becomes distinct against the dark background. The silhouette-

based approach reconstructs a shape model using techniques like 

voxel elimination or ray trimming, then estimates the rotation 

axis by comparing silhouette similarities between the model and 

actual images (Bandyopadhyay et al., 2019, 2021). While 

effective, this method is computationally expensive, requiring an 

exhaustive search across the celestial sphere. Expanding the 

search range or refining the step size significantly increases 

computational cost. Additionally, it performs poorly for small 

bodies with regular or near-spherical shapes, as their silhouettes 

remain largely unchanged from different viewing angles 

(Bandyopadhyay et al., 2021). 

 

Image feature-based methods, such as 

stereophotogrammetry (SPG) and stereophotoclinometry (SPC), 

offer the highest accuracy, achieving sub-meter shape 

reconstruction and rotation axis estimates with uncertainties as 

low as 10⁻³ degrees (Preusker et al., 2015; Park et al., 2019). 

However, they require extensive high-resolution imaging over 

several rotation periods, often spanning months, making them 

impractical for the approach phase. Additionally, these methods 

rely on significant human intervention for solution refinement 

and model validation (Panicucci et al., 2023).  

 

The vision-based systems have been gaining attention as a 

more cost-effective solution, such as Structure-from-Motion 

(SFM). To address the challenges posed by limited imaging and 

weak surface textures during the approach phase of small body 

exploration, we developed an SFM-based method for shape 

reconstruction and rotation axis estimation. This method operates 

autonomously without reliance on ground communications, 

enabling real-time onboard estimation of rotational properties. Its 

effectiveness is demonstrated through both simulation data and 

in-orbit observations of Bennu. 

 

2. Methodology 

During the approach phase, as the spacecraft nears the small body, 

it continuously observes the target over one complete rotation 

period. Given the long distance, the spacecraft’s relative 

movement to the small body during this period can be neglected 
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(approximately a hovering observation). Consequently, the small 

body’s rotational information can be inferred from the relative 

motion of the camera. The framework of the proposed method is 

shown in Figure 1, mainly include four parts: image matching, 

camera pose estimation, rotation axis estimation and dense 

reconstruction. 

 

 
Figure 1. Framework of the proposed method 

 

2.1 Image matching 

The first step of the proposed method is image feature point 

detection and image matching. Common feature detection 

algorithms include SIFT, SURF, BRISK, ORB, Harris, etc., 

which differ in the types of structures (e.g., corners, blobs, or 

edges) and their computational complexity. SIFT feature 

detection algorithm was adopted because of its scale and rotation 

invariance, which can stably extract surface feature points of 

small bodies under the conditions of weak image texture and 

changing observation conditions (Lowe, 2004). 

 

In this study, the images used were captured during one 

complete rotation period of the small body. To avoid redundant 

matches caused by brute-force matching, image pairs were 

constructed based on the sequence of image acquisition. 

Specifically, each image was paired with the three adjacent 

images before and after it. After computing the feature 

descriptors, FASTCASCADEHASHINGL2, an efficient nearest-

neighbour matching method, was employed. This method uses 

the L2 norm (Euclidean distance) to measure the similarity 

between feature points. By combining hash-based indexing and 

cascade filtering techniques, it accelerates the matching process 

while maintaining high accuracy. To further improve the 

matching accuracy, the epipolar geometry between the two 

images was computed based on the initial matches, and the 

fundamental matrix was used to optimize the matching using the 

RANSAC algorithm, removing outliers from the matching pairs. 

 

2.2 Camera pose estimation and sparse reconstruction 

The incremental SFM was adopted to estimate the camera pose 

and reconstruct the sparse point cloud of the small body (Moulon, 

Monasse and Marlet, 2013). Starting from an initial image pair, 

the fundamental matrix 𝐹  is computed based on image 

correspondences. Using the camera intrinsic matrix 𝐾 , the 

rotation matrix 𝑅  and translation vector 𝑇  between the two 

frames can be recovered. The initial 3D point cloud 𝑋 is then 

reconstructed through triangulation. 

