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ABSTRACT: 

 

Smartphones have become increasingly viable for photogrammetric and simultaneous localization and mapping (SLAM) applications 

due to their portability and widespread availability. However, the repeatability of smartphone camera calibration remains a concern, 

as intrinsic orientation parameters (IOPs) can vary significantly between calibration attempts due to innate software and hardware 

corrective mechanisms. This study investigates the impact of calibration grid type, grid size, and distortion modelling on smartphone 

camera calibration uncertainty and its downstream effects on positioning accuracy in monocular SLAM. Using three smartphone 

models (iPhone 14 and two Google Pixel 7 devices), we conducted a comprehensive analysis of 24 calibration configurations processed 

through Kalibr. The estimated IOPs were then applied in a monocular ORB-SLAM3 pipeline, and the resulting trajectories were 

compared against a high-precision integrated LiDAR inertial ground truth. These findings provide insights into optimizing smartphone 

calibration setups, which has effects on SLAM-based applications in mobile mapping, robotics, and augmented reality. 

 

1. INTRODUCTION 

Due to their ubiquity and compact size, smartphones have 

increasingly been researched for their potential in accurate 

photogrammetric (Patonis, 2024) and simultaneous localization 

and mapping applications (SLAM) (Zambra et al., 2024). In 

traditional photogrammetric surveys, camera calibration is 

performed in a prior and separate process to determine the 

interior orientation parameters (IOPs), which are stable in metric 

and semi-metric cameras due to their specialized design. 

However, smartphones often exhibit variability in IOPs across 

different calibration attempts (Jasińska et al., 2023). These 

variabilities can introduce uncertainties in the downstream 

processes of positioning and 3D reconstruction, as techniques 

like SLAM and structure from motion (SfM) often assume 

constant IOPs between frames.  

Camera calibration determines the IOPs – focal length, principal 

point, and distortion coefficients – by analyzing a series of 

images to establish an accurate relationship between a 3D scene 

and its 2D projection onto an image. Contemporary calibration 

methods typically optimize an overdetermined system of image 

points with known 2D-to-3D correspondence, such as with a 

known set of 3D points through self-calibration, a geometrically 

known planar grid, or geometric constraints on natural features 

through SfM. Current state-of-the-art methods follow Zhang’s 

flexible approach of using multiple views of a planar grid to 

estimate the camera intrinsic and extrinsic parameters (Zhang, 

2000). This paradigm is adopted in the popular libraries of Kalibr 

(Furgale et al., 2012), OpenCV, and the MATLAB Camera 

Calibration Toolbox due to the setup simplicity. Additionally, 

target-based calibration outperforms targetless methods, such as 

iKalibr (Chen et al., 2024) and ATiPE, (Barazzetti et al., 2012) 

in terms of repeatability due to the high contrast and easily 

detectable nature of the target grids. However, despite the 

extensive bodies of work on target-based calibration, the impact 

of grid size, grid type, and distortion model on the repeatability 

of smartphone camera calibration has received limited attention 

in literature. Compared to traditional high-grade 

photogrammetric cameras, smartphones are subject to greater 

IOP variability, due to factors including lens tolerances, 

autofocus mechanisms, and software-based corrections. 

Understanding these inconsistencies is important for improving 

smartphone-based SLAM applications, particularly in robotics, 

augmented reality (AR), and mobile mapping. 

To address this gap, a comprehensive analysis of smartphone 

camera calibration is performed, evaluating the effects of grid 

size, grid type, and distortion models on measurement 

uncertainty and SLAM positioning. Experiments will be 

conducted using three smartphones (iPhone 10, two Google Pixel 

7 devices) to account for variations across different operating 

systems and same-model inconsistencies, as well as to identify 

consistent calibration trends across devices.  

