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Abstract 
 
Impervious Surface Area (ISA) is vital for urban planning, environmental monitoring, and water management. Traditional remote 
sensing methods struggle with complex urban landscapes, leading to accuracy limitations. To address this, we propose RU-Net++, a 
deep learning-based ISA extraction model integrating ResNet50 as the encoder with spatial, channel, and dual attention mechanisms. 
The decoder employs an Atrous Spatial Pyramid Pooling (ASPP) module and multiple refinement modules to enhance feature 
representation and edge restoration. Trained on GLC_FCS30D and GISA datasets, RU-Net++ outperforms traditional methods in IoU, 
F1 Score, and Overall Accuracy, offering a reliable tool for sustainable urban development and land-use management. 
 
 
 

1. Research Contents 

1.1 Introduction 

In the fast-paced urbanization process of today’s world, profound 
changes have occurred in urban spatial structures and land use 
patterns. Impervious Surface Area (ISA) is a key indicator of 
urbanization and has become increasingly important for 
understanding ecological and environmental changes. ISA 
primarily consists of surfaces made from artificial materials, 
including roads, parking lots, sidewalks, rooftops, and other 
impervious surfaces in urban areas. These surfaces do not allow 
water to penetrate, unlike natural soils or vegetation, which 
significantly alters surface hydrological processes and ecological 
functions. 
Geographical national condition monitoring is a key task and 
development direction for China’s mapping industry in the new 
era, tasked with accurately capturing changes in land use and 
spatial conditions. The distribution of impervious surfaces is one 
of the critical indicators for urban and regional ecological 
assessments. Accurate identification and quantification of 
impervious surfaces are of profound significance for urban and 
regional development planning and ecological evaluations. This 
directly affects the normal functioning of urban water cycles, heat 
island regulation, and other ecological functions, and is crucial 
for maintaining the stability and sustainability of regional 
ecosystems. A comprehensive understanding of ISA and its 
distribution allows for the precise application of strategies aimed 
at reducing impervious surfaces and mitigating their negative 
impacts on water resources and the environment in community 
planning, site design, and land use management. This not only 
optimizes urban spatial layouts but also helps alleviate the 
environmental issues caused by excessive impervious surface 
expansion during urbanization, such as urban flooding and water 
quality pollution, thus promoting sustainable urban development. 
The accurate quantification of impervious surfaces has become a 
key planning tool for urban land use development. As urban land 
use intensity continues to rise under the wave of urbanization, the 
area of impervious surfaces is steadily expanding. However, this 
unchecked expansion of impervious surfaces has led to numerous 
negative effects, such as the intensification of urban heat island 

effects, water quality degradation, and the destruction of natural 
habitats. The urban heat island effect raises city temperatures, 
reduces residents' comfort, and increases energy consumption; 
water quality degradation threatens drinking water safety and 
aquatic ecosystems; and the loss of natural habitats disrupts 
ecological balance, causing a decline in biodiversity. Therefore, 
scientifically and rationally quantifying impervious surfaces and 
implementing targeted measures to mitigate these adverse effects 
have become urgent tasks for sustainable urban development. 
Remote sensing technology, with its wide coverage, high 
resolution, multi-temporal, and multispectral capabilities, has 
become a powerful tool for studying impervious surfaces. It can 
rapidly acquire extensive surface information, providing 
scientific data and technical support for urban planning, 
ecological conservation, and water resource management. 
Through remote sensing imagery, we can clearly observe the 
spatiotemporal variation characteristics of urban impervious 
surfaces, providing timely and accurate data support for decision-
making, helping urban managers better address various 
environmental challenges arising from urbanization. 
The extraction of impervious surfaces is the first and critical step 
in analyzing their evolution. In urban areas, impervious surfaces 
are mainly composed of buildings, roads, and other related 
structures. As urban construction progresses rapidly, urban areas 
are expanding, and buildings are emerging in various forms, both 
in height and layout. Roads, in particular, are intricately 
networked, making the texture information of impervious 
surfaces complex and diverse, which significantly increases the 
difficulty of achieving high extraction accuracy. The texture 
features of impervious surfaces vary significantly across different 
regions and land types, and are influenced by factors such as 
lighting conditions and shadow occlusion, making traditional 
extraction methods inadequate for achieving high-precision 
results. 
Additionally, the proportion of impervious surfaces in urban 
areas is relatively small and their distribution is highly uneven. 
This characteristic makes it extremely difficult to obtain a large 
number of high-quality labeled samples, and labeled samples are 
crucial for training effective classification models. Given the 
limited labeled samples and the availability of only satellite data, 
achieving high-precision impervious surface classification 
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remains a major challenge. In this context, this paper 
innovatively uses neural networks as the model for extracting 
impervious surfaces. Neural networks, with their powerful 
learning and feature extraction capabilities, can automatically 
learn the complex feature patterns of impervious surfaces from 
limited sample data and apply them to large-scale remote sensing 
image classification. Through the carefully designed neural 
network architecture and optimization algorithms, this study 
aims to achieve high-precision impervious surface classification 
using the available satellite data, providing strong technical 
support for accurate monitoring and effective management of 
urban impervious surfaces, and contributing to related research 
and practices in sustainable urban development. 
This study focuses on this challenging and highly relevant issue, 
aiming to explore an efficient and accurate impervious surface 
extraction method to address the environmental issues brought 
about by the rapid changes in impervious surfaces during 
urbanization, and to contribute to sustainable urban development 
and ecological environmental protection. 
 