 

New images are incrementally added, and for each newly 

incorporated image, the Perspective-n-Point (PnP) method is 

used to estimate its pose. Subsequently, Bundle Adjustment (BA) 

is performed for local and global optimization, ensuring optimal 

consistency among all camera poses and 3D points. The objective 

function minimizes the reprojection error, which represents the 

difference between the observed image points and the projected 

points. The optimization is formulated as follows: 

 [𝑃, 𝑋] = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ||𝑃𝑖𝑋𝑗 − 𝑥𝑗||2
2𝐷

𝑗=1
𝑁
𝑖=1  (1) 

Where 𝐷 is the number of feature point pairs; N is the number of 

images; and 𝑃  is the camera projection matrix, which can be 

calculated by the camera intrinsic matrix 𝐾, the rotation matrix 

𝑅  and the translation vector 𝑇  ( 𝑃𝑖 = 𝐾[𝑅𝑖|𝑇𝑖] ). 𝑋  is the 3D 

coordinate of the feature point; and 𝑥 is the 2D image coordinate 

of the feature point on the image. 

 

2.3 Rotation axis estimation 

The camera captures images while maintaining a near-hovering 

state. As the small body rotates, the relative positions of the 

camera form an approximate spatial circle, whose normal vector 

of the plane in which it lies can be considered as the small body’s 

rotation axis. The camera positions are fitted to a spatial plane. 

First, compute the 3D coordinates of the central point 𝑇𝑚𝑒𝑎𝑛 of 

all camera positions (i.e., translation vectors 𝑇 ) as given in 

Formula (2), and translate all camera positions so that the central 

point becomes the origin, as expressed in Formula (3). 

 𝑇𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑇𝑖

𝑁
𝑖=1  (2) 

 𝑇𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑇 − 𝑇𝑚𝑒𝑎𝑛 (3) 

Then, perform Singular Value Decomposition (SVD) on the 

matrix 𝑇𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 , which consists of the decentralized camera 

positions (Formula (4)). The normal vector of the fitted plane 

corresponds to the third row of the right singular vector matrix 𝑉 

from the SVD. The normal vector of the fitted spatial plane 

represents the small body’s rotation axis. 

 𝑈, 𝑠, 𝑉 =  𝑆𝑉𝐷(𝑇𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑) (4) 

 𝐴𝑥𝑖𝑠𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑉[: , 2] (5) 

An additional step is required to determine its correct 

orientation, which should be inferred from the camera’s motion 

and is typically defined to align with the counterclockwise 

direction. Furthermore, the rotation axis obtained from SFM is 

initially expressed in the camera coordinate frame and must be 

transformed into the small body-centered J2000 inertial 

coordinate frame using the camera poses. 

 𝐴𝑥𝑖𝑠𝑗2000 = 𝑅𝑗2000 ∙ 𝐴𝑥𝑖𝑠𝑐𝑎𝑚𝑒𝑟𝑎 (6) 

Where 𝑅𝑗2000  is the camera rotation matrix at the small body-

centered J2000 inertial coordinate frame; 𝐴𝑥𝑖𝑠𝑐𝑎𝑚𝑒𝑟𝑎  is the 

rotation axis orientation at the camera coordinate frame after 

SFM; and 𝐴𝑥𝑖𝑠𝑗2000 is the rotation axis orientation at the small 

body-centered J2000 inertial coordinate frame. 

 

2.4 Dense reconstruction 

Dense stereo matching and point cloud fusion are applied to 

generate the shape model of the small body. The semi-global 

stereo matching algorithm is used for multi-view dense 

reconstruction, combining the benefits of both local and global 

matching to achieve a balance between accuracy and efficiency. 

Finally, the Poisson reconstruction method is employed to mesh 
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the dense point cloud, resulting in the three-dimensional surface 

shape model of the small celestial body. 

 

3. Experiment data and results 

We employed both simulated data and data from actual missions 

to validate the effectiveness of the proposed algorithm. Simulated 

data can provide a more flexible control over observation 

conditions.  

