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Abstract 

 

Evapotranspiration (ET), which constitutes evaporation from soil and water surfaces and transpiration from stomata of plant leaves, 

is an important indicator for measuring global hydrological and carbon cycle balances. Though it is crucial to monitor ET for water 

resource management, energy production, and environmental conservation, predicting ET is a complex task and lacks a reliable 

approach for accurately predicting ET using remote sensing and meteorological data. ML methods, with their ability to handle 

complex and non-linear relationships to make accurate predictions, can be used to predict ET. In this study, ML algorithms—

Random Forest Regression, Support Vector Regressor, Artificial Neural Network, and an ensemble model—are developed to 

predict forest evapotranspiration. The models are trained with ECMWF ERA5 reanalysis meteorological parameters (max. and 

min. air temperature, relative humidity, vapor pressure deficit, precipitation, volumetric soil water content, and wind speed), remote 

sensing data products (MODIS Enhanced Vegetation Index, MODIS Land Surface Temperature, MODIS Fractional 

Photosynthetically Active Radiation) as independent parameters, and ET data (8-day data) from MODIS as the target variable. All 

the datasets are interpolated to a 4-day temporal resolution for the years 2016-2018. From the ensemble model, a satisfactory R-

squared value of 0.81 and RMSE value of 0.27 mm/day for the prediction were obtained using the parameters chosen from feature 

analysis. The trained model is used to predict the forest ET map for the Upper Aravali region for the years 2016-2018. Using ML 

algorithms to estimate ET rates can be useful for proactive resource management, particularly in water-stressed areas. 

 

 

1 Introduction 

 

Forests play a significant role in controlling the balance of 

terrestrial water on Earth, which covers about 31% of its 

land surface.  Forests are one of the world’s major biomes 

and they evapotranspire an adequate amount of water back 

into the atmosphere. Therefore, forest evapotranspiration 

has a significant impact on regional and global climate, as 

well as river flow, which in turn has an impact on water 

resources, flooding, and sediment transport. (Komatsu et 

al., 2012). Additionally, carbon fixation is related to forest 

evapotranspiration and forest biodiversity. 

Evapotranspiration is a significant part of the global water 

cycle, which is important to forests. Numerous variables, 

such as air and land surface temperature, atmospheric 

humidity, radiation, wind speed, soil moisture, and 

vegetation characteristics, have an impact on it. Forests 

typically evapotranspire at higher rates than other types of 

land cover because of their dense vegetation, which offers 

a large surface area for evaporation and transpiration. Due 

to the complexity of the processes involved, measuring 

evapotranspiration in forests can be difficult. There are 

several techniques used, including direct measurements 

made with tools like lysimeters, eddy covariance towers, 

and sap flow sensors. By analysing data on variables like 

vegetation indices, land surface temperature, and satellite-

based observations, remote sensing techniques, such as 

those described above, can also provide useful 

information on evapotranspiration at regional and global 

scales. (Ha et al., 2015a). 

 

When plants absorb sunlight during photosynthesis, a 

process known as solar-induced fluorescence occurs. The 

physiological health and activity of plants can be inferred 

from this fluorescence emission. As both SIF and T 

(canopy temperature) heavily rely on APAR (absorbed 

photosynthetically active radiation). The rationale behind 

linking canopy T to remotely sensed vegetation indices 

(VIs) or leaf area index (LAI) in remote sensing-based 

methods is that canopy T is associated with carbon 

assimilation through stomatal conductance at the canopy 

level (gc). However, real photosynthetic activity is not 

directly determined by VIs or LAI. Instead, they rely on 

reflectance data, which are common in satellite-based 

optical temperature approaches. Therefore, it is 

anticipated that direct proxies for photosynthesis would 

enhance canopy T prediction, particularly by gc 

constraint. Recent advances in measuring and interpreting 

solar-induced chlorophyll fluorescence (SIF) have made it 

possible to estimate photosynthetic activity from space 

(Shan et al., 2021). 