1.2 Impervious surface extraction methods 

1.2.1 impervious surface extraction using the index-based 
method: The index-based method is an approach that 
distinguishes impervious surfaces from other land cover types by 
constructing specific spectral indices. These indices are designed 
based on the spectral characteristics of different land cover types, 
utilizing combinations and calculations of specific bands to 
highlight impervious surface features, thereby enabling their 
extraction. For example, the Normalized Difference 
Impervious Surface Index (NDISI) proposed by Xu H is one of 
the most commonly used indices. It leverages the ratio of the 
thermal infrared and near-infrared bands to enhance impervious 
surface information, improving its detectability in remote sensing 
imagery. 
1.2.2  
 TIRS NIRNDISI

TIRS NIR
−

=
+

,    (1) 

 
where  TIRS = Thermal infrared band 
 NIR= Near infrared band 
 
NDISI can highlight impervious surface information, but its 
accuracy can be further improved by combining it with other 
bands, such as the mid-infrared band and the Modified 
Normalized Difference Water Index (MNDWI). 
 

1.2.3 impervious surface extraction based on multi-source 
remote sensing data fusion: The method of multi-source data 
fusion for impervious surface extraction is a technique that 
integrates the advantages of various remote sensing data sources. 
Through steps such as image fusion, feature optimization, and 
classifier training, it achieves high-precision impervious surface 
extraction. HUO Jiating, ZHAO Zhan, and others proposed an 
image fusion method based on band mapping and wavelet 
transformation, combining Sentinel-2 and GaoFen-2 imagery to 
obtain fused images that have both high spatial and spectral 
resolutions. These fused images contain rich spectral and spatial 
features, which enhance the ability to distinguish impervious 
surfaces from non-impervious surfaces in complex urban areas. 
The initial classification samples are automatically obtained 
using class information from the GlobeLand30 dataset. Based on 
the rich spectral information from the fused images, various 
vegetation indices, water body indices, and built-up area indices 
are constructed to optimize the initial classification samples. 
Finally, the optimized training samples are used to train 
classifiers with features such as spectral data and land cover 
indices, enabling the automatic and accurate extraction of urban 
impervious surfaces. 
 
1.2.4 impervious surface extraction using machine 
learning and deep learning:Machine learning methods 
primarily include traditional algorithms such as Support Vector 
Machine (SVM) and Random Forest (RF). These methods learn 
the characteristic differences between impervious surfaces and 
other land cover types through training datasets, thereby enabling 
classification. For example, SVM distinguishes impervious 
surfaces from other land covers by finding the optimal separating 
hyperplane, while Random Forest improves classification 
accuracy and robustness by constructing multiple decision trees. 
These methods perform excellently when processing medium to 
low-resolution remote sensing images, effectively addressing the 
complex spectral features of land cover types. 
In recent years, with the rapid development of artificial 
intelligence, remote sensing image classification has seen 
extensive advancements. Deep learning methods, particularly 
Convolutional Neural Networks (CNNs), have shown significant 
advantages in impervious surface extraction from high-resolution 
remote sensing images. CNNs automatically extract multi-level 
features from images, learning the unique texture and shape 
characteristics of impervious surfaces through the combination 
of convolutional layers, pooling layers, and fully connected 
layers. For instance, the U-Net architecture, commonly used for 
image segmentation, can effectively handle impervious surface 
extraction tasks in high-resolution remote sensing images 
through multi-scale feature fusion. 
 

