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Abstract 

 

Ensuring precise and accurate six-degree-of-freedom (6 DoF) positioning of industrial robots is crucial in large-scale automotive and 

aerospace assembly cells, where even slight positional errors can compromise product quality and production efficiency. Traditional 

laser tracker–based methods commonly require multiple trackers to acquire complete 6 DoF measurements, leading to high costs and 

constraints such as limited measurement range, line-of-sight restrictions, and declining accuracy in large workspaces. This study 

presents a low-cost approach that combines pre-characterized target tracking with photogrammetry to overcome these limitations. By 

mounting a specially designed target artifact on a robot’s end effector and capturing images from multiple high-resolution cameras, 

the proposed system performs camera calibration and multi-view triangulation to calculate the artifact’s three-dimensional (3D) 

position and orientation. Preliminary results validate the method’s efficacy, showing that the edges of spherical targets can be 

accurately fitted in three dimensions. In the next phase of research, the corrected pose data from the vision system will be transmitted 

back to the robot, enabling a closed-loop feedback control strategy. Comprehensive validation trials will further quantify the system’s 

accuracy and robustness, laying the groundwork for broader adoption in large-scale industrial assembly applications. 

 

 

1. Introduction 

In the automobile and aerospace large-scale assembly cells, the 

precision and accuracy of industrial robot movements across all 

six degrees of freedom (6 DoF) are paramount for guaranteeing 

high product quality and operational efficiency. In the aerospace 

sector, where large airplane components such as fuselage panels 

or wing sections must be assembled within expansive 

manufacturing cells, the position and orientation of robots must 

be controlled with an exceptional degree of accuracy to ensure 

proper fit-up (Muelaner and Paul, 2008). Traditional trajectory 

measurement methods often use laser tracker to measure the tool 

centre point (TCP) of the robot to get the position and orientation 

relative to a reference, but the disadvantage of this approach is 

that a single tracker and a single reflector can only measure three 

DoF translation information, achieving full six DoF 

measurement typically requires multiple laser trackers and 

reflectors, thereby increasing both complexity and cost 

(Khanesar et al. 2023). Moreover, for large-scale production lines, 

the laser-based tracking approach can suffer from limited 

measurement ranges, line-of-sight constraints, extensive setup 

time, and the possibility of degraded accuracy over large 

distances. Therefore, this study introduces a low-cost approach 

that integrates pre-characterized target tracking and 3D 

photogrammetry using machine vision to capture the edges of a 

target artefact and thus perform 6 DoF pose measurements of 

robot TCP. The central concept is to attach a specially designed 

target artefact onto the robot’s end-effector, then track this target 

using multiple cameras positioned around the assembly 

environment. By capturing the edges of each unique visual 

markers from the target artefact, the system is able to reliably 

compute both translation and rotation of the robot’s TCP. This 

approach not only avoids the high costs associated with multiple 

laser trackers but also promises a more flexible and scalable 

configuration—especially beneficial when dealing with 

extremely large assembly fixtures found in aircraft 

manufacturing. 

At the core of industrial photogrammetry lies the use of high-

resolution cameras to capture images of objects and the use of 

computer vision and optical measurement principles to analyse 

these images (Sims-Waterhouse et al. 2017). In particular, this 

study introduces a trinocular photogrammetry setup: three high-

resolution cameras stationed around the assembly cell, each 

capturing images of the robot-mounted target from different 

perspectives. Through rigorous calibration procedures that factor 

in intrinsic and extrinsic parameters, the system ensures that the 

triangulation computations remain accurate and robust across the 

workspace. By measuring the spatial relationship among the 

spherical features, it becomes possible not only to ascertain the 

TCP’s position but also to derive the target’s 3D orientation—

thereby enabling a full 6 DoF measurement of the robot’s end-

effector. Furthermore, the use of multiple targets on a single 

artefact or a set of artefacts can enhance measurement 

redundancy, improving the overall accuracy and reliability of the 

pose estimation. 