 

Chlorophyll fluorescence has been utilised to research the 

physiology of photosynthetic activities and stomatal 

conductance at various cellular and subcellular levels, 

whereas SIF, as an indirect technique, is typically studied 

at the canopy extent and above. Stomatal conductance can 

also be estimated using various spaceborne sensors such 

as GOME-2, GOSAT, and OCO-2 to enhance the regional 

ET prediction. Several studies have used the global SIF 

data which has been collected from various space-based 

equipment’s to predict global and regional ET. This study 

assesses SIF's ability to monitor temporal changes in 

stomatal conductance and transpiration for forest and 

agricultural land by taking into account the overall 

interlinkage between vegetation, boundary layer, carbon 

uptake, and water loss. High frequency time series data 

was used to study the connection between SIF and 

stomatal conductance. For the ground measurement flux 

data has been taken from three different sites, the 8-day 
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satellite data was averaged, an empirical regression model 

is being carried out between stomatal conductance and 

SIF. This study showed that SIF and stomatal conductance 

plays a crucial role in estimating plant carbon and water 

balance as SIF is a proxy for Gross Primary Productivity 

(GPP) that can be used to measure stomatal conductance 

under fully amalgamated carbon uptake and transpiration. 

(Shan et al., 2019). 

 

The direct measurement of evapotranspiration (ET) using 

flux towers has several limitations, including high costs, 

spatial constraints, and data gaps. Similarly, remote 

sensing-based physical models, while valuable, often face 

challenges such as limited spatial coverage, the need to 

incorporate multiple parameters, and difficulties in 

handling complex relationships. Machine learning (ML) 

techniques offer a promising alternative by automatically 

capturing intricate non-linear relationships between ET 

and its controlling factors. ML models can effectively 

handle complex interactions, learn patterns directly from 

data, and make accurate large-scale predictions. Unlike 

traditional approaches, ML models can reproduce 

complex processes by mapping relationships between 

input and output variables. Additionally, they are more 

tolerant to missing or limited data, utilizing techniques 

such as imputation and feature selection to enhance 

predictive accuracy. Various meteorological (e.g., wind 

speed, relative humidity, temperature, and precipitation) 

and remote sensing-based parameters (e.g., Enhanced 

Vegetation Index—EVI) can be integrated into ML 

models for improved ET estimation. Despite the potential 

of ML in this domain, limited studies have focused on its 

application for ET prediction, particularly in forest 

ecosystems. To address this gap, this study evaluates the 

performance of different ML models—Random Forest 

Regression, Support Vector Regression (SVR), Artificial 

Neural Networks (ANN), and an ensemble approach—for 

predicting forest ET using meteorological and remote 

sensing datasets. 

 

2 Overview of methods for estimating ET 

 

2.1 Machine Learning 

 

Machine learning (ML) techniques are increasingly being 

used to estimate evapotranspiration (ET) at regional 

scales. For example, Yang et al. (2006) employed flux 

tower measurements from the Ameri Flux network along 

with three remote sensing variables—Land Surface 

Temperature (LST), Improved Vegetation Index (IVI), 

and land cover—along with surface shortwave radiation to 

estimate eight-day-averaged ET using a Support Vector 

Machine (SVM) model. Similarly, Lu and Zhuang (2010) 

utilized Artificial Neural Networks (ANN) to develop a 

daily ET product by integrating remotely sensed data, 

meteorological variables, and flux tower observations. 

The goal of their study was to scale up tower-based ET 

measurements to a regional level using ML models. In 

recent research, five widely used ML techniques—

Support Vector Machines (SVM), Deep Belief Networks 

(DBN), Random Forests (RF), and Artificial Neural 

Networks (ANN)—have been employed for ET 

estimation. Additionally, ensemble learning methods, 

which combine multiple ML models to improve predictive 

performance have been explored for better accuracy. Ruiz-

Aĺvarez et al. (2021), Kanan et al. (2023), Piragnolo et al. 

(2021), Tausif, et al.  (2023). 

2.1.1 Random Forest: Based on a CART decision tree 

model, Breiman (2001), Liu, Y., Zhang, S., Zhang, J., 

Tang, L., & Bai, Y. (2021).  created the RF, which 

includes the algorithms for classification (RFC) and 

regression (RFR). The basic idea based on statistical 

theory is to extract K samples and the bootstrap 

resampling technique is used to repeatedly and randomly 

create a new set of training samples from the original 

training samples set N, followed by the production of K 

decision trees and a random forest based on the bootstrap 

sample set. Regarding the classification model, the final 

prediction outcomes of newly collected data are 

determined by the number of votes received from the 

classification tree. Similarly, for the regression model, all 

averages of the decision trees' predictive values are 

considered as final outcomes. 