2. Research Methodology 

2.1 Research Data and Experimental Platform 

The data used in this study comes from two sources: the first is 
the world’s first 30-meter global land cover time-series dynamic 
remote sensing product (GLC_FCS30D) from 1985 to 2022, 
developed by the team of Professor Liu Liangyun at the 
Aerospace Information Research Institute, Chinese Academy of 
Sciences. The second is the 30-meter continuous global 
impervious surface dataset GISA 2.0 (1972–2019), developed by 
the Remote Sensing Information Engineering Institute, Wuhan 
University, under the guidance of Professor Huang Xin's research 
group. The former provides global-scale long-term temporal 
coverage to validate model generalization, while the latter 
optimizes local detail extraction through high-resolution 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1655-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1656



 

annotations. Together, these datasets complement each other, 
providing a reliable foundation for model training. 
The experimental platform uses an Intel i5-13400F 16-core 
processor, equipped with 16.0 GB of memory and an NVIDIA 
GeForce RTX 3060 graphics card. The experiments were 
conducted on the Ubuntu 18.04 operating system, utilizing the 
Pytorch deep learning framework. 
 

2.2 Experimental Data 

2.2.1 Selection of Experimental Area ： The experiment 
selected the cities of Beijing, Wuhan, Ili Kazakh Autonomous 
Prefecture, Urumqi, Baoding, and Langfang in China. The 
training, validation, and test sets were divided in a 7:2:1 ratio. 
 
2.2.2  Product Reclassification：The impervious surface for 
2020 from the GLC_FCS30 product was extracted using the 
BandMath tool in ENVI software, and the same method was 
applied to extract the impervious surface for 2019 from the GISA 
product. 
 
2.2.3 Unified Coordinates: ensure that the labels correspond 
consistently with the images, both the GISA and GLC_FCS30 
products were reprojected to the same coordinates as the 
corresponding GaoFen-1 imagery. This was done using ArcGIS, 
and the resolution was adjusted by resampling to 16 meters. 
 
2.2.4 Data Fusion and Clipping：For the preprocessed data, 
pervious surfaces were assigned a value of 0, and impervious 
surfaces were assigned a value of 1. To address the issue of a 
small proportion of impervious surfaces, a sliding window 
approach was applied, where the data was cropped into 512m x 
512m patches. Additionally, geometric transformations were 
applied to ensure a unified size for the impervious surface dataset. 
 
2.3 U-Net Network 

The study references the U-Net model architecture, a 
convolutional neural network (CNN) designed for image 
segmentation, initially proposed by Olaf Ronneberger et al. in 
2015. Its main feature is the use of an encoder-decoder structure 
combined with skip connections to efficiently perform pixel-
level image segmentation tasks. Skip connections involve 
directly adding input data to the output of a specific layer within 
the network. This design allows information to flow more freely 
and preserves both the detail and semantic information of the 
original input data, making it easier for information to propagate 
to later layers and preventing information loss. Skip connections 
are typically implemented through summation or concatenation 
operations. 
The encoder extracts features through multiple 3×3 convolutions 
and ReLU activation functions, followed by 2×2 max pooling for 
downsampling. This process gradually reduces spatial resolution 
while increasing the number of channels. The decoder, on the 
other hand, performs upsampling through 2×2 transpose 
convolutions and integrates features from the corresponding 
encoder layers via skip connections to retain more detailed 
information. The final segmentation result is generated through a 
1×1 convolution. 
 

 
Figure 1. UNet architecture (Ronneberger et al., 2015). 

 
Due to its skip connections and efficient feature learning, U-Net 
can achieve excellent segmentation results even with a relatively 
small amount of labeled data. It is particularly suitable for few-
shot learning, where effective training is conducted with limited 
labeled data. This makes U-Net highly applicable in the study of 
impervious surfaces, where data annotation may be scarce. 
 
