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Abstract

Deep learning-based semantic segmentation techniques play a crucial role in the rapid mapping of Martian landforms. However,
creating an annotated dataset for Martian landforms is a labor-intensive and time-consuming process. To reduce the manual effort
required for labeling landform masks, this study adopts scribble annotation and develops a weakly supervised semantic segmenta-
tion framework that leverages a pseudo-labeling strategy to address the challenge of limited labeling information inherent in scribble
annotations. We applied this framework to a self-constructed Martian landform semantic segmentation dataset. The experimental
results demonstrate that our weakly supervised approach achieves good semantic segmentation performance in Martian environ-
ments and effectively extracts landform masks. This highlights the potential of our method to facilitate efficient and accurate
mapping of Martian geomorphic features with reduced annotation effort.

1. Introduction

With geological conditions and an evolutionary history compar-
able to that of Earth, Mars has long been a focus of international
space exploration. The surface of Mars exhibits a wide variety
of geomorphologic patterns [Carr, 2007]. These landforms have
formed over different periods in Mars’ history due to various
geological processes, including the effects of water, wind, lava,
and other factors [Baker, 2001; Levy et al., 2011; Hauber et
al., 2011]. With the advancement of planetary image matching
and monocular image reconstruction techniques [Huang et al.,
2024b; Cao et al., 2024], an increasing volume of high-quality
Martian terrain data has been generated. These technological
innovations enable researchers to utilize topographic data for
the interpretation of Martian geomorphological events [Ye et
al., 2025], which serves as a foundation for subsequent geolo-
gical analyses and studies of the spatial distribution of minerals
[Jiao et al., 2024]. In this context, semantic parsing based on
terrain data plays a pivotal role, as it aids in accurately identify-
ing and classifying geomorphic features, thereby enhancing the
efficiency and precision of Martian geological research. Addi-
tionally, obtaining detailed geomorphological information is a
critical step in selecting safe landing sites for planetary mis-
sions, significantly enhancing the probability of a successful
landing [Grant et al., 2004; Arvidson et al., 2008].

Deep learning based semantic segmentation methods provide
new ideas for identifying Martian landforms. In recent years,
researchers have made significant progress in the semantic seg-
mentation of Martian landforms, primarily leveraging deep learn-
ing algorithms to automatically extract geomorphic features (e.g.,
impact craters, dunes, and dark slope streaks) from remote sens-
ing images, yielding promising results [Chen et al., 2023; Ruban-
enko et al., 2021; Wang et al., 2017]. For instance, Chen et al.
[2023] introduced an advanced U-Net-based approach for de-
tecting and segmenting impact craters at both semantic and in-
stance levels. Using daytime infrared images from the Thermal
Emission Imaging System (THEMIS), their method not only
achieved accurate crater detection but also facilitated the gen-

eration of segmentation maps, contributing to geological map-
ping and planetary geochronology. Beyond craters, Rubanenko
et al. [2021] employed a neural network to identify and delin-
eate isolated barchan dunes from Context Camera (CTX) im-
agery, attaining an accuracy of 77%. These studies highlight
the effectiveness of deep learning techniques in Martian land-
form recognition. However, two key challenges remain in the
semantic segmentation of Martian landforms, indicating areas
where improvements are needed. Nevertheless, the important
issue is that deep learning based segmentation methods require
as many mask labeling samples as possible for effective net-
work training. During the mask labeling process, the annotation
demands accurate boundaries of landforms, which is not only
time-consuming, but also requires expertise of the labelers.

Figure 1. Comparison of various annotation ways. (a) Original
image. (b) Mask-level and (c) Scribble-level annotation.

To this end, we use a form of scribble annotation to reduce the
workload and design a weakly-supervised framework that en-
ables the network to deal with sparsely labeled situations. Fig. 1
shows a comparison between mask annotation and scribble an-
notation. Unlike the mask annotation required for full super-
vision, scribble only requires the labelers to draw a line inside
the landform to complete the annotation and does not require
much expertise and knowledge. The labelers only need to draw
a line where they see fit, greatly reducing the learning cost of
the annotation process (up to 90%). In this case, we believe it
is more effective to annotate the landforms using scribble. We
proposed a new method for semantic segmentation of Martian
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landforms using high-resolution CTX images and CTX DEMs
based on the scribble annotation.