 

3.1 Simulation platform and data 

Blender software was used to generate simulated images in this 

study. The intrinsics of the simulation camera are shown in Table 

1. The spacecraft approaches the small body from a distance of 

approximately 120 km, capturing 72 images over a full rotation 

period. During this time, the spacecraft moves less than 1 km 

while continuously pointing its camera at the small body. To 

evaluate the algorithm’s adaptability under varying observational 

conditions, images are simulated with different sun phase angles 

(The angle formed by the vectors from the small body to the Sun 

and from the small body to the camera) and approach angles (The 

angle formed by the vectors from the small body to the camera 

and its rotation axis orientation) by adjusting the light source 

position and the small body’s rotation axis orientation. A Python 

script automates the entire simulation process. The reference 

shape models include Bennu (diamond-shaped) and Itokawa 

(peanut-shaped), each with a diameter of approximately 500 m 

and occupying around 300 pixels in the images. The Bennu 

model, developed by (Barnouin et al., 2019), is an SPC-derived 

version with a resolution of 0.75 m, while the Itokawa model, 

constructed using SPC (Gaskell et al., 2008), contains over 1 

million vertices. 

 

Table 1 Simulation platform details. 

Platform Blender 3.5 

Shape model 
Bennu (Barnouin et al., 2019) 

Itokawa (Gaskell et al., 2008) 

Camera 

Type Perspective camera 

Focal length 628.7 mm 

Detector 

array size 
1024 pix × 1024 pix 

Pixel size 8.5 um 

FOV 0.794° × 0.794° 

Light Sun 

 

(a) 

 

(b) 

 
Figure 2 Simulation images of (a) Bennu and (b) Itokawa at 

different sun phase angle and approach angle 

 

3.2 Experiment results on simulated data 

Figure 3 shows the rotation axis estimation errors of the proposed 

method under different sun phase angles and approach angles. In 

these heatmaps, darker colors indicate larger estimation errors. 

The error is measured as the angle between the reference axis 

vector and the estimated axis vector. 

 

The simulation results show that for the Bennu shape model, 

across all tested conditions with sun phase angles ranging from 

0° to 60° and approach angles from 90° to 30°, the rotation axis 

estimation error remains below 5°, with over 80% of cases 

achieving errors under 3°. For the Itokawa shape model, nearly 

all cases yield errors below 5°, with half exhibiting errors under 

3°. This difference is likely due to Bennu’s nearly spherical shape, 

which results in consistent imaging effects (e.g., occupied pixel 

count, shadow distribution). In contrast, Itokawa’s elongated and 

irregular shape, particularly its narrow neck, causes significant 

variations in imaging appearance under different illumination 

and viewing angles. This leads to sparse feature matches in some 

frames, reducing pose estimation accuracy and ultimately 

increasing rotation axis estimation errors. 

 

(a) 
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(b) 

 
Figure 3 Estimation error of the rotation axis of the small body 

under different observation conditions. (a) Bennu and (b) 

Itokawa. 

 

Using the Bennu shape model as an example, we further 

evaluated the robustness of the proposed algorithm under varying 

numbers of images captured within a single rotation period, in 

addition to different sun phase angles and approach angles. The 

results, presented in the cumulative frequency diagram in Figure 

4, indicate that a reduction in the number of images leads to an 

increase in rotation axis estimation error. This effect becomes 

particularly pronounced when the image count is reduced to 36. 

Despite this, the algorithm remains highly reliable, with over 90% 

of cases maintaining an estimation error below 5°. These findings 

demonstrate the adaptability of the proposed method, even when 

faced with limited observational data. In addition, using these 

different numbers of images, the proposed method can complete 

the rotation axis estimation within a few minutes, demonstrating 

the efficiency of the method. 

 

 
Figure 4. Cumulative frequency curve of the rotation axis 

estimation error when capture different numbers of images within 

a rotation period. 

 

3.3 Experiment results on data from the OSIRIS-REx 

mission 

The proposed algorithm was tested on real data captured by the 

OSIRIS-REx mission during its approach to Bennu. Detailed 

information about this dataset is provided in Table 2 and Figure 

5. For the four sets of real data, the spacecraft observed Bennu 

from a distance of approximately 150 km, capturing 36 images 

within one rotation period. During this time, the sun phase angle 

was less than 20°, and the approach angle was about 88°, with 

the observation perspective nearly pointed to the equator of 

Bennu.  