2.4 ResNet Network 

Typically, the more convolutional layers in a network, the better 
its performance. However, an excessive number of layers can 
exacerbate issues like vanishing and exploding gradients. To 
address these problems in deep learning, Kaiming He et al. 
proposed the Residual Neural Network (ResNet) in 2015. ResNet 
is a deep convolutional neural network (CNN) architecture that 
solves the degradation problem during deep network training by 
introducing "residual learning."  
Residual learning works by bypassing certain intermediate layers 
and directly linking the activations of a layer to subsequent layers, 
thus creating a residual block. These residual blocks are stacked 
to form the ResNet. In ResNet, residual learning is achieved 
through the introduction of "shortcut connections" or "skip 
connections," which allow inputs from earlier layers in the 
network to be directly passed on to later layers. 
As illustrated, H represents a hidden block, which is a module 
consisting of convolutional layers, activation layers, and batch 
normalization layers. The skip connections can be viewed as an 
identity mapping, enabling input data to be directly passed 
through the network. 

 
Figure 2. Residual block (He et al., 2016). 

 
Instead of directly learning the target function H(x), ResNet 
learns the residual function between the input and output

( ) ( )F x H x x= − , simplifying the optimization process. As a 
result, many subsequent methods are based on ResNet50 or 
ResNet101. 
In this study, we reference the Bottleneck residual block of 
ResNet50. Each residual unit in ResNet50 contains three 
convolutional layers. First, a 1×1 convolution reduces the input 
channels to lower the computational load; then, a 3×3 
convolution extracts spatial features; finally, a 1×1 convolution 
restores the number of channels. The input features are added to 
the convolutional output via identity mapping, effectively 
alleviating the gradient vanishing problem in deep networks. 
For example, in layer1, after passing through the Bottleneck 
structure, the output maintains 256 channels and the spatial 
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resolution remains unchanged, while the input feature map (256 
channels) is processed. 
 

 
Figure 3. Bottleneck residual block of ResNet50. 

 

2.5 RU-Net++ Network 

2.5.1 Input Layer：A 7×7 convolutional kernel is used, 
providing a large receptive field (7×7 = 49 pixels) to capture 
large-scale features in remote sensing imagery. The stride is set 
to 2, resulting in a 50% downsampling rate to reduce the 
computational load while preserving key information. Padding is 
set to 3 to maintain edge integrity and prevent boundary 
information loss. The output channels are set to 64 to 
progressively expand features and prevent the explosion of 
shallow-layer information. The input layer consists of the 
following two steps: receiving a 512×512×3 RGB remote sensing 
image and applying a 7×7 convolutional kernel (stride 2, padding 
3) to extract initial features. 
 
2.5.2 Encoder：In terms of structural design, the ResNet50 
architecture is used as the encoder. However, the original 
ResNet50 performs a large number of downsampling steps, 
which can lead to overly small feature maps. For example, a 
512×512 input could be reduced to 16×16 after five 
downsampling steps, potentially losing too much detail. 
Therefore, the number of downsampling steps is reduced, and 
gradual upsampling is applied in the decoder to restore the size. 
As a result, the original ResNet50 structure is modified in three 
steps: (1) removing the original stage5 to avoid excessive 
downsampling (32×32 → 16×16); (2) adding spatial attention in 
Stage1; (3) adding channel attention in Stage4, and (4) inserting 
Atrous Spatial Pyramid Pooling (ASPP) after Stage4. 
The spatial attention mechanism aims to guide the model to focus 
on important regions in the image. In Stage1 of the encoder, the 
input feature map is first processed using Global Average 
Pooling and Global Max Pooling, performing pooling operations 
across the channel dimension to generate two 2D feature maps. 
These feature maps are then concatenated along the channel 
dimension and passed through a 7×7 convolutional layer to 
generate the spatial attention weight map. Finally, this weight 
map is multiplied element-wise with the original feature map to 
emphasize features at key spatial locations. Introducing spatial 
attention in the early stages of the model helps it capture edge 
and shape features of impervious surfaces more effectively. 
The channel attention mechanism focuses on different channels 
of the feature map to enhance the response to important features. 
In Stage4 of the encoder, the input feature map is first globally 
average pooled to obtain a global description of each channel. A 
Fully Connected Layer is then used to learn the weight 
coefficients for each channel. These weights are processed 
through an activation function and multiplied by the 
corresponding channels in the original feature map to adjust the 
response strength of each channel. Introducing channel attention 
in the deeper stages of the model helps capture high-level 
semantic information, improving the model's ability to recognize 
impervious surface features. 
Atrous Spatial Pyramid Pooling (ASPP) is a module used to 
capture multi-scale contextual information, commonly found in 
semantic segmentation models like the DeepLab series. Its core 