2. Related work

Over time, an increasing variety of approaches have been ap-
plied to the semantic segmentation of Martian landforms. Re-
cently, the rise of machine learning, particularly deep neural
networks, has led to their widespread adoption as the dominant
solution for segmenting Martian landform features. The follow-
ing section provides a concise overview of deep learning-based
segmentation methods, with a specific focus on those incorpor-
ating weakly supervised learning.

2.1 Semantic segmentation on Martian landforms

Deep learning-based methods have recently gained traction as
a preferred approach for the semantic segmentation of Martian
landforms. Palafox et al. [2017] pioneered the use of convo-
lutional neural networks (CNNs) for detecting volcanic root-
less cones and transverse wind ridges, demonstrating that CNNs
outperform traditional support vector machine (SVM)-based clas-
sifiers by capturing a broader range of landforms with improved
accuracy and recall. Expanding on this, Mulvi et al. [2022] ap-
plied CNNs to identify impact pits, transverse sand ridges, and
volcanic rootless cones, confirming their effectiveness in pro-
cessing images and extracting key morphological features. Ad-
vancing further, Rubanenko et al. [2021] utilized Mask-RCNN
to delineate barchan dunes on Mars with high precision, while
Alshehhi and Gebhardt [2022] successfully trained Mask-RCNN
using Mars Dust Activity Database (MADAD) data to achieve
accurate semantic segmentation of Martian dust storms. Addi-
tionally, Rubanenko et al. [2021] applied Mask-RCNN to CTX
images for Martian dune segmentation, unveiling previously
undetected dunes and revealing their greater prevalence in the
planet’s northern hemisphere.

Beyond CNN-based architectures, the transformer-based “Mars-
former,” introduced by Xiong et al. [2023], integrates trans-
former modules for Martian image analysis and demonstrates
superior performance in segmenting rock masses. Furthermore,
Chen et al. [2023] proposed MC-UNet, an enhanced variant of
the traditional U-Net that incorporates a downsampling strategy,
feature map fusion, and an attention mechanism to improve im-
pact crater segmentation in THEMIS images, ultimately achiev-
ing higher recall and precision than conventional U-Net models.

2.2 Exploring weakly supervised learning

While deep learning-based methods have made substantial pro-
gress in the semantic segmentation of Martian landforms, the
availability of large-scale, high-quality annotated training data-
sets remains a major challenge. Annotating Mars remote sens-
ing images is a labor-intensive process that requires planetary
geology experts to meticulously identify and classify complex
geomorphic features.

To mitigate this issue, weakly supervised learning has been ex-
plored as a means to reduce the annotation burden while cite
effective segmentation performance. In the field of weakly su-
pervised semantic segmentation for Earth observation data, nu-
merous methods have been developed and successfully applied
to various Earth remote sensing tasks [Lin et al., 2022; Wang
and Yao, 2022; Huang et al., 2024a]. These approaches have

proven effective in reducing annotation costs while maintain-
ing high segmentation performance. Recently, there has been
a growing interest in extending weakly supervised techniques
to Mars remote sensing data. Ali-Dib et al. [2020] leveraged
weak supervision to successfully extract 87% of impact craters,
highlighting crater depth and ellipticity from detected boundar-
ies. Similarly, Wilhelm et al. [2020] categorized Martian land-
forms into 15 classes based on five major criteria: ’aeolian land-
forms,’ ’slope-related landforms,’ ’impact-related landforms,’
’topographic landforms,’ and ’basic terrain types.’ They also
introduced the doMars16k dataset, derived from CTX images,
and trained a CNN using a sliding window approach, with Markov
random fields applied for post-processing to enhance segment-
ation results. Building upon this dataset, Zhao et al. [2024] em-
ployed super-pixel pre-generation combined with a feature ex-
traction and fusion network to classify each super-pixel, achiev-
ing superior segmentation performance compared to existing
weakly supervised models. Zhang et al. [2024] introduced the
Mars sparse annotation dataset S5Mars and utilized a weakly
supervised framework to learn meaningful representations from
limited labeled data, effectively segmenting landforms despite
sparse annotations. Additionally, Wang et al. [2023] generated
pseudo labels for unlabeled data and integrated them into a con-
trastive learning framework, demonstrating their method’s ef-
fectiveness on the MSL dataset [Wagstaff et al., 2018].