 

The reference rotation axis orientation of Bennu is given as 

(-0.03773, 0.496, -0.86751), derived from the SPC method 

(Barnouin and Nolan, 2021). The estimated rotation axis 

orientation obtained using the proposed method, along with the 

corresponding error, is presented in Table 3. The results show 

that the estimation error is approximately 1°, demonstrating the 

effectiveness of the proposed algorithm and its potential for 

application in small body exploration missions. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Real images of Bennu from the OSIRIS-REx mission. 

They are captured on (a) 2018-11-09, (b) 2018-11-12, (c) 2018-

11-13 and (d) 2018-11-16. 

 

Table 2. Detailed observation information of Bennu’s real images 

of Figure 5. 

Date 

Number 

of 

images 

Sun 

phase 

angle 

Approach 

angel 
Distance 

2018-11-09 36 ~7.5° ~87.66° ~159 km 

2018-11-12 36 ~18° ~87.65° ~151 km 

2018-11-13 36 ~19° ~87.71° ~148 km 

2018-11-16 36 ~13.7° ~88.06° ~136 km 

 

Table 3. Estimation results and reference values of Bennu’s 

rotation axis orientation. 

Reference 

value 

Ra=85.65°, Dec=-60.17° 

0.03773, 0.49600, -0.86751 

Date Estimated value Error (°) 

2018-11-09 0.02184, 0.51242, -0.85803 1.42 

2018-11-12 0.03077, 0.49374, -0.86903 0.43 

2018-11-13 0.02720, 0.49851, -0.86635 0.62 

2018-11-16 0.03042, 0.50200, -0.86421 0.57 

 

Figure 6(a) shows the reconstructed shape model using 

images taken on 2018-11-16, and the image resolution is about 

1.85 m/pixel. Figure 6(b) is the error distribution of the 
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reconstructed shape model compared to the reference SPC model. 

The model error is defined as the distance between the vertices 

of the reconstructed shape model and the reference model. For 

each vertex, a point closest to it is found from the reference model 

point cloud and the Euclidean distance is calculated. In order to 

avoid mismatching caused by inconsistent point cloud resolution 

as much as possible (such as multiple reconstructed model points 

correspond to a reference model point, or multiple reference 

model points correspond to a reconstructed model point), the 

reference model point cloud is downsampled to the same 

resolution as the reconstructed model point cloud based on voxel 

filtering. Compared with the referenced SPC model, the 

constructed shape model has a maximum difference of 16.1 

meters and an average difference of 2.55 meters. The areas with 

the large differences are mainly located around the boulder. 

 

  
(a) (b) 

Figure 6. (a) The reconstructed shape model of Bennu and (b) its 

error compared to the SPC model. 

 

4. Conclusion 

This paper proposes an SFM-based method for small body shape 

reconstruction and rotation axis estimation. The method enables 

fast and autonomous estimation of the shape and rotation axis of 

a small body at relatively large distances during the approach 

phase with a limited number of images. Using images captured 

during near-hovering observations, the relative poses of 

sequential images are estimated through incremental SFM. The 

normal vector of the plane where the fitted space circle is located 

is determined as the small body's rotation axis and transformed 

into the small body-centered J2000 inertial coordinate system. 

Finally, a global shape model is generated based on dense stereo 

matching. 

 

The proposed method is evaluated using both simulated and 

real mission data. A total of 75 simulation cases are designed, 

considering various observational conditions such as sun phase 

angle, approach angle, small body shape, and the number of 

images captured per rotation period. The results show that over 

95% of cases achieve a rotation axis estimation error below 5°. 

The method performs better on small bodies with regular shapes 

compared to those with irregular geometries. When capturing 

tens of images per rotation period, the rotation axis can be 

estimated within a few minutes, though a reduction in image 

count leads to increased estimation errors. Additionally, tests 

using four sets of OSIRIS-REx mission data for Bennu yield an 

estimation error of approximately 1° for its rotation axis. The 

dense reconstruction results show an average deviation of about 

2.55 m compared to the SPC-derived shape model. These results 

demonstrate the effectiveness and efficiency of the proposed 

algorithm, proving its potential for application in small body 

exploration missions. Future work will focus on incorporating 

additional constraints into the bundle adjustment process of SFM 

to enhance the accuracy of rotation axis estimation and shape 

reconstruction. 
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