 

 

2. RELATED WORK 

Prior research has explored various aspects of camera calibration, 

but the influence of these factors on the repeatability of IOP 

estimates and the resulting positioning accuracy for smartphones 

has not been extensively studied. The following subsections 

review relevant literature on key factors affecting calibration 

performance. By analyzing these factors, this study seeks to 

provide insights into their role in enhancing calibration 

consistency and improving positioning accuracy in smartphone 

SLAM applications. 

 

2.1 Calibration Grid Type 

The choice of the type of calibration grid has shown to have 

effects on IOP estimation. In 2007, Mallon and Whelan 

conducted a comparative study of two full-visibility calibration 

grids – the checkerboard and circular dot grid – and concluded 

that the latter is more susceptible to distortion bias, degrading the 

predicted pixel position of the features (Mallon and Whelan, 

2007). However, full-visibility grids require that the entire target 

remain within the camera’s field of view, limiting the range of 

calibration poses and reducing coverage around the image edges. 

To address this, partially visible grids, such as Aprilgrid (Olson, 

2011) and ChArUco, have been created with uniquely 

identifiable markers within the pattern. These grids allow 

calibration even when only a portion of the grid is visible and 

provide improved estimation of lens distortion, particularly at the 

periphery of the image. 
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Given the variability in smartphone camera characteristics, it is 

important to investigate how different grid types influence 

calibration repeatability and downstream SLAM performance. 

This study extends previous work by evaluating both a full-

visibility (checkerboard) and a partial-visibility grid (Aprilgrid) 

to assess their impact on positioning accuracy. 

 

2.2 Calibration Grid Size 

Grid size is another factor affecting camera calibration, 

particularly in smartphone cameras with autofocus. Autofocus 

mechanisms dynamically adjust the lens position, leading to 

subtle variations in focal length across different calibration 

attempts. Smaller grids necessitate a shorter focusing distance 

compared to larger grids, introducing inconsistencies in focal 

length estimation. These focal length variations, in turn, can 

propagate errors into the estimation of extrinsic parameters 

(EOPs), thereby biasing the estimated IOPs (Ricolfe-Viala and 

Esparza, 2021). 

Ricolfe-Viala and Esparza’s study on autofocus cameras 

demonstrated that even when bundle adjustment yields 

reprojection errors close to zero, biases in intrinsic and extrinsic 

parameter estimates can persist. This highlights the limitations of 

standard calibration pipelines when applied to autofocus systems. 

Building on their findings, this study investigates how calibration 

grid size impacts IOP estimate uncertainty, repeatability, and 

positioning accuracy in smartphone-based SLAM by using two 

significantly different grid sizes. By quantifying the propagation 

of calibration errors into the positioning domain, we aim to 

provide insights into optimizing grid size selection for more 

reliable smartphone SLAM. 

 

2.3 Camera Distortion Modelling 

Another common source of smartphone camera calibration error 

is incorrect lens distortion modeling, which has adverse effects 

on 3D reconstruction accuracy (Patonis, 2024). The most widely 

used model in photogrammetry is the Brown-Conrady model 

(Duane, 1971), which assumes that radial and tangential 

distortion are functions of the distance from the optical center. 

Kannala and Brandt introduced an alternative approach through 

an equidistant distortion model designed for wide-angle lenses, 

which models distortion as a function of angular deviation from 

the optical center (Kannala and Brandt, 2006). While this 

approach has been widely applied in fisheye and panoramic 

cameras, its effectiveness for smartphones remains 

underexplored. Moreover, most studies on distortion modelling 

focus on image reprojection accuracy and 3D reconstruction, 

rather than its effects on positioning accuracy in SLAM 

applications. This study aims to address this gap by evaluating 

two different distortion models (radial-tangential and 

equidistant) and analyzing their influence on smartphone-based 

monocular trajectory estimation. 