Most of these approaches predominantly rely on optical im-
agery, which is well-suited for capturing landform textural fea-
tures. However, the use of 3D data, such as DEMs, remains rel-
atively underexplored in Martian landform segmentation. Given
the potential benefits of incorporating 3D information, future
research could focus on integrating image-based techniques with
3D semantic segmentation networks (e.g., point cloud-based
models) to improve segmentation accuracy. Furthermore, ad-
opting weakly supervised strategies for 3D datasets could help
alleviate the challenges associated with manual annotation, mak-
ing the segmentation of Martian landforms more efficient and
scalable.

3. Method
In this work, we use scribble as a form of sparse annotation for
various types of Martian landforms. We completed the annota-
tion of 18 types of Martian landforms based on CTX DEMs
and CTX images, and for comparison experiments, we also
performed mask annotation for each type of landform. In this
study, our input data consists of fused images and DEM data.
To effectively process this fusion, we represent the data as a
point cloud, which serves as the input to the neural network.
In this point cloud, the first three dimensions correspond to the
spatial coordinates derived from the DEM, while the fourth di-
mension encodes grayscale values from the image, providing
essential color information. We believe that representing the
data in the form of a point cloud offers a more accurate re-
flection of Mars’ real 3D environment. This approach justi-
fies the use of a 3D deep learning network, as it enables more
effective feature extraction and spatial relationship modeling,
ultimately enhancing the performance of semantic segmenta-
tion tasks. The generated Martian dataset will be transformed
into point cloud format, and these point clouds will be fed into
the 3D semantic segmentation network for training and testing.
The landform categories include the following: ”impact crater
(cra)”, ”crater eject (eje)”, ”channel (cha)”, ”delta (del)”, ”mesa
(mesa)”, ”polygons (pol)”, ”wrinkle ridge (wri)”, ”lava tube
(tub)”, ”lava flow (flo)”, ”transverse sand ridges (tra)”, ”cres-
cent dunes (cre)”, ”yardangs (yar)”, ”gullies (gul)”, ”dark slope
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streak (dark)”, ”mounds (mou)”, ”ridges (rid)”, ”cliff (cli)”, and
”smooth terrain (smo)”. These categories represent a diverse
range of Martian geomorphic features.

Towards allowing the network to fully utilize the information
of unlabeled points, as shown in Fig. 2, we designed a weakly
supervised framework with mean-teacher as the framework and
RandlaNet [Hu et al., 2020] as the backbone network. Before
feeding the points into the two models, the points will suffer
perturbation, and the pseudo labels is generated by the teacher
model. We carefully design three loss functions to enhance the
semantic segmentation performance of this weakly supervised
framework. These three loss function combinations are used for
gradient back-propagation of the student model, and the teacher
model is updated from an exponentially weighted average of the
student model parameters.

For labeled points, the loss Lseg is calculated using cross-entropy
loss, following typical fully supervised learning scheme.

Lseg = − 1

M

M∑
i

C−1∑
c=0

ypic logp̃pic (1)

where p̃pic represents c-th dimension of the softmax probability
for labeled point pic and ypic denotes the ground truth.

To improve the network’s robustness, data augmentation tech-
niques were applied to the input point cloud, and consistency
regularization was introduced to ensure that the student net-
work’s predictions aligned closely with those of the teacher net-
work. This strategy helps the network generate more stable and
reliable outputs. For point clouds with sparse annotations, vari-
ous augmentations—such as rotation, flipping, random noise
addition, and scaling—are employed to modify the data’s ori-
ginal structure. The augmented point cloud is then passed through
the student network. In contrast, the teacher network receives
inputs with weaker augmentations, limited to rotation and flip-
ping, to maintain the consistency of core geometric features.

To enforce consistency between the outputs of the student and
teacher networks, a consistency loss, denoted as Lcr, is calcu-
lated using the mean squared error (MSE) formula:

Lcr =
1

N

N∑
i

∥p̃pi − ppi∥
2 (2)

where p̃pi is the perturbed point pi’s softmax probability gener-
ated by the segmentation head of the student network and ppi is
the softmax probability of the teacher network of point pi that
suffers another perturbation.