 

2.1.2 Support Vector Regressor: Vapnik initially created 

SVMs for pattern categorisation, but they have now been 

applied to regression approximation. SVMs convert 

nonlinear regression to linear regression by mapping the 

low-dimensional input space to a higher-dimensional 

feature space with kernel functions that meet Mercer's 

criterion, V. Vapnik (1991), V. N. Vapnik (1998), Dou, 

X., & Yang, Y. (2018). 

 

    2.1.3 Artificial Neural Networks: A neural network is a 

computing system designed to mimic the function of the 

human brain (Haykin, 1998; Antonopoulos & 

Antonopoulos, 2017). It is widely used for regression 

tasks because of its ability to approximate complex 

nonlinear functions. Among the various neural network 

algorithms, multilayer perceptron’s with backpropagation 

(MLP-BP) remain the most commonly used (Haykin, 

1998). However, MLP-BP faces challenges in selecting 

the appropriate network topology and optimizing 

solutions. Its performance depends on several factors, 

including the number of hidden layers, the number of 

neurons per layer, activation functions, weight 

initialization methods, learning rate, momentum, epoch 

size, complexity penalty functions, and regularization 

parameters. 

 

3 Materials and Methods 

 

3.1 Site description 

 

One of the oldest hill ranges in the world, the Aravali is 

symmetrically located in northwest India and spans three 

states (Haryana, Rajasthan, Gujarat, and Delhi) as well as 

one union territory. It used to cover an area of almost 

75,000 km2. Situated between the Gangetic plain and the 

enormous Thar desert, it is an ecotonal, semi-arid 

woodland environment. Partially and completely 

encompassing 15 districts, the upper Aravali range is 

distributed among the states of Delhi, Haryana, and 

Rajasthan. Its coordinates are 25°30'-29°N and 75°30'-

78°E. With an extent of 37593.2 km2, it underwent 

orogeny between 2.5 billion years ago. Compared to other 

Aravali regions, this range has a lower density of forests 

and is much more urbanised. Nonetheless, there are a few 

protected areas, such as the Sariska National Park, Aravali 

Biodiversity Park, Sultanpur National Park (Kumari et al. 

2017).  
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 Figure 1. Upper Aravalli Study Area Map 

 

4  Datasets 

Table 1. Representation of the datasets used for the study 

 

4.1 MODIS Products 

 

In this study, three MODIS (Moderate Resolution Imaging 

Spectroradiometer) products are used MOD11A2.006 is 

the MODIS Land Surface Temperature (LST) product 

which has 1 km spatial resolution and an 8-day temporal 

resolution which gives global Terra Land Surface 

Temperature and Emissivity. It consists of 12 bands of 

which band 1 LST_Day_1km is being used to carry out 

the study. MOD13Q1.006 is the MODIS Terra Vegetation 

Indices (VI) product which has 250 m spatial resolution 

and a 16-days temporal resolution. It includes 11 bands, 

featuring two key vegetation indices: NDVI and EVI. This 

study utilizes band 2 (EVI). MCD15A3H.006 The 

MODIS Leaf Area Index/FPAR product has a 500 m 

spatial resolution and a 4-day temporal resolution. It 

consists of six bands, with band 1 (FPAR) selected for this 

study. This band covers a wavelength range of 400–700 

nm. All MODIS data products are extracted at the point 

locations chosen randomly in the study area using a 

Google Earth Engine (GEE) script and exported as CSV 

files. Additionally, geotiff files for the study area are 

generated and stored in Google Drive using GEE The 

training data (CSV) datasets are then interpolated or 

averaged to match 4-days temporal resolution. If the 

temporal resolution is greater than 4 days, mathematical 

average is performed for consecutive 4 days. If the 

temporal resolution is less than 4 days, the dataset is 

temporally linearly interpolated for 4 days. For prediction 

data, the Geotiff files are resampled using the cubic spline 

to 250m spatial resolution. The geotiff files are generated 

for every month (average) for the years 2016-2018. 