 

2.4 Experimental Setup 

Building on the insights from previous studies, this research 

implements an experimental setup to systematically evaluate the 

impact of calibration grid type, grid size, and distortion model on 

IOP estimate repeatability and positioning accuracy. The 

experimental configurations, summarized in Table 1, follow a 

standardized calibration pipeline using Kalibr, generating eight 

sets of IOP estimates per smartphone, resulting in a total of 24 

configurations across three devices. 

Each set of IOP estimates will be analyzed for uncertainty based 

on the final covariance estimate, including focal length, principal 

point, and distortion coefficients. The estimated IOPs will then 

be applied as fixed parameters in monocular SLAM through 

ORB-SLAM3, chosen for its robustness in monocular SLAM. 

The resulting camera trajectories will be compared against a 

LiDAR-inertial based ground truth. The positioning accuracy 

will be assessed using the root mean square error (RMSE) of the 

absolute positioning error (APE), to quantify the deviations 

between the estimated and reference trajectories. 

 

Table 1. Configurations for smartphone camera calibration. 

 

Grid Size \ 

Grid Type 

Aprilgrid Checkerboard 

Small pinhole rad-tan pinhole rad-tan 

pinhole equi-dist pinhole equi-dist 

Large pinhole rad-tan pinhole rad-tan 

pinhole equi-dist pinhole equi-dist 

 

 

3. PRELIMINARIES 

3.1 Kalibr Camera Intrinsic Estimation 

In Kalibr, the Levenberg-Marquardt (LM) algorithm is used to 

optimize the IOPs and EOPs of the camera by minimizing the 

reprojection error 𝑒, which measures the sum of the difference 

between the observed feature points 𝑝𝑖 and predicted location 𝑝�̂�: 

 

     𝑒 = ∑||𝑝𝑖 − 𝑝�̂�||
2

𝑖

 
(1) 

 

This is done by using a projection model 𝜋, which maps the 𝑖𝑡ℎ  

3D point 𝑃𝑖  to image coordinates 𝑝𝑖 = (𝑥, 𝑦) using the camera 

intrinsic matrix 𝐾 and its EOP 𝜃: 

 

      �̂�𝑖  = 𝜋(𝐾, 𝜃, 𝑃𝑖) (2) 

 

From the observations 𝑝𝑖  (automatically extracted 2D image 

points) and the predicted locations 𝑝�̂� , the residuals 𝑟𝑖  are 

calculated as the difference: 

  

   𝑟𝑖 = 𝑝𝑖 − 𝑝�̂� (3) 

 

To update the camera parameters iteratively, the Jacobian 𝐽 of the 

residuals with respect to the parameters are computed: 

 

𝐽 =
𝜕𝑟𝑖

𝜕𝜃
 

 

(4) 

The Levenberg-Marquardt algorithm then uses 𝐽  to adjust the 

camera parameters θ  in each iteration, minimizing 𝑒 . Once 

optimization converges, the uncertainty in the estimated camera 

parameters is obtained from the covariance matrix 𝐶θ  and 

variance of residuals 𝜎2: 

 

    𝐶𝜃 = 𝜎2( 𝐽𝑇𝐽)−1 (5) 

 

where the diagonal elements of 𝐶𝜃  provide the uncertainty  

(standard deviation) for the camera EOPs and IOPs.  

 

3.2 Lens Distortion Models 

3.2.1 Radial-Tangential Model: The Brown-Conrady model is 

widely used in photogrammetry and assumes that distortion is a 

function of the radial distance from the optical center. It models 

both radial distortion (causes straight lines to curve) and 

tangential distortion (decentering effects due to misalignment): 
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   𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + ⋯ ) 

   𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + ⋯ ) 

 

(6) 

 

   𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)] 
𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦] 

 

 

(7) 

where 𝑘1, 𝑘2 are the radial distortion coefficients, 𝑝1, 𝑝2 are the 

tangential distortion coefficients, and 𝑟 = √𝑥2 + 𝑦2 is the radial 

distance from the principal point. 