A key advantage of this vision-based approach is its adaptability 

to large-scale environments. Unlike laser trackers, which must 

maintain uninterrupted line-of-sight, multiple cameras arranged 

around an assembly cell can provide overlapping fields of view, 

reducing occlusion risks. Additionally, such a photogrammetry 

system can scale to even larger workspaces simply by adding 

more cameras or repositioning them without incurring the steep 

costs associated with multiple trackers. The system’s reliance on 

standard machine vision hardware also presents an opportunity 

for cost reduction, particularly when compared to specialized 

metrology equipment used in precision assembly contexts. The 

machine-vision based system has many applications in object 

identification, human detection and component inspection (e.g. 

robot motion capture from OptiTrack, 3D Arena from Hexagon 

and IONA from Insphere). The proposed research expands the 
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capability of machine-vision cameras towards measurement 

guided assemblies. Building upon the philosophy of 

reconfigurable manufacturing systems, these types of multi-

functional assets are much encouraged than traditional single-

purposed assets. 

The proposed 3D vision and photogrammetry method addresses 

several challenges associated with traditional laser-based 

measurement systems for industrial robotics in large-scale 

assembly cells. By integrating advanced image processing, 

robust calibration techniques, and redundant visual data 

acquisition, this method offers an accurate, flexible, and cost-

effective means of capturing full 6 DoF robot trajectories. 

Consequently, it has significant potential for deployment in both 

automotive and aerospace assembly lines, where maintaining 

high accuracy across expansive work envelopes is critical for 

achieving reliable, repeatable, and efficient production outcomes. 

 

2. Methodology 

2.1 Camera characterisation 

For coordinate measurements using a vision system, the accurate 

camera characterisation is fundamental for establishing precise 

relationships between 3D world coordinates and their 

corresponding 2D projections in an image plane (Ma et al. 2001). 

In a monocular setup, a single camera is characterised by its 

intrinsic parameters (K) including focal length 𝑓and principal 

point (𝑐𝑥, 𝑐𝑦 ), radial and tangential distortion parameters, and 

extrinsic parameters (rotation R and translation T with respect to 

a world coordinate system). Under the pinhole camera model, the 

homogeneous image coordinates 𝑝 = [𝑢 𝑣 1]𝑇 of a 3D point 𝑃 =
[𝑋𝑤 𝑌𝑤 𝑍𝑤]𝑇 are given by:  

𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑅11 𝑅12 𝑅13 𝑇1

𝑅21 𝑅22 𝑅23 𝑇2

𝑅31 𝑅32 𝑅33 𝑇3

] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

]. (1) 

To account for lens distortion, radial distortion 

parameters (𝑘1, 𝑘2, 𝑘3) and tangential distortion parameters 

(𝑝1, 𝑝2) need to be employed. The image pixels (𝑢 , 𝑣) are first 

converted to normalised coordinates (𝑥 , 𝑦): 

𝑥 =
𝑢−𝑐𝑥

𝑓𝑥
, 𝑦 =

𝑢−𝑐𝑦

𝑓𝑦
. (2) 

The distance r from the current point to the optical axis can then 

be calculated by: 

𝑟2 = 𝑢2 + 𝑣2 (3) 

If the ideal coordinates (without distortion) are (𝑥, 𝑦), the actual 

camera captures are (𝑥′, 𝑦′ ), which further adjust the pinhole 

projection: 

𝑥′ = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) + 2𝑝1𝑥𝑦
+ 𝑝2(𝑟2 + 2𝑥2) 

(4) 

𝑦′ = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) + 2𝑝2𝑥𝑦
+ 𝑝1(𝑟2 + 2𝑦2) 

(5) 

The distorted pixel coordinates (𝑢′, 𝑣′)  are obtained by 

remapping (𝑥′, 𝑦′) from: 

[
𝑢′

𝑣′

1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑥′

𝑦′

1

] 
(6) 

In a binocular camera system, the caracterisation not only 

involves the intrinsic parameters of both left and right cameras 

(𝐾𝑙 𝑎𝑛𝑑 𝐾𝑟) but also the extrinsic relationship (relative position 

and posture) between them.  

After completing the single camera characterisation of the two 

cameras respectively, binocular camera characterisation is 

mainly focus on determine the R|T between the two cameras 

based on epipolar geometry shows in figure 1. The left camera is 

set as the reference, and the extrinsic parameters of the right 

camera can be expressed via rotation 𝑅𝑙𝑟  and translation 𝑇𝑙𝑟 . 