   4.1.1 GOSIF: Using a data-driven approach, a global 

OCO-2 Solar-Induced Fluorescence (SIF) dataset was 

generated with high spatial (0.05°) and temporal (8-day) 

resolution for the period 2000–2020. This dataset was 

created by integrating MODIS remote sensing data, 

meteorological reanalysis data, and discrete OCO-2 SIF 

soundings. Pre-processed global GOSIF geotiff files serve 

as the data source for OCO-2 SIF. These files are 

downloaded as tar archives and extracted using Python 

scripts. For the selected locations, pixel values are read 

and stored as CSV files using the GDAL, NumPy, and 

pandas libraries. Since the dataset has an 8-day temporal 

resolution, it is temporally interpolated to a 4-day 

resolution. For prediction, geotiff files are masked to the 

study area and resampled to a 250 m spatial resolution 

using cubic spline interpolation via the GDAL library.  

 

4.1.2. Meteorological datasets:  The ERA5-Land dataset, 

derived from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) ERA5-Land Climate 

Reanalysis, provides daily aggregated climate 

information, including meteorological variables and land 

surface parameters. This dataset contains all 50 variables 

available on the Copernicus Climate Data Store (CDS). 

For this study, the ERA5-Land Daily Aggregated dataset, 

accessible via the Google Earth Engine (GEE) data 

catalogue, is used to extract the required meteorological 

parameters. For the Upper Aravalli region, meteorological 

variables—including air temperature, dew point 

temperature, precipitation, soil moisture, and wind (u & v 

components)—are extracted for the years 2016–2018 and 

saved as CSV files using a GEE script. The extracted 

dataset, containing daily meteorological data (2016–2018) 

with 1096 rows × 6 columns, is averaged into a four-day 

resolution, resulting in 274 records. Since ERA5-Land 

data does not directly provide wind velocity magnitude, 

relative humidity, or vapor pressure deficit (VPD), these 

parameters are computed using air temperature and dew 

point temperature values via a Python script. 

 

Once all necessary parameters are derived, the CSV file is 

processed further for model training. In addition to the 

CSV dataset for the study site, geotiff files for all 

parameters across the Upper Aravalli region are extracted 

using a GEE script. These files are averaged to a four-day 

resolution and resampled to a 250 m spatial resolution 

using cubic spline interpolation. 

 

 
Figure 2. Schematic diagram of methodology workflow 

 

S.  

No. 
Type Parameters Product 

Spatial Res. 

(m) 

Temp

oral 

Res. 

(days) 

1 

Remot

e 

Sensin

g 

Evapotranspi

ration 
MOD16A2.061 500 8 

2 FPAR MCD15 FPAR 500 4 

3 LST MOD11 LST 1000 Daily 

4 EVI MOD13 EVI 250 16 

5 SIF 
OCO-2 

(GOSIF) 
5000 8 

6 

Meteor

ologic

al 

VPD ECMWF ERA5 11132 Daily 

7 
Soil 

Moisture 
ECMWF ERA5 11132 Daily 

8 
Relative 

Humidity 
ECMWF ERA5 11132 Daily 

9 Precipitation ECMWF ERA5 11132 Daily 

10 Wind Speed ECMWF ERA5 11132 Daily 

11 
Air 

Temperature 
ECMWF ERA5 11132 Daily 
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5 Data preprocessing 

 

As outlined in the dataset section, preprocessing of 

meteorological and remote sensing datasets involves two 

distinct workflows for training and prediction. For training 

data, all relevant parameters are extracted as point data for 

the Upper Aravalli region and stored in a CSV file, where 

each data point corresponds to the same geographical 

location. In contrast, for predicting ET across the entire 

study area, these parameters are extracted as geotiff files 

for the required time period. 

 

To ensure accurate modelling, it is essential to clean the 

dataset before proceeding with analysis. Datasets may 

contain extreme values (outliers) that significantly deviate 

from the norm and are inconsistent with the rest of the 

data. Identifying and removing these outliers enhances 

ML model performance and improves predictive 

accuracy. Outliers often arise due to measurement errors 

or data processing issues. Statistical techniques can be 

employed to detect and eliminate such anomalies, 

ensuring the dataset accurately represents the underlying 

patterns. 

 

5.1 Feature Selection and Scaling 

 

To improve model efficiency, the number of input 

parameters can be reduced by removing redundant and 

non-informative variables through feature selection. A 

large number of variables can slow down model training 

and even degrade performance if irrelevant to the target 

parameter. Different feature selection methods can be 

applied depending on the variable type. Since all 

parameters in this study are numerical, Pearson’s 

correlation coefficient and mutual information scores are 

used to identify the most relevant variables. For the 

training dataset, selected parameter data points are merged 

into a common CSV file. These parameters are combined 

into a Pandas DataFrame and stored as a CSV file, 

containing 274 records, corresponding to three years of 4-

day intervals: (365+365+366)/4 records. 