 

3.2.2 Equidistant Model: On the other hand, the Kannala-

Brandt equidistant model assumes distortion as being 

proportional to the angle 𝜃 from the optical axis: 

 

θ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑟

𝑓
) 

 

δ𝑟 = 𝑘1θ + 𝑘2θ3 + 𝑘3θ5 + 𝑘4θ7 + ⋯ 

 

  (8) 

 
 

(9) 

where 𝑘1, 𝑘2, 𝑘3, 𝑘4  are equidistant distortion coefficients, 𝑟  is 

the radial distance, 𝑓  is the focal length, and δ𝑟  is the radial 

distortion from the lens. 

 

Although higher order coefficient parameters can be calculated 

for both models, Kalibr outputs [𝑘1 𝑘2 𝑟1 𝑟2] for radial-tangential 

and [𝑘1 𝑘2 𝑘3 𝑘4] for equidistant distortion calibration. 

 

 

4. METHODOLOGY 

4.1 Smartphone Camera Calibration 

Images were captured by hand using smartphones in front of four 

distinct calibration grids (Table 2): small Aprilgrid (sAG), large 

Aprilgrid (bAG), small checkerboard (sCH), and large 

checkerboard (bCH) (Figure 1). A standardized calibration 

routine was followed for all calibration data collection, using the 

SensorLogger app (Tszheichoi, 2024) with the frame rate set to 

30 frames per second. Using three smartphones — an iPhone 14 

(iP14), Google Pixel 7 #1 (GP7P1), and Google Pixel 7 #4 

(GP7P4) — this process resulted in twelve distinct camera 

calibration datasets. Each dataset was processed through Kalibr 

for camera calibration, performed twice for two distortion 

models: radial-tangential (PR) and equidistant (PE), yielding a 

total of twenty-four distinct camera intrinsic calibration 

configurations. 

 

4.2 Smartphone and LiDAR Trajectory 

To assess positioning accuracy, smartphone image data and the 

UNIX timestamp (through SensorLogger) was collected 

concurrently with ground truth data. The ground truth positions 

were acquired using a Velodyne 16-channel LiDAR and an 

EPSON EG320N inertial measurement unit (IMU) from a 

NovAtel SPAN (Figure 2), with the data processed via tight-

coupling with FAST-LIO2 (Xu et al., 2021) (Figure 3). For the 

smartphone trajectories, ORB-SLAM3 (Campos et al., 2021) 

was chosen as the SLAM processor due to its robustness in 

visual-SLAM (Figure 4). All sensors and smartphones were 

mounted on a cart, which was used to carry the equipment during 

data collection. Data from all three smartphones, along with the 

ground truth, were captured during the same run in an indoor, 

texture-rich laboratory environment. The ground truth trajectory 

for the selected data segment is shown in Figure 5. 

 

 

 

 

Table 2. Configuration of each calibration grid. 

 Aprilgrid Checkerboard 

Small Big Small Big 

Columns 6 6 4 8 

Rows 6 6 6 9 

Target Size 

(cm) 

2.80 9.00 3.60 10.00 

 

 

Figure 1. The four calibration grids used: big Aprilgrid (top 

left), small Aprilgrid (top right), big checkerboard (bottom left), 

and small checkerboard (bottom right). 

 

 
 

Figure 2. Data collection platform used for indoor positioning, 

front (top) and back (bottom) view. 
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Figure 3. FAST-LIO2 processing of LiDAR-inertial data. 

 

 

Figure 4. ORB-SLAM3 processing of smartphone data. 

 

 

Figure 5. LiDAR-IMU ground truth trajectory via FAST-LIO2. 