To mitigate the challenge posed by limited annotations, the pseudo-
labeling strategy has been adopted as a simple yet effective ap-
proach in weakly supervised learning. This method involves
generating pseudo labels through a network to predict labels
for previously unlabeled data points.

In this study, pseudo labels are initially generated by a teacher
network for unlabeled points. The network is subsequently
trained using both the pseudo labels, aiming to enhance the
overall quality and effectiveness of the pseudo-labeling pro-
cess. A critical challenge lies in determining the uncertainty
of pseudo labels. To minimize the incorporation of incorrect
pseudo labels, the entropy of the probability distribution for
each point is employed to ensure the selection of high-quality

pseudo labels, allowing for better utilization of high-confidence
predictions. Given an unlabeled point pi that predicted by the
teacher network, its entropy HPi is computed by:

Hpi =

C−1∑
c=0

piclogpic (3)

where pi is the softmax probability generated by the teacher’s
segmentation head, pic is the value of pi at c-th category. A lar-
ger value of Hpi means that the pseudo label of the point is less
reliable. Furthermore, to more effectively capture the class dis-
tribution across the Martian scene, pseudo labels are softened
by assigning different weights according to the uncertainty of
the class distribution. This approach helps the model better
account for variations in class confidence, thereby improving
segmentation performance. Following the strategy proposed in
Wang and Yao [2022], the weight wi for an unlabeled point pi
is defined as:

wi = 1− Hpi

log K
(4)

The loss of reliable pseudo labels can be computed as a weighted
cross-entropy loss:

Lpse = − 1

|Pr|
∑

pi∈Pr

wi

C−1∑
c=0

ŷilogpic (5)

where Pr represents the set of reliable points in the mini-batch.

All losses proposed in previous sections participate in back-
propagation simultaneously with different weights. The com-
bined optimization problem is presented as:

L = Lseg + λ1Lcr + λ2Lpse (6)

During training, at each epoch, the teacher network generates
updated reliable pseudo labels based on the aforementioned rules.
The two parameters λ1 and λ2 are both set to 1. These newly
generated pseudo labels are then utilized to compute the pseudo-
label loss, denoted as Lpse, which serves as a key compon-
ent for back-propagation. This iterative process ensures that
the model progressively refines its predictions, leveraging both
labeled data and high-confidence pseudo labels to enhance over-
all segmentation performance.

4. Results and discussion

We present the results under a weak supervision setting. Not-
ably, in our weakly supervised framework, the number of an-
notations corresponds to just 1% of the annotations used in
a fully supervised setting. The baseline method in this com-
parison is RandlaNet, which is trained with full supervision
but limited to the same 1% of sparse labels (trained by only
Lseg without mean-teacher framework). This setup allows us
to evaluate the effectiveness of our method in leveraging lim-
ited labeled data. The results demonstrate that our approach
significantly outperforms the baseline, highlighting its ability to
achieve superior semantic segmentation performance even with
minimal supervision.

The quantitative results are presented in Tab. 1. With only
1% of labeled data, our method demonstrates significant im-
provements in both OA and mIOU compared to the baseline.
Specifically, our approach achieves an OA of 91.67% and an
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Figure 2. Processing framework of the weakly supervised semantic segmentation.

Method OA mIOU
IOU

cra eje cha del mesa pol flo tub wri tra cre yar gul dark mou rid cli smo

RandlaNet (100%) 93.32 80.26 76.4 47.5 90.4 69.4 83.1 87.8 75.2 88.5 86.7 88.9 91.4 80.2 91.8 82.3 81.7 68.5 63.6 91.3

RandlaNet (1%) 90.52 71.12 70.2 38.9 80.8 64.3 72.1 75.8 68.8 81.2 74.5 81.3 79.5 75.2 80.2 78.9 71.4 52.3 54.6 80.1

Ours (1%) 91.67 75.12 71.6 42.7 89.6 69.1 73.0 83.9 71.1 75.9 78.7 85.7 87.1 73.9 85.6 84.9 78.3 63.2 52.9 85.5

Table 1. Comparison of fully and weakly supervision methods.