 

After feature selection, the training dataset is split into 

training (80%) and testing (20%) subsets using the scikit-

learn library. To ensure consistency across all variables, 

feature scaling (data normalization) is applied to the 

independent variables. Without normalization, the ML 

algorithm may become biased, assigning lower 

importance to smaller values and overemphasizing larger 

ones. There are multiple feature scaling techniques 

available such as, 1) Min-Max Scaling, 2) Absolute 

maximum scaling, 3) Normalisation, 4) Robust Scaling. 

For this study, Min-Max Scaling is used to normalize the 

data values, ensuring they fall within a standardized range  

 

5.2 Model training and testing 

 

Once feature scaling is applied, the ML models are ready 

for training and evaluation. The Random Forest 

Regression (RF) and Support Vector Regression (SVR) 

models are implemented using the scikit-learn library, 

while the Artificial Neural Network (ANN) model is built 

using TensorFlow. Since ML model performance is highly 

dependent on hyperparameter tuning, Grid Search Cross-

Validation is employed to identify the optimal parameters 

for the RF model. This process evaluates multiple 

parameter combinations, validating the model against the 

dataset and selecting the best-performing configuration. 

Once tuning is complete, a new RF model is trained with 

the optimized parameters and used for prediction. To 

account for variability in model performance due to 

different train-test splits, cross-validation is performed to 

compute the average RMSE (Root Mean Square Error) 

and R² values for both RF and SVR models. The ANN 

model used in this study consists of four layers: one input 

layer, two hidden layers, and one output layer. For 

validation, the ANN model uses Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) as performance 

metrics. Similarly, for all three models (RF, SVR, and 

ANN), RMSE and R² values are calculated to assess 

model accuracy. 

 

 In machine learning (ML), ensemble techniques are 

employed to combine multiple models, resulting in 

improved predictive performance. There are several 

methods to construct an ensemble model. Bootstrap 

Aggregation (Bagging) involves training multiple models 

on different subsets of the training dataset to reduce 

variance and improve stability, with Random Forest being 

a widely used bagging-based model. Stacked 

Generalization (Stacking) enhances prediction accuracy 

by combining outputs from multiple base models and 

using a meta-model to refine predictions. Boosting is a 

sequential technique where models are added iteratively, 

correcting errors from previous models to improve overall 

performance, producing a weighted average of predictions 

for enhanced accuracy. In this study, the ensemble model 

uses the different models that are trained with the same 

dataset and averages the prediction to get the final 

ensemble prediction.  

 

6 Result and Discussion 

 

6.1 Feature Selection - Correlation coefficient & 

Mutual Information 

 

The relationship between two variables in a dataset is 

measured statistically using feature correlation 

coefficients (FCCs). They show the linear relationship 

between the features' strengths and directions. There are 

several ways to calculate correlation coefficients, but 

Pearson's correlation coefficient is by far the most popular. 

The "r" symbol stands for Pearson's correlation 

coefficient, which calculates the linear correlation 

between two continuous variables. It accepts numbers in 

the range of -1 and 1, with -1 denoting a perfect negative 

correlation, 1 denoting a perfect positive correlation, and 

0 denoting no correlation. 

 

Below mentioned are the feature correlation coefficients 

for the given study period, based on these features it will 

decide the kind of relation each feature shares with each 

other. The features which share equal importance with 

each other from them one feature will be eliminated. 

However, only linear relationships are being measured by 

Pearson's correlation. 
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Figure 3.  Correlation coefficient matrix of years 

2016-2018 

 

SIF has the highest correlation with ET which is 0.56 

followed by Min Ta, EVI, Max Ta (0.48, 0.43, 0.40) 

respectively.   From the above observations we can 

conclude that there is a hidden covariation between SIF 

and ET and based on that we can derive a relationship. 

 

 
Figure 4. Mutual information score of parameters 

 

Mutual information describes the relationship in terms of 

uncertainty. It measures the statistical dependency or 

association between two variables such as feature and the 

target variable and shows their relevance. It quantifies the 

amount of information that one variable contains about the 

other. Non-linear relationship between two random 

variables is being provided by this. Hence, the high mutual 

information indicates large reduction in uncertainty, 

whereas low value indicates small reduction and when the 

mutual information is zero it means two variables are 

independent. Max air temperature and LST show highest 

mutual information, followed by soil moisture, Min air 

temperature, SIF, EVI, FPAR while precipitation shows 

lowest mutual information. Based on a high mutual 

information score only the important features are being 

selected. 