 

 

5. RESULTS & DISCUSSION 

5.1 Smartphone Camera Calibration Uncertainty 

The uncertainty in the camera IOP estimates is quantified through 

the standard deviations provided in the output from the 

covariance 𝐶𝜃. Combinations of the standard deviations 𝜎𝑎𝑣𝑔 are 

calculated using the pooled standard deviation equation: 

 

𝜎𝑎𝑣𝑔 = √
𝜎1

2 + 𝜎2
2 + ⋯ + 𝜎𝑛

2

𝑛
 

 

 

(10) 

where 𝜎𝑛
2 is the 𝑛𝑡ℎ variance, and 𝑛 is the sample size. 

 

The results indicate that the following configurations reduce 

uncertainty: larger grid size, Aprilgrid type, equidistant distortion 

modelling for the principal point, and radial-tangential distortion 

modelling for focal length (Tables 3-5). These findings are likely 

due to several factors: the larger calibration grids enhance 

robustness against motion blur, which improves feature 

detection; the Aprilgrid's partial visibility provides more data for 

calibration and allow for more parallax between views; the 

equidistant distortion model, which lacks a non-symmetric 

component, simplifies the estimation of the principal point; and 

the radial-tangential distortion model has a more complex 

corrective model than equidistant, leading to more accurate focal 

length estimates.  

 

Table 3. Comparison of IOP estimate uncertainty for the two 

grid types across all calibration configurations. 

 Aprilgrid Checkerboard 

𝝈𝒇𝒙
 [px] 1.19 1.72 

𝝈𝒇𝒚
 [px] 1.20 1.71 

𝝈𝒄𝒙
 [px] 0.91 1.56 

𝝈𝒄𝒚
 [px] 0.96 1.71 

 

Table 4. Comparison of IOP estimate uncertainty for the two 

distortion models across all calibration configurations. 

 Equidistant Radial-Tangential 

𝝈𝒇𝒙
 [px] 1.56 1.39 

𝝈𝒇𝒚
 [px] 1.56 1.39 

𝝈𝒄𝒙
 [px] 0.95 1.54 

𝝈𝒄𝒚
 [px] 0.89 1.74 

 

Table 5. Comparison of IOP estimate uncertainty for the two 

grid sizes across all calibration configurations. 

 Large Small 

𝝈𝒇𝒙
 [px] 1.05 1.80 

𝝈𝒇𝒚
 [px] 1.07 1.80 

𝝈𝒄𝒙
 [px] 0.89 1.58 

𝝈𝒄𝒚
 [px] 0.90 1.74 

 

Additionally, Table 6 shows the combined uncertainty 

breakdown by smartphone, showing that GP7P1 had the least 

uncertainty, and that the same model smartphones (GP7P1 and 

GP7P4) had sub-pixel level difference in uncertainty. 

 

Table 6. Comparison of IOP estimate uncertainty for the three 

smartphones across all calibration configurations. 

 GP7P1 GP7P4 iP10 

𝝈𝒇𝒙
 [px] 1.25 1.46 1.69 

𝝈𝒇𝒚
 [px] 1.27 1.46 1.68 

𝝈𝒄𝒙
 [px] 1.11 1.15 1.53 

𝝈𝒄𝒚
 [px] 1.29 1.32 1.53 

 

It can be noted that the grid size creates the largest differentiation 

in uncertainty, closely followed by the calibration grid type. 

However, it is worth noting that while large grids reduce 

uncertainty, it causes the residuals to be stretched along the 

phone's long axis after optimization (Figure 6). This suggests that 

calibration is more sensitive to distortions in this direction, 

possibly due to more exaggerated camera motion. The 

anisotropic distribution indicates that the model may not fully 

compensate for non-uniform distortions, thus larger grids may 

reduce uncertainty overall but could introduce localized errors 

along the longer axis.  
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Figure 6: Anisotropic distribution of reprojection errors (top) 

after calibration using large grids compared to small grids. 

 

As for distortion modeling, the uncertainty is greatly reduced 

when using an Aprilgrid instead of a checkerboard (Table 7), as 

its partial-visibility allowance provides better camera coverage at 

the edges of the images (Figure 7). Using a larger calibration grid 

also reduces uncertainty by improving robustness against motion 

blur and ensuring better coverage of distortions by increasing 

feature size (Table 8).  