When a point in the scene is projected onto two images, the two 

projected points are not arbitrary, but are subject to the 

mathematical relationship constraint of 'epipolar geometry'. For 

corresponding feature points 𝑥𝑙  and 𝑥𝑟  in images coordinate 

from left and right camera, the epipolar geometry imposes the 

constraint: 

𝑥𝑟
𝑇𝐹𝑥𝑙 = 0 (7) 

Where F is the 3×3 fundamental matrix, the relationship between 

F and the camera's intrinsic parameters is:  

𝐹 = 𝐾𝑟
−𝑇 𝐸 𝐾𝑙

−1 (8) 

Where E is the essential matrix, the pixel coordinates of the two 

cameras can be converted to their respective normalised 

coordinates through their intrinsic parameters: 

�̃�𝑙 =  𝐾𝑙
−1 𝑥𝑙  , 𝑎𝑛𝑑   �̃�𝑟 =  𝐾𝑟

−1 𝑥𝑟 (9) 

The epipolar constraint now becomes: 

�̃�𝑟
𝑇 𝐸 �̃�𝑙 = 0 (10) 

Here the essential matrix 𝐸 is defined as: 

𝐸 = [𝑇𝑙𝑟]× 𝑅𝑙𝑟 (11) 

Where 𝑅𝑙𝑟 is the 3×3 rotation matrix of right camera relative to 

the left camera, 𝑇𝑙𝑟 is the 1×3 translation matrix from the optic 

centers of the two cameras, [𝑇𝑙𝑟]×  represents the skew-

symmetric matrix generated by 𝑇𝑙𝑟, 

[𝑇𝑙𝑟]× = [

0 −𝑇𝑧 𝑇𝑦

𝑇𝑧 0 −𝑇𝑥

−𝑇𝑦 𝑇𝑥 0
] (12) 

Then using a system of equations consisting of many sets of 

corresponding feature points, E is solved for by minimising the 

reprojection error, and then the candidate values for 𝑅𝑙𝑟 and 𝑇𝑙𝑟 

are obtained by performing the singular value decomposition 

(SVD) (Stewart, 1993) of E. 

𝐸 = 𝑈 𝐷 𝑉𝑇 (13) 

where 𝑈, 𝑉 are orthogonal matrix and D is a diagonal matrix, all 

with dimensions of 3×3 

Perform the triangulation to the feature points deteacted from the 

left and right cameras, the resulting 3D points should appear in 

front of the camera (positive depth values), thus removing the 

erroneous solution (negative depth value) and determining the 

pose of right camera with respect to the left camera. Finally, 

bundle adjustment is performed on all parameters (𝐾𝑙 , 𝐾𝑟 , 𝑅𝑙𝑟 ,
𝑇𝑙𝑟 ) and the 3D coordinates of all extracted feature points to 

improve accuracy and minimize the reprojection error on all 

images (Triggs et al. 2002). 

In this study, experiments were conducted using a trinocular 

vision system consisting of three machine vision cameras 

𝐶1 𝐶2 𝐶3 , which can be considered as three stereo pairs, 
(𝐶1, 𝐶2), (𝐶1, 𝐶3), and (𝐶2, 𝐶3) respectively. After the binocular 

camera calibration for each stereo pair, the relative spatial R|T 

relationship between the two cameras can be obtained 

as(𝑅12, 𝑇12), (𝑅13, 𝑇13) with the optic center of 𝐶1 as the origin 

and  (𝑅23, 𝑇23)  with the optic center of 𝐶2  as the origin. By 

enforcing all three stereo camera pairs on a single coordinate 

system, one reduces redundant degrees of freedom and improves 

robustness. Fix 𝐶1 as the origin of a world coordinate system, the 

extrinsic parameters of 𝐶2  and 𝐶3  relative to 𝐶1  can then be 

deduced by transformation matrix.  