 

6.2 Relationship between selected features and ET 

 

The above stated are the important features which are 

being selected based on the mutual information provided 

are plotted as scatterplots. Water evaporates more quickly 

from surfaces such as soil, water, and plant leaves at 

higher temperatures. The transition of water molecules 

from a liquid to a vapour state is accelerated by increased 

thermal energy, which also increases the kinetic energy of 

the water molecules. 

 

 

  

  

 

 

 

 

Figure 5.  Relationship between important features 

selected based on mutual information score 

vs ET. 

 

 

6.2.1 Temperature Response to Transpiration: 

Transpiration, the process of water loss from plants 

through stomata on leaves, is strongly influenced by 

temperature. As temperatures rise, stomata open, leading 

to the release of water vapor, which typically causes 

transpiration rates to increase. However, this relationship 

is non-linear. 

There is a positive correlation between evapotranspiration 

and maximum air temperature, although the connection is 

not purely linear. The degree of evapotranspiration is also 

affected by various other factors, such as humidity, wind 

speed, and the availability of soil moisture. Additionally, 

the form and strength of this relationship can vary 

depending on the specific geography, plant type, and 

regional environmental conditions. 
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The relationship between maximum air temperature 

(independent variable) and evapotranspiration (ET) 

(dependent variable) was plotted, with R² = 0.41. The plot 

shows that ET increases with temperature up to a certain 

point, after which it begins to decrease. This behaviour 

occurs because, at higher temperatures, the stomata begin 

to close, reducing water loss and thus lowering ET. The 

temperature in this analysis varied from 285 K to 315 K.  

Similarly, when minimum air temperature is plotted 

against ET, the relationship follows a similar pattern. 

Initially, ET increases and reaches a peak of about 2.5 

mm/day. However, once a certain temperature threshold is 

reached, ET starts to decrease, with the relationship 

showing an R² value of 0.3. This suggests that while min 

air temperature has an effect on ET, it is less pronounced 

than that of max air temperature 

 

6.1.2 SIF and ET: Solar Induced Fluorescence (SIF) 

and evapotranspiration (ET) share a positive relationship 

because SIF is an indicator of the light emitted by plants 

during photosynthesis, and transpiration is closely linked 

to photosynthetic activity. When plants photosynthesize 

and transpire, water vapor is released, contributing to 

evapotranspiration. As SIF values increase, it indicates 

higher photosynthetic activity, which typically leads to 

higher transpiration rates, thereby increasing the rate of 

evapotranspiration. 

In this study, SIF shows an R² value of 0.37 with ET. To 

improve the relationship and reduce skewness, a 

logarithmic transformation is applied to SIF for feature 

transformation. The plot reveals that ET starts at 1.6 

mm/day and increases steadily, reaching up to 2.8 mm/day 

as SIF rises, reflecting the connection between increased 

photosynthetic activity and higher evapotranspiration. 

 

6.1.3 FPAR vs ET: FPAR (Fraction of Photosynthetically 

Active Radiation) and evapotranspiration (ET) are closely 

related, as FPAR plays a key role in regulating ET. FPAR 

measures the fraction of solar radiation (in the 400-700 nm 

range) absorbed by plants, and higher FPAR values 

typically indicate denser, healthier vegetation canopies. 

This leads to an increase in leaf area and transpiration 

rates, resulting in higher ET. Additionally, FPAR is an 

important parameter in the energy balance equation; when 

FPAR is high, more energy is absorbed by the vegetation, 

which contributes to a higher potential for 

evapotranspiration.  

 

Moreover, FPAR plays a key role in the energy balance 

equation: higher FPAR suggests that more solar energy is 

absorbed by the vegetation, which in turn increases the 

potential for evapotranspiration. The relationship between 

FPAR and ET in this study shows an R² value of 0.26. 

Using a third-order polynomial equation, it was observed 

that ET increases initially, then begins to decrease, 

possibly due to vegetation stress. After reaching a certain 

threshold, ET starts to increase again as favourable 

conditions return. The ET values range from 2.2 mm/day 

to 3.4 mm/day, reflecting this dynamic interaction 

between FPAR and evapotranspiration. 