 

 
 

Figure 7: Camera coverage plot for the iPhone 10: small 

Aprilgrid (left), and small checkerboard (right). 

 

Table 7. Comparison of distortion parameter uncertainty for the 

two grid types across 24 calibration configurations. 

 Equidistant Radial-Tangential 

AG CH AG CH 

k1 0.00319 0.01603 0.00132 0.00273 

k2 0.02809 0.15245 0.00224 0.00582 

k3 0.09955 0.59804   

k4 0.12106 0.81406   

r1   0.0002 0.0005 

r2   0.0002 0.0004 

 

 

Table 8. Comparison of distortion parameter uncertainty for the 

two grid sizes across all calibration configurations. 

 Equidistant Radial-Tangential 

Small Big Small Big 

k1 0.01546 0.00888 0.00272 0.00149 

k2 0.14677 0.08020 0.00438 0.00261 

k3 0.57797 0.28820   

k4 0.79136 0.35267   

r1   0.00047 0.00027 

r2   0.00041 0.00025 

 

Additionally, Table 9 shows the combined distortion uncertainty 

breakdown by smartphone, showing that GP7P4 had the least 

distortion uncertainty, and that the same model smartphones 

(GP7P1 and GP7P4) have similar levels of uncertainty. 

 

Table 9. Comparison of distortion parameter uncertainty for the 

three smartphones across all calibration configurations. 

 Equidistant 

GP7P1 GP7P4 iP10 

k1 0.01066 0.01091 0.01562 

k2 0.09025 0.08933 0.16074 

k3 0.30464 0.29309 0.66855 

k4 0.34814 0.32670 0.16074 

 Radial-Tangential 

GP7P1 GP7P4 iP10 

k1 0.00171 0.00162 0.00287 

k2 0.00297 0.00265 0.00652 

r1 0.00035 0.00032 0.00043 

r2 0.00028 0.00026 0.00044 

 

 

5.2 Smartphone Camera Intrinsics 

The variability between the IOP estimates show that IOP 

variations due to different calibration setups can exceed 50 pixels 

for focal length (𝑓𝑥, 𝑓𝑦)  and 35 pixels for the principal point 

(𝑐𝑥, 𝑐𝑦) (Table 10). This highlights the importance of calibrating 

for individual phones and not for individual smartphone models. 

Additionally, comparisons between the two same-model 

smartphones (GP7P1 vs. GP7P4) suggest that using a large 

Aprilgrid and equidistant distortion modelling may help maintain 

IOP stability between calibration sets (Table 11). Finally, the 

standard deviation analysis for calibration grid type and size 

indicates that larger calibration grids yield more consistent results 

(Table 12), whereas differences between checkerboard and 

Aprilgrid has inconclusive results (Table 13). 

 

Table 10. Peak-to-peak variation in IOP estimates for each 

smartphone. 

 𝒇𝒙 [px] 𝒇𝒚 [px] 𝒄𝒙 [px] 𝒄𝒚 [px] 

iP10 Min 1464.18 1465.24 531.53 911.25 

Max 1498.34 1496.92 548.65 943.10 

Diff. 34.17 31.68 17.12 31.85 

GP7P1 Min 1328.55 1331.60 518.33 943.39 

Max 1382.44 1378.33 541.44 978.87 

Diff. 53.89 46.73 23.11 35.48 

GP7P4 Min 1311.75 1311.15 537.07 927.66 

Max 1359.27 1357.03 559.57 946.49 

Diff. 47.53 45.87 22.50 18.83 
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Table 11. Summary of same-model absolute differences 

(GP7P1-GP7P4) for each IOP. 