If H denotes a transformation of a point from coordinate system 

A to coordinate system B, then for this rigid homogeneous 

transformation matrix: 

𝐻 =  [
𝑅 𝑇
0𝑇 1

] (14) 

Then its inverse transformation 𝐻−1  represent the rigid 

transformation from B to A, which is given by: 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1633-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1634



 

𝐻−1  =  [𝑅𝑇 −𝑅𝑇𝑇
0𝑇 1

] (15) 

In this three-camera system, for the two sub-camera coordinate 

systems 𝐶2 and 𝐶3, we know their respective 4×4 transformation 

matrices relative to the world coordinate system 𝐶1: 

𝐻𝐶2

𝐶1 : from 𝐶2 to 𝐶1 

𝐻𝐶3

𝐶1 : from 𝐶3 to 𝐶1 

The transformation matrix from 𝐶2 to 𝐶3 can be obtained through 

the following relationship: 

𝐻𝐶2

𝐶3 = (𝐻𝐶3

𝐶1)−1  𝐻𝐶2

𝐶1 (16) 

After the above calculations, the transformation relationship 

between the three cameras in the 𝐶1 coordinate system can be 

found, and finally the consistency of the multi-camera calibration 

can be verified by mapping the 3D points between different 

camera coordinate systems. The known transformation are: 

𝐻𝐶2

𝐶1  (𝐶2 to 𝐶1) 𝑎𝑛𝑑 𝐻𝐶3

𝐶2  (𝐶3 to 𝐶2) 

For any 3D point, the result of mapping this point from the 

camera coordinate system 𝐶3 to 𝐶2  and then from 

𝐶2 to 𝐶1 should be very similar to the result of mapping directly 

from the 𝐶3 to 𝐶1, there: 

𝐻𝐶3

𝐶1  ≈   𝐻𝐶3

𝐶2  ·  𝐻𝐶2

𝐶1 (17) 

Based on the relative translation between each stereo pair, the 

baseline length (B, distance between the optical centers of each 

two cameras) can also be calculated.  

The cameras used in this work are Basler acA5472-17um camera 

with the Ricoh FL-BC1220-9M 1.0/1.1 fixed focal lenses, we use 

450 ms as the exposure time for the image acquisition of both 

checkerboard and target artefact. An A0 checkerboard (Non-

centrosymmetric) is used for the camera calibration, which 

contains each square grid with a side length of 54.5 mm, and 

19×12 corner points. The three cameras were placed in suitable 

locations outside of the robot's working area (1m away from the 

closest position where the robot can move after loading the target) 

to ensure that they have overlapped field of views (FoV), and a 

total of 40 different checkerboard positions were placed and 120 

photos were taken by three cameras. Figure 2 shows the view 

from each camera at the same checkerboard position. The 

visualization of the spatial camera positions for the final 

experiment is shown in figure 3, baseline length B(𝐶1, 𝐶2 ) = 

528.7865 mm; B(𝐶1, 𝐶3) = 391.4946 mm; B(𝐶2, 𝐶3) = 507.9919 

mm. 

 
Figure 1. Epipolar geometry in stereo camera pair 

𝐶𝑙 , 𝐶𝑟: Optical center of left and right camera 

𝑒𝑙 , 𝑒𝑟: Epipole of left and right camera 

𝑙𝑙 , 𝑙𝑟: Epipolar line of left and right camera 

𝑃1𝑡𝑜 𝑃3: Entity points from world coordinate system 

𝑂𝑤: Origin of the world coordinate system 

 
Figure 2. One example of the checkerboard image acquisition 

by this trinocular camera system  

 
Figure 3. Characterised camera pose visualisation in fused 

world coordinate system (𝐶1 as origin). 

 

2.2 Spatial encoded target design 

The artefact used in this work is made up of eleven white Nylon 

plastic spheres that each one are attached onto a dark plates, the 

diameters (D) of the spheres were selected from the discrete set 

[35, 40, 60] mm. This ensures that the pixel value occupied by 

each sphere in each image is at least 50 × 50 pixel in the 

subsequent target artefact image acquisition step. By mixing 

diameters on a single plate, the system can reliably distinguish 

among multiple spheres, even when partial occlusions or 

differing viewing angles occur (Isa et al. 2024). Neighbouring 

spheres on the artefact are separated by distances (L) chosen from 

[225, 240, 255, 270, 285, 300] mm. Each group of three adjacent 

spheres adopts a unique combinations of D-L so that no two 

triplets sphere sets share the same arrangement of sphere 

diameter and spacing (figure 4). This uniqueness provides a 

critical geometric cue that allows the machine vision algorithm 

to recognize exactly which region of the artefact is in view. 