 

6.1.4 EVI vs ET: The Enhanced Vegetation Index (EVI) 

is an indicator that measures the greenness and density of 

vegetation cover, serving as a proxy for plant health and 

vitality. Since plant density and health are closely linked 

to transpiration rates, denser and healthier plants are 

capable of evaporating more water. This increased    

transpiration contributes to higher evapotranspiration. As 

a result, EVI and ET share a positive correlation—higher 

EVI values generally signify healthier vegetation and 

higher transpiration rates, leading to increased ET. 

In this study, the relationship between EVI and ET shows 

an R² value of 0.22 and follows a linear trend. ET starts at 

1.5 mm/day and rises to 2.9 mm/day as EVI values 

increase, ranging from 0.25 to 0.60. This further confirms 

the link between vegetation health, transpiration, and 

evapotranspiration. 

 

6.1.5 LST vs ET: Land surface temperature and 

evapotranspiration are positively related to each other as 

LST influences the rate of evapotranspiration. Higher LST 

values generally indicate warmer surface temperatures. 

Warmer surfaces tend to have increased evaporation rates, 

as the heat accelerates the conversion of liquid water into 

vapour. Transpiration refers to the process by which plants 

release moisture through their leaves. Higher LST can 

stimulate plant stomatal opening, allowing more water 

vapour to escape through transpiration. LST having 𝑹𝟐 

value of 0.48 and following the second order equation, it 

starts to increase from 285 and increases up to a certain 

threshold of 300 K, while the ET value goes from 1.2 

mm/day to 2.5 mm/day.  

 

6.1.6 Soil moisture vs ET: Soil moisture refers to the 

amount of water present in the soil, and it plays a critical 

role in determining the amount of water available for plant 

uptake and transpiration. When soil moisture levels are 

high, plants have sufficient water to actively transpire, 

leading to an increase in evapotranspiration. Therefore, a 

positive relationship exists between soil moisture and 

evapotranspiration—higher soil moisture values generally 

indicate more water available for plant transpiration, 

resulting in greater ET. In this study, soil moisture has an 

R² value of 0.36. Initially, ET starts at 2.5 mm/day, but it 

decreases with the onset of the summer season as soil 

moisture declines due to rising temperatures. As moisture 

levels decrease, ET also decreases. However, with the 

arrival of rainfall, soil moisture increases, and ET begins 

to rise again, peaking at 3.2 mm/day. This demonstrates 

the dynamic interplay between soil moisture, temperature, 

and evapotranspiration. 

 

6.3 Feature Importance 

 

Feature Importance quantifies the importance of each 

parameter in the model. It provides the insights into which 

features are most influential in predicting the target 

variable. Across different models, Max.Ta and SIF show 

higher feature importance. EVI is the least used parameter 

by the models for the prediction. LST is consistently being 

used by all the models moderately. 
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                                          (A) 

    (B) 

                                            (C) 

Figure 6.  Feature importance of parameters based on  

different ML models (A) Random Forest, (B) 

Support Vector Regressor, (C) ANN. 

 

6.4 Model Evaluation 

 

Model evaluation is based on comparing measured ET 

(mm/day) at location points with predicted ET values. The 

accuracy is assessed using R² and RMSE. R² indicates how 

well the predictor variables explain the variance in the 

response variable, with higher values reflecting better 

model accuracy. RMSE measures the difference between 

observed and predicted ET values, with lower values 

indicating better model performance. These metrics help 

determine how accurately the models predict 

evapotranspiration. 

 

  
Figure 7. Model evaluation based on predicted and 

measure value of ET. 

 

The R² value ranges from -1 to +1, with higher values 

indicating better model performance. RMSE, on the other 

hand, measures the difference between actual and 

predicted values, with lower values signifying a better fit 

to the dataset. The Random Forest Regression model 

shows an R² value of 0.768 and an RMSE of 0.309 

mm/day, demonstrating good performance. The ET values 

predicted by this model range from 1.45 mm/day to 3.00 

mm/day, following a linear trend. The Support Vector 

Regression (SVR) model outperforms RF, with an R² 

value of 0.808 and an RMSE of 0.28 mm/day, indicating 

a better fit and more accurate predictions. 