Calibration 

Configuration 
𝒇𝒙 [px] 𝒇𝒚 [px] 𝒄𝒙 [px] 𝒄𝒚 [px] 

PE_sAG 55.98 54.15 29.16 21.21 

PE_bAG 2.10 1.22 3.77 3.86 

PE_sCH 22.96 20.86 27.45 50.71 

PE_bCH 19.07 16.10 6.53 2.52 

PR_sAG 16.22 16.07 10.55 10.74 

PR_bAG 7.81 8.02 14.42 16.31 

PR_sCH 36.87 34.23 14.07 32.19 

PR_bCH 14.66 13.44 2.20 9.25 

 

Table 12. Summary of standard deviation of IOP estimates by 

calibration grid size across all calibration configurations. 

 Small Big 

𝑺𝑻𝑫𝑬𝑽𝒇𝒙
 [px] 15.94 13.92 

𝑺𝑻𝑫𝑬𝑽𝒇𝒚
 [px] 15.21 12.69 

𝑺𝑻𝑫𝑬𝑽𝒄𝒙
 [px] 7.53 6.05 

𝑺𝑻𝑫𝑬𝑽𝒄𝒚
 [px] 11.38 6.32 

 

Table 13. Summary of standard deviation of IOP estimates by 

calibration grid type across all calibration configurations. 

 AG CH 

𝑺𝑻𝑫𝑬𝑽𝒇𝒙
 [px] 14.58 15.34 

𝑺𝑻𝑫𝑬𝑽𝒇𝒚
 [px] 14.22 13.79 

𝑺𝑻𝑫𝑬𝑽𝒄𝒙
 [px] 6.87 6.79 

𝑺𝑻𝑫𝑬𝑽𝒄𝒚
 [px] 7.37 10.73 

 

Additionally, the standard deviation of the estimated IOPs for 

each smartphone is summarized in Table 14, showing that GP7P1 

had the least variability across calibration tests, while iP10 had 

the most homogeneous standard deviations for the 𝑥  and 𝑦 

directions. 

 

Table 14. Summary of standard deviation of IOP estimates by 

smartphone across all calibration configurations. 

 GP7P1 GP7P4 iP10 

𝑺𝑻𝑫𝑬𝑽𝒇𝒙
 [px] 12.10 19.00 14.01 

𝑺𝑻𝑫𝑬𝑽𝒇𝒚
 [px] 12.09 16.52 14.06 

𝑺𝑻𝑫𝑬𝑽𝒄𝒙
 [px] 5.49 7.80 7.45 

𝑺𝑻𝑫𝑬𝑽𝒄𝒚
 [px] 9.13 11.18 7.61 

 

 

5.3 Smartphone Camera Positioning Evaluation 

To assess positioning accuracy, the RMSE of the APE is used as 

the primary metric. APE quantifies the deviation between 

estimated camera poses 𝑇𝑒𝑠𝑡,𝑖 and the ground truth poses 𝑇𝑔𝑡,𝑖 at 

corresponding timestamps. Before computing APE, an 

Umeyama Sim(3) alignment is applied to correct for scale 

differences in the monocular SLAM trajectory, which is 

inherently arbitrary in scale. Example aligned trajectories for 

each smartphone is displayed in Figure 8 

. Mathematically, the APE for a given pose 𝑖 is defined as: 

APEi = ||Test,i − Tgt,i|| 

 

(11) 

and the RMSE of the APE is: 

 

𝐴𝑃𝐸𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝐴𝑃𝐸𝑖

2

𝑁

𝑖=1

 

 

 

 

(12) 

which represents the average deviation between the ground truth 

and estimated pose across all timestamps 𝑁. 