design involves using convolutions with different dilation rates 
and global pooling in parallel, merging multi-scale features to 
enhance the model's ability to recognize objects of various sizes. 
Dilated convolutions (also known as atrous convolutions) 
increase the receptive field by inserting gaps between the 
convolutional kernel elements, and varying dilation rates control 
the size of the receptive field. This allows each branch of the 
module to capture context at different scales. The ASPP module 
is added after Stage5 and consists of five branches. Branch 1 uses 
a 1×1 convolution, branches 2 to 4 use 3×3 convolutions with 
dilation rates of 6, 12, and 18, respectively, and branch 5 
performs global average pooling (GAP). 
 
2.5.3 Decoder：In the decoder design of RU-Net++, specific 
attention and optimization modules are introduced at Levels 4 to 
1 to address the need for recovering features at different 
resolutions, ensuring precise localization and detail recovery. 
At Level 4, the ChannelGate module, combining both spatial 
attention and channel attention, is used. The spatial attention 
emphasizes the location of target regions in the input feature map, 
while the channel attention weights the importance of each 
channel. This allows high-level features to more accurately locate 
impervious surface targets during the upsampling process. Since 
Level 4 is in a higher layer of the decoder, where feature 
semantics are rich but spatial resolution is low, the ChannelGate 
module compensates for the lack of spatial information and 
enhances localization accuracy. 
At Level 3, the Dual Attention module is introduced, which 
integrates both spatial and channel attention. These two attention 
mechanisms complement each other by weighting features from 
both global semantics and local details. This dual attention 
mechanism allows the intermediate features to more 
comprehensively represent target information, improving the 
model's ability to adapt to targets at different scales while 
reducing background interference. 
At Level 2, the SpatialGate module is used, focusing on 
extracting and enhancing spatial information. At this stage, the 
feature map has a higher resolution, but it may also contain more 
noise and redundant information. SpatialGate calculates spatial 
attention weights to highlight key areas and edge details in the 
image, providing cleaner and more accurate feature inputs for 
final detail recovery. 
Finally, at Level 1, the Boundary Enhancement Module (BEM) 
is introduced, specifically designed to address boundary blurring 
that may occur during upsampling. BEM utilizes local contextual 
information to refine and optimize the boundaries of the 
predicted result, ensuring that the segmentation result is clearer 
and more precise at the edges. This is especially beneficial for 
extracting impervious surface boundaries in complex scenarios. 
 
2.5.4 Output Layer： The Sigmoid function independently 
maps the logit of each pixel to a value between 0 and 1, 
representing the probability of belonging to the positive class. On 
the other hand, the Softmax function ensures that the sum of 
probabilities for all categories equals 1 in multi-class 
classification. In binary classification, if two output channels are 
used, each channel represents the probability of the 
corresponding class, and their sum is also equal to 1.The table 
below provides a numerical comparison of the principles of the 
Sigmoid and Softmax functions. 
 

Characteristic Sigmoid Softmax 

Output range 
Calculate probability
 independently for ea

ch pixel∈[0,1] 

Dual channel proba
-bility∈[0,1] 
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Table 1. Comparison of Mathematical Principles between 
Sigmoid and Softmax 

 
In the case of binary classification, both methods can 
theoretically be used, but there are some differences. For instance, 
when using Sigmoid, the model only requires one output channel, 
which makes the computation more efficient. However, it may 
face challenges with class imbalance. On the other hand, using 
Softmax with two channels allows each channel to independently 
learn features, providing more flexibility, but it requires more 
parameters. 
In impervious surface extraction, there is often a class imbalance, 
where the non-impervious surface (such as vegetation and water 
bodies) dominates. In such cases, Softmax's mutual exclusivity 
can be more beneficial for the model in distinguishing between 
the two classes, especially when there is overlap between them. 
Additionally, when combined with cross-entropy loss, Softmax 
is generally more stable, as the loss calculation directly considers 
the probabilities of both classes. Finally, a 1×1 convolution is 
used to reduce the number of channels to 2. 
 