 

The ANN model achieves an R² value of 0.814 and an 

RMSE of 0.276 mm/day, delivering the best performance 

among the individual models. An Ensemble model, which 

aggregates all the individual models, was also developed 

to improve accuracy. While the Ensemble model did show 

a slight improvement with an R² of 0.819 and an RMSE of 

0.272 mm/day, the enhancement in accuracy was not 

substantial. Thus, while the Ensemble model performs 

better than individual models, the ANN model remains the 

best-performing model overall. Therefore, ANN is 

considered the optimal choice for this study. 

 

6.3.1 Influence of SIF in ET prediction: SIF (Solar-

Induced Fluorescence) is the measurement of light emitted 

by plants during photosynthesis in the form of 

fluorescence. This emission is influenced by various 

factors, including the photosynthetic activity of pigments 

like chlorophyll, the health of the vegetation, light 

conditions, and environmental stressors. SIF serves as an 

indicator of plant physiological processes, reflecting both 

the plant’s ability to photosynthesize and its overall state. 

 

 

Ensemble 

Model 

Performance 

R2 
RMSE 

(mm/day) 

Without SIF 0.789 0.294 

With SIF 0.819 0.272 

Table 2.  Ensemble model performance with and 

without SIF 
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Figure 8.  Ensemble model evaluation of ET predicted 

and measured after including SIF 

 

The inclusion of SIF as an independent parameter slightly 

improves model performance, showing higher feature 

importance during prediction. However, SIF is highly 

correlated with other variables such as Min.Ta, Max.Ta, 

and EVI, which the models predominantly rely on in the 

absence of SIF. Consequently, the absence of SIF does not 

significantly impact the model results. Without SIF, the 

model yields an R^2 value of 0.789 and an RMSE of 0.294 

mm/day, while with SIF included, the R^2 value improves 

to 0.819, and the RMSE decreases to 0.272 mm/day. This 

suggests that although SIF has some influence, it does not 

drastically affect model accuracy. 

4o mini 

 

 
Figure 9. Annual ET maps of years 2016-2018. 

 

The annual ET predicted for three years from 2016 – 2018 

is found to be maximum in 2017. It ranges from 39.58 

mm/day to 193.71 mm/day. As there is more foliage and 

more greenness the rate of evapotranspiration itself will be 

higher. While the lowest ET is seen in 2018 and in 2016 it 

is comparatively high. 

 

Model R2 RMSE 

RF 0.768 0.309 

SVR 0.808 0.280 

ANN 0.814 0.276 

Ensemble 0.819 0.272 

Table 3. Summary of the results 

 

 

7 Conclusion 

 

In this study, a comprehensive analysis of 

evapotranspiration (ET) was conducted using multiple 

machine learning models, including Random Forest 

Regression (RF), Support Vector Regression (SVR), and 

Artificial Neural Networks (ANN), with the aim of 

predicting ET dynamics in the Upper Aravali region. 

Several meteorological and remote sensing parameters, 

such as temperature, soil moisture, SIF, and vegetation 

indices, were utilized to enhance model prediction 

accuracy. Among the models tested, ANN emerged as the 

best performer, achieving the highest R2 value of 0.814 

and the lowest RMSE of 0.276 mm/day. The ensemble 

model, though slightly improving the results, did not show 

substantial improvement over the ANN model, confirming 

that ANN provided the most accurate predictions. 

 

Through feature selection and analysis, key variables such 

as Max.Ta, SIF, and soil moisture demonstrated 

significant importance in influencing ET rates. 

Interestingly, while the inclusion of SIF resulted in slight 

performance improvements, its correlation with other 

variables such as temperature and vegetation indices 

indicated that SIF's role in the model was somewhat 

redundant, without dramatically enhancing accuracy. 

Nevertheless, the study underscores the importance of 

combining multiple variables to effectively capture the 

complexity of ET processes, highlighting the value of 

remote sensing data and meteorological parameters in 

regional-scale evapotranspiration predictions. The 

findings of this research provide valuable insights into the 

use of machine learning for environmental monitoring, 

specifically in regions impacted by land-use changes and 

climate variability. Future work can focus on integrating 

multiple data fusion approaches to improve model 

accuracy. Leveraging cloud computing and cloud-based 

engines for near real-time monitoring and prediction will 

enable efficient data processing and timely decision-

making, particularly for applications like water 

management, agriculture, and disaster response. This 

approach offers scalable solutions for real-time decision 

support across diverse regions. 

. 
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