 

The average RMSE is calculated for each calibration setup group, 

and results indicate that the small grid size, checkerboard grid 

type, and equidistant distortion modelling lead to lower 

positioning errors (Tables 15-17). The grid configurations are 

particularly beneficial because they allow for greater depth 

variation during the calibration process. Firstly, smaller grids 

enable the user to position the camera very close to the grid, 

which is useful for close-range 3D reconstruction. Secondly, the 

checkerboard grid type, unlike the Aprilgrid, remains 

recognizable at larger distances, making it effective for a more 

varied calibration process. Additionally, equidistant distortion is 

a symmetrical, less complex distortion model that may be more 

fitting to the smartphone’s wide field of view. Together, these 

factors contribute to more accurate positioning estimates, as they 

provide better calibration coverage across various depths and 

perspectives. 

 

Table 15. A comparison of the APE RMSE value between the 

two calibration grid sizes. 

 Small Big 

APE RMSE [cm] 38.8 41.5 

 

Table 16. A comparison of the APE RMSE value between the 

two calibration grid types. 

 Aprilgrid Checkerboard 

APE RMSE [cm] 41.6 38.7 

 

Table 17. A comparison of the APE RMSE value between the 

two camera distortion models. 

 Equidistant Radial-Tangential 

APE RMSE [cm] 35.1 45.2 

 

Additionally, the APE RMSE values by smartphones are 

summarized in Table 18, showing that the iPhone 10 had the least 

positioning errors, closely followed by GP7P1.  

 

Table 18. A comparison of the APE RMSE value between the 

three smartphones. 

 GP7P1 GP7P4 iP10 

APE RMSE [cm] 38.7 43.4 38.3 

 

 

6. CONCLUSION AND OUTLOOK 

This study examined how calibration grid type, grid size, and 

camera distortion model affect smartphone camera calibration 

uncertainty and the effects on monocular SLAM positioning. The 

results suggest that no single calibration setup is universally 

optimal; instead, parameter selection should be tailored to the 

application, with a focus on repeatability and depth variation. 
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Grid Size: Larger grids improve robustness against motion blur, 

making them preferable for applications requiring consistent 

intrinsic and distortion modeling, reducing uncertainty by 

approximately 0.7 pixels for focal length and principal point. 

However, they are more prone to axis-specific errors, especially 

in dynamic environments. In contrast, smaller grids are better 

suited for close-range depth estimation in indoor SLAM, 

reducing positioning errors by 2.7 cm. However, they are more 

susceptible to motion blur, leading to increased uncertainty. 

Grid Type: The Aprilgrid outperforms the checkerboard grid in 

modeling intrinsic parameters, reducing uncertainty by 

approximately 0.6 pixels for focal length and principal point. It 

also provides better distortion modeling due to its partial 

visibility and increased image coverage, making it advantageous 

for cameras with complex distortion. However, the Aprilgrid is 

less effective in scenarios requiring a wide depth range, such as 

SLAM in diverse environments. The checkerboard grid, though 

more limited in visibility, is better suited for applications 

requiring depth variation, reducing positioning errors by 2.9 cm. 

Distortion Model: The equidistant distortion model proves more 

effective for smartphone SLAM, likely due to its reduced 

dependence on radial distance and simpler model, lowering 

positioning errors by 10.1 cm. While the radial-tangential model 

is well-suited for general camera lenses, the equidistant model 

should be consided more for smartphone SLAM applications. 

 

For future work, several key areas warrant further investigation: 

1. Extended smartphone testing: Future research should evaluate 

a wider range of smartphone models, considering differences 

across manufacturers, camera hardware generations, and  

repeated calibrations on the same device to assess consistency. 

2. Temporal analysis of IOP stability: Smartphone camera 

calibration repeatability may degrade over time due to 

environmental factors, component aging, and software updates  

 

 

3. Integration of IMU: Monocular SLAM lacks scale, limiting 

metric accuracy. Investigating the impact of calibration on IMU 

extrinsics and metric positioning could expand the use of 

smartphones in high-precision SLAM applications. 

 

Addressing these areas will further refine smartphone-based 

photogrammetry and SLAM methodologies, enhancing the 

reliability of mobile mapping, robotics, and augmented reality 

applications. 
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