2.5.5 Loss Function： Dice Loss is a metric that measures 
the similarity between the predicted results and the ground truth 
labels, and it is suitable for pixel-level segmentation tasks. The 
formula is as follows: 

1
2 2

1 1

2
1

N
i ii

Dice N N
i ii i

p g
L

p g
=

= =

= −
+

∑
∑ ∑

,    (2) 

 
where  

ip  = Pixel values predicted by the model (between 0-
1) 
  

ig = ground truth 
 N = Total number of pixels 
 
Focal Loss is primarily used to address class imbalance and the 
insufficient learning of hard-to-classify samples. It is an 
improvement on BCE (Binary Cross-Entropy) loss, with a focus 
on difficult-to-classify samples. The formula is as follows: 
 

1
(1 ) log( )

N

Focal t t t
i

L p p
γ

α
=

= − −∑ ,    (3) 

 
where  

tp  = Probability of category, 
tp p=  (the real 

category is 1) or 1tp p= −  (the real category is 0) 
  γ = The adjustment factor, usually set to 2 
 

tα  = Category weight coefficient 
 
RU-Net++ employs a hybrid loss function to optimize the 
accuracy of impervious surface extraction, addressing class 
imbalance and the uncertainty in boundary regions. Since the 
impervious surface areas in remote sensing images are typically 
small, using a single loss function such as Binary Cross-Entropy 
(BCE) or Dice Loss may lead to class bias. Therefore, we 
combine Dice Loss and Focal Loss, setting their weights to 0.7 
and 0.3, respectively. The final loss function is as follows: 
 

total Dice FocalL L Lα β= + ,    (4) 
 

where  α , β  = Weighted coefficients of the loss function 
 

Stage Operation Channels Size 

Input 
7×7 

Conv,s=2,pad=3 64 256×256 

MaxPool 3×3,s=2  64->256 128×128 

Encoder 

Stage1: 
3×ResBlock 

+SpatialAttention 
64->256 128×128 

Stage2: 
4×ResBlock  128->512 64×64 

Stage3: 
6×ResBlock 

+ChannelAttention 
256->1024 32×32 

Stage4: 
3×ResBlock  512->2048 16×16 

ASPP 
（1×1,3×3-d6, 

 3×3-d12, 
3×3-d18,GAP） 

2048->4096 
->2048 16×16 

Decoder 

Level4: 
Up2×

+SpatialGate 
2048->1024 32×32 

Level3: 
Up2×+ 

DualAttention 
1024->512 64×64 

Level2: 
Up2×+ 

ChannelGate 
512->256 128×128 

Level1: 
Up2×+ BEM  256->128 256×256 

Output 1×1Conv 
+Soft-max 128->2 512×512 

Table 2. RU-Net++ Model Structure. 
 

2.6 Workflow Description 

To provide a detailed description of the RU-Net++ workflow, the 
entire process structure is clearly illustrated in Figure 4. 

 
Figure 4.RU-Net++ Model workflow. 

 

3. Result and Analysis 

The RU-Net++ network has been demonstrated through 
experiments to have stronger feature extraction capabilities, 
effectively alleviate gradient vanishing, and improve 
classification accuracy through multi-scale feature fusion. 
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3.1 Remote sensing image accuracy metrics 

To quantitatively analyze the model's segmentation accuracy, 
Intersection over Union (IoU), Kappa coefficient, and F1 score 
are used as evaluation metrics. Meanwhile, to assess the 
classification accuracy of remote sensing images, Overall 
Accuracy (OA), Kappa coefficient, and confusion matrix are 
used as evaluation metrics. 
Specifically, IoU reflects the overlap between the segmented area 
and the ground truth segmentation area, the Kappa coefficient 
indicates the consistency between the ground truth and the 
classification result, the F1 score represents the model's accuracy 
and error, and OA indicates the proportion of correctly classified 
pixels. In general, the higher the values of these four metrics, the 
better the classification results. 
 