Hence, even when some spheres are temporarily obscured, the 

system can use the D-L pattern to infer unambiguously which 

portion of the target is being observed. Each set of three adjacent 

spheres has distinct diameters and spacing, every set of spheres 

in the artefact images taken from various camera positions and 

orientations can be accurately identified. This design guarantees 

global uniqueness: no identified set spheres is mismatched. 

Figure 5 shows the CAD model of the target artefact and the 

assembled hardware prototype, respectively. To verify whether 

each sphere met the design requirements after assembly, we used 

a Mitutoyo Crysta Apex S7106 contact coordinate measuring 

machine (CMM) with a stylus of 2 mm diameter to measure both 

the diameter and the position of each sphere (in the X,Y,Z 

directions). After two repetitions of CMM measurements, the 

measured diameter of each sphere and the 3D coordinates of each 

sphere centre was used as the reference for the following vision 

system feature extraction. 

 
Figure 4. Spherical feature region of interest (RoI, No. 8 are 

used as the attachment to the robot TCP) 
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Figure 5. CAD model of the spatial encoded target artefact 

prototype 

2.3 Robot motion and target artefact image acquisition  

In the current experimental setup, we focus on assessing 

translational accuracy by keeping the robot’s end-effector 

orientation fixed while moving the TCP along the x-axis. 

Specifically, within the robot’s own coordinate system, the TCP 

travels from an initial position [1228,955,1890] on the left to a 

final position [108,955,1890] on the right (unit mm). To collect 

image data, the robot pauses at every 70 mm step along the x-

direction. At each stop, the robot dwells briefly while all three 

cameras capture images of the robot-mounted artefact from their 

respective viewpoints, and in total 16 intermediate positions were 

used to capture images (figure 6 illustrates the straight-line path 

followed by the robot TCP, and the three-camera position in the 

world coordinate system). The TCP position read in the robot's 

coordinate system also needs to be recorded at the same time 

(shown in the jogging section from the teach pendent), the 

position information records the translation ( 𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧 ) and 

rotation quaternion (𝑞 = (𝑤, 𝑥, 𝑦, 𝑧)) of the TCP in the robot 

coordinate system, which needs to be converted to a 3×3 rotation 

matrix using equation (18) for subsequent operations:  

𝑅 = 

[

1 − 2(𝑦2 + 𝑧2) 2(𝑥𝑦 − 𝑤𝑧) 2(𝑥𝑧 + 𝑤𝑦)

2(𝑥𝑦 + 𝑤𝑧) 1 − 2(𝑥2 + 𝑧2) 2(𝑦𝑧 − 𝑤𝑥)

2(𝑥𝑧 − 𝑤𝑦) 2(𝑦𝑧 + 𝑤𝑥) 1 − 2(𝑥2 + 𝑦2)

] 

  

(18

) 

Figure 7 a) and b) show the variation of xyz and quaternions q1-

q4 of the robot TCP throughout the image acquisition process, 

respectively. This process ensures the vision system can operate 

the robust triangulation and pose estimation at each robot stop 

point. Figure 8 shows the captured images of the target artefact 

from three cameras perspective.  

 
Figure 6. Target artefact images acquisition by this trinocular 

camera system, red line shows the TCP motion trajectory and 

the blue dots shows the TCP position for each image acquisition 

 
a) 

 
b) 

Figure 7. a) Robot TCP translation motion, b) TCP rotation 

quaternion variant 

 
Camera 1 

 
Camera 2 

 
Camera 3 

Figure 8. Example of captured images for the same TCP pose 

with different camera perspective (𝐶1 𝐶2 𝐶3 from top to bottom) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1633-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1636



 