Figure 3. Semantic segmentation results by different networks in the first area. (a) is the ground truth. (b) is the result of the network
that trained with full supervision. (c) is the result of the network that trained with weak supervision (1%) in our framework. (d) is the

result of the network that trained only with weak supervision.

mIOU of 75.12% on the test dataset. This represents an im-
provement of 1.15% in OA and 4.00% in mIOU over the model
trained solely with sparse annotations. Moreover, our results
are closely aligned with those of the fully supervised Rand-
laNet, highlighting the effectiveness and efficiency of our method
in enhancing the network’s semantic segmentation performance,
even with minimal labeled data. In the segmentation of deltas,
mounds, and ridges categories, our method demonstrates sub-
stantial improvements compared to the baseline. These en-
hancements are particularly evident in the accuracy and com-
pleteness of the segmented geomorphic features. The underly-
ing reasons for these improvements will be further elaborated
in the discussion section, where we will analyze the visualiza-
tion results in detail to highlight the specific advantages of our
approach.

Moreover, we selected mapping results from two extensive Mar-
tian regions to assess the performance of our method. The com-
parison of these results clearly demonstrates that our approach
closely matches the outcomes achieved through full supervision
while significantly outperforming models trained solely with
weak supervision. This finding highlights the robust semantic
segmentation capabilities of our method, confirming its effect-
iveness in accurately identifying and delineating Martian land-
forms, even when trained with limited labeled data. Such results
underscore the potential of our approach for efficient and pre-
cise Martian landform mapping in sparse annotation situation.

As illustrated by the mapping results for the two large Mar-
tian scenes, our method clearly outperforms the network trained
solely with sparse annotations. In Fig. 3, our approach ac-
curately identifies the masks for various landforms, such as
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Figure 4. Semantic segmentation results by different networks in the second area. (a) is the ground truth. (b) is the result of the
network that trained with full supervision. (c) is the result of the network that trained with weak supervision (1%) in our framework.

(d) is the result of the network that trained only with weak supervision.

mounds and transverse sand ridges. In contrast, the results
from the weakly supervised-only model exhibit more noise and
less defined feature boundaries, with noticeable inconsisten-
cies, particularly within the areas highlighted by the red boxes.
This comparison underscores the strong semantic segmentation
capabilities of our method. The effectiveness of our approach
can be attributed to the pseudo-label learning strategy, which
enhances the network’s confidence when predicting unlabeled
points. As a result, the segmentation outputs are smoother and
less noisy, leading to more precise delineation of Martian geo-
morphic features. In the comparative analysis of the second
region shown in Fig. 4, our method demonstrates superior se-
mantic segmentation performance. This region contains both
a delta and a channel, and while both the fully supervised net-
work and our approach successfully segment these features with
high accuracy, the model trained solely with sparse annotations
exhibits significant errors. Specifically, it misclassifies a sub-
stantial portion of the delta as belonging to the mesa category.
Additionally, the segmentation of the channel by the weakly-
supervised-only model is incomplete, failing to capture its full
extent. These results further underscore the effectiveness of
our method in accurately segmenting complex geomorphic fea-
tures, even with limited labeled data.

Through the analysis of both visualization and quantitative res-
ults, it is evident that the semantic segmentation outcomes of
our method exhibit less noise, smoother landform boundaries,
and a lower tendency for misclassification compared to the res-
ults obtained from the model trained solely with weak super-
vision. This improvement primarily stems from the consist-
ency regularization applied in our approach, which enhances
the model’s robustness and stability during training. Addition-
ally, the pseudo-label learning strategy effectively leverages in-

formation from unlabeled data, enriching the training process
and reducing classification uncertainty. Together, these tech-
niques contribute to the superior performance of our method in
accurately segmenting Martian landforms.

5. Conclusion
In this study, we employed scribble annotations to reduce the
annotation workload required for creating semantic segmenta-
tion datasets of Martian landforms. We proposed a weakly su-
pervised semantic segmentation framework based on pseudo-
label generation, and experimental results demonstrated that
our approach significantly enhances the performance of the se-
mantic segmentation network, highlighting its effectiveness. Our
method not only accurately segmented geomorphic boundaries
on Mars but also substantially reduced the effort needed for
mask annotation during dataset generation. This contributes
valuable scientific support for future Mars exploration missions
by facilitating more efficient and accurate landform analysis.
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