 
3.1.1 IOU：  

| |
| |
A BIOU
A B
∪

=
∩

,    (5) 

 
where  A = Pixel set of predicted results 
 B= The set of pixels with true values 
 
3.1.2 Dice coefficient： 

2 | |
| | | |

X Ys
X Y

∩
=

+
,    (6) 

 
where  X Y∩  = Intersection between X and Y 

 X Y+ = The number of elements in X and Y 

 
3.1.3 Kappa Coefficient：  

0
1
p peKappa

pe
−

=
−

,    (7) 

1* 1 2* 2 *
1

e
a b a b an bnP

pe
+ + +

=
−

,    (8) 

 
 

where  P0= The proportion of correctly classified pixels in 
each category to the total number of pixels 
 a= Actual number of pixels for each category 
 b= Number of predicted pixels for each category 
 N= Total number of pixels 
 
3.1.4 F1 Score：  

*1 2* precision recallF
precision recall

=
+

,    (9) 

 
where  precision = The proportion of correctly classified 
pixels to the total predicted correct pixels 
 recall= The proportion of correctly classified pixels to 
the actual correct total number of pixels 
 
3.1.5 Confusion Matrix ：  The Confusion Matrix is a 
commonly used tool to evaluate the performance of a 
classification model. It presents the relationship between the 
predicted results of the model and the true labels of each category 
in the form of a matrix. Specifically, the rows of the confusion 
matrix typically represent the true classes, while the columns 
represent the model's predicted classes. By examining the values 
in each element of the matrix, one can intuitively understand the 
number of correct and incorrect predictions for each category. 
 

3.1.6 User's Accuracy（UA）： User's accuracy is used to 
describe the proportion of pixels that actually belong to a given 
class among those classified as that class in the classification 
results. 

1
M
j ji

niiUA
n=

=
∑

,    (10) 

 
where  nii = The number of correctly classified pixels in 
category i 
 

1
M
j jin=∑ = The total number of pixels classified as the 

𝑖𝑖 th class in the confusion matrix (all pixels classified as the 𝑖𝑖 th 
class) 
 
3.1.7 Overall Accuracy（OA）：。Overall accuracy (OA) 
represents the proportion of correctly classified pixels among all 
classified pixels in the dataset. 

1
N
i

total

niiOA
N
=∑

= ,    (11) 

 
where  nii = The number of correctly classified pixels in the i-
th category of the confusion matrix 
 Ntotal= The total number of all pixels (sum of all 
elements in the confusion matrix 
 
3.2 Accuracy Verification 

3.2.1 Model Evaluation:Under the condition of maintaining 
a consistent dataset, ablation experiments were conducted by 
adding different modules. Exp-A introduces spatial attention in 
Stage 1 of the encoder, Exp-B incorporates channel attention in 
Stage 4 of the encoder, Exp-C integrates the ASPP module into 
the decoder, and Exp-D enhances skip connections by applying 
channel alignment and spatial attention. 
 

Experimental
 Group 

IOU(%) Dice
(%) 

F1  
Score 

Kappa  
Coefficient 

Baseline 72.3 82.1 72.3 0.685 
Exp-A 74.1 83.5 75.1 0.712 
Exp-B 73.6 83.0 74.6 0.703 
Exp-C 75.2 84.3 76.8 0.728 
Exp-D 74.8 84.0 79.5 0.721 
RU-Net++ 79.1 86.7 82.4 0.762 

Table 3. Performance comparison of models on the test set 
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3.2.2 Validation Data：The validation dataset includes blue, 
green, red, and near-infrared bands, with a spatial resolution of 
16 meters, a revisit cycle of 4 days, and a total coverage period 
of 41 days. Priority was given to clear-sky images, with cloud 
cover kept below 1%, and image acquisition was preferably 
conducted during the growing season. The validation images 
underwent orthorectification, geometric correction, radiometric 
calibration, atmospheric correction, and tiling, resulting in 
surface reflectance products. Each image covers an area of 100 
km × 100 km and is projected using the UTM coordinate system. 

 
Figure 5. Location of verification area. 

 

3.2.3 Validation Method：In ArcGIS, a total of 200 
validation points were randomly generated across 78 selected 
images within the study areas. After determining the sample 
locations, experts familiar with the region conducted manual 
visual interpretation. Using Google Earth imagery from the 
same period, each sample point was cross-checked against its 
actual location to assess whether the land cover was 
impermeable. All sample points were individually verified. The 
final confusion matrix was derived through manual visual 
interpretation. 