2.4 Spherical target detection method and preliminary 

result 

A sphere based detection strategy is presented to facilitate pose 

determination and tracking by utilising spatially encoded sphere 

identities. The process begins by converting input images from 

RGB to single-channel grayscale to minimise processing 

complexity and eliminate distortions caused by uneven colour 

contrasts. Next, through gradient detection, line spread function 

(LSF), and edge spread function (ESF) analysis, a refined set of 

edge points defining the spherical target’s region of interest (RoI) 

is extracted. When sampling the edge profile, a cross-sectional 

line is drawn across the suspected sphere boundary, and gradient 

values along this line are recorded. Edge points that fail to meet 

the edge-response criteria or exceed noise model thresholds are 

discarded to eliminate false edges caused by extreme brightness 

or darkness. Based on the estimated noise level, a 5σ standard 

deviation threshold is applied to ensure the retention of only 

reliable edge points. Figure 9 illustrates a cross-sectional line of 

a sampled edge profile. ESF (Masaoka et al. 2014) describes the 

intensity transition from one side of the edge to the other. In this 

work ESF are modelled using logistic function thereby better 

characterizing the transition from dark to bright (or vice versa), 

and the exact location of the edge can be derived more accurately 

from the fitted curve (figure 10). By applying Gaussian fitting to 

the LSF (Rossmann, 1969), the sub-pixel edge location (at the 

point of maximum gradient) can be determined (figure 11). 

The projection of the sphere in the image plane is inferred from 

the candidate RoI (edge points) of the sphere. When the camera 

view is nearly orthogonal to the sphere, the projected shape is 

close to a circle. In this case a Circular Hough Transform (CHT) 

(Yuen et al. 1990) can be used to detect the centre and radius of 

that circle, estimated and compensated the eccentricity for all 

detected image features. When the tilt angle of the sphere is large, 

the projection of the sphere in the 2D image approximates an 

ellipse and requires an ellipse fitting approach, given a set of edge 

points [(𝑥𝑖 , 𝑦𝑖)], the general ellipse equation can be formulated 

as: 

𝛼𝑥2 + 𝛽𝑥𝑦 + 𝛾𝑦2 + 𝛿𝑥 + 𝜖𝑦 + 1 = 0  (19) 

And solve for (𝛼, 𝛽, 𝛾, 𝛿, 𝜖) in a least-squares sense. With the 

known camera intrinsic, extrinsic (R|T) and distortion 

parameters, the ellipse parameters can be back-projected into 3D 

space to estimate the true center and radius of the corresponding 

sphere. Figure 12 a) shows the detected ellipse and b) shows the 

corresponding incidence relation by epipolar geometry constrain 

and the four epipolar lines. 

Once a sphere’s 3D position and approximate diameter are 

known, the system assigns an identity based on the CMM-

measured reference of the entire artefact. Figure 13 shows the 

detection result, from a) the corresponding sphere indices [5, 10, 

11, 12] and from b) the corresponding sphere indices [4, 9, 10, 

11, 12]. By determining each sphere’s identity, the system can 

compute the artefact’s 6 DoF pose relative to the camera(s). This 

is crucial for downstream robot TCP position tracking task (Isa 

et al. 2024). 

 
Figure 9. Spherical RoI feature detection 

 
Figure 10. ESF of the sampled edge profile 

 

 
Figure 11. LSF of the sampled edge profile 

 

 
a) 

 
b) 

Figure 12. Corresponding ellipse from two images 

 

3. Achieved accuracy and validation 

Future work will investigate if the results of this study meet 

existing measurement verification standards, including 

VDI/VDE 2634 or ISO 10360 for the 3D coordinate 

measurement (vision part) and ISO 9283 for the robot TCP 

positioning accuracy. Finally, the vision system should attain 

uncertainty within 0.4 mm (+/- 0.02 mm/3 mrad) in the working 

area of 3 m × 2 m × 1.5 m roughly based on robot pick and place 

bracket storage position (Figure 8 bottom left). As a validation of 

the 6 DoF position and orientation accuracy for the vision system, 

we will use two commercial instruments to implement the 

validation: Geodetic Systems V-STARS and Leica T-Mac30-I 

with laser tracker. 
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a) 

 
b) 

Figure 13. Detected sphere identification with CMM data 
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