 

3.2.4 Accuracy Evaluation:To visualize the prediction 
results, Table 4 presents the classification outcomes in 
representative areas. By comparing the original remote sensing 
imagery with the classification results, the study validates the 
model's effectiveness and stability in real-world applications. 

 

Serial 
Number Oiginal image 

Extract classification 
results of Impervious 

Surface 

1 

  

2 

  

3 

  

4 

  

5 

  
Table 4. Extract Impervious Surface and compare it with the 

original image 
 

To evaluate the classification performance of the proposed model 
in representative areas, random points were generated within 
each test region for visual interpretation. Based on the 
interpretation results, a confusion matrix was constructed to 
calculate three key metrics: User's Accuracy (UA), Overall 
Accuracy (OA), and Kappa Coefficient. Experimental results 
demonstrate that the model achieves high accuracy in 
distinguishing between impervious and pervious surfaces, 
confirming its robustness and effectiveness in real-world 
applications. 
 

1 Pervious 
Surface 

Impervious 
Surface total UA 

Pervious 
Surface 188 2 190 0.989 

Impervious 
Surface 0 10 10 1 

total 188 12 200 0 
UA 1 0.833 - 0.99 

OA=0.99 
Kappa Coefficient=0.903 

 

2 Pervious 
Surface 

Impervious 
Surface total UA 

Pervious 
Surface 190 3 193 0.984 

Impervious 
Surface 0 7 7 1 

total 190 10 200 0 
UA 1 0.7 - 0.985 

OA=0.985 
Kappa Coefficient=0.815 

 

3 Pervious 
Surface 

Impervious 
Surface total UA 

Pervious 
Surface 189 2 191 0.989529 

Impervious 
Surface 0 9 9 1 

total 189 11 200 0 
UA 1 0.818 - 0.99 

OA=0.99 
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Kappa Coefficient=0.894 
 

4 Pervious 
Surface 

Impervious 
Surface total UA 

Pervious 
Surface 153 2 155 0.987 

Impervious 
Surface 0 45 45 1 

total 153 47 200 0 
UA 1 0.957 - 0.99 

OA=0.99 
Kappa Coefficient=0.971 

 

5 Pervious 
Surface 

Impervious 
Surface total UA 

Pervious 
Surface 166 2 168 0.988 

Impervious 
Surface 0 32 32 1 

total 166 34 200 0 
UA 1 0.941 - 0.99 

OA=0.99 
Kappa Coefficient=0.963 

Table 5. Confusion matrix of typical regional images 

 

4. Discussion and conclusion 

Although this study has made significant progress in impervious 
surface extraction, there is still room for further improvement. 
Future work will explore multiple perspectives to optimize model 
performance. 
First, the current ablation experiments primarily analyze the 
contribution of each module within the model to overall 
performance. However, due to the lack of comparison with other 
mainstream models, it is challenging to comprehensively assess 
the model's relative advantages and limitations. In future work, 
we plan to introduce more classical and advanced models, such 
as DANet and Transformer, as benchmark comparisons. By using 
a unified dataset and evaluation metrics, we will conduct detailed 
performance comparisons under identical conditions to further 
validate the proposed model’s advantages and applicability in 
real-world scenarios. 
Second, handling edge regions remains a major challenge, as 
impervious surfaces often have indistinct boundaries with 
surrounding land cover types such as vegetation and buildings. 
These boundary areas tend to lose fine-grained information, 
making accurate segmentation difficult. 
Additionally, given that impervious surfaces may exhibit 
significant seasonal and climatic variations, future research will 
incorporate multi-temporal remote sensing data. By integrating 
temporal consistency constraints and employing change 
detection modules, we aim to enhance the model’s ability to 
capture dynamic variations over time. 
By implementing these improvements, we expect to achieve 
significant enhancements in pixel-level segmentation accuracy 
and detail preservation while also strengthening the model’s 
stability and applicability. Ultimately, this will provide more 
reliable technical support for remote sensing applications, urban 
planning, and environmental monitoring. 
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Appendix  

GLC_FCS30D：https://zenodo.org/records/8239305 
GISA:https://zenodo.org/record/5136330 
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