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ABSTRACT: 

 

Multi-camera systems are essential for multi-view stereo, enabling accurate depth estimation and 3D reconstruction through parallax. 

However, traditional bi-camera setups, typically forward-facing, are limited in capturing diverse environmental perspectives, 

particularly in autonomous driving, where vehicle motion is restricted. To overcome these limitations, we propose a novel no-parallax 

bi-camera system that combines a forward-facing and a backward-facing camera on a smartphone setup. This configuration simulates 

360° spatial coverage and enhances 3D reconstruction by photometrically correcting forward-facing Gaussian-splatted renders using 

the backward-facing camera in a loosely-coupled manner, rather than relying on multi-view images in a conventional bundle 

adjustment. Our results show that incorporating a backward-facing image significantly improves the quality of backward renders, 

effectively reducing artifacts and mitigating overfitting seen in forward-facing-only images, resulting in a more accurate and refined 

3D representation of the environment. 

 

 

1. INTRODUCTION 

Multi-camera systems play a critical role in multi-view stereo, 

enabling precise depth estimation and 3D scene reconstruction 

through parallax between overlapping fields of view. However, 

traditional bi-camera configurations face inherent limitations, 

such as requiring significant overlap between the cameras, which 

are typically oriented in the same forward direction. In the 

context of autonomous driving and outdoor mapping, this 

challenge is further exacerbated by the non-holonomic nature of 

the vehicle's motion, which is primarily constrained to a forward 

trajectory. As a result, the system's capacity to capture diverse 

perspectives of the environment from differing camera poses is 

significantly restricted. This limitation hinders the camera 

system’s ability to create an accurate and comprehensive 3D 

representation of driving scenes. 

Fundamentally, an effective camera network with convergent 

perspectives is essential for accurate and robust 3D 

reconstruction. Thus, modern autonomous systems often 

integrate multi-camera setups with varying orientations, sensor 

fusion with LiDAR or other depth sensors, and advanced 

perception algorithms in their systems. While these methods 

enhance scene understanding, they often require labour-intensive 

spatiotemporal calibration of the sensor suite, presenting 

challenges in terms of accessibility, scalability, and ease of 

integration, in addition to cost. Though monocular and stereo 

camera setups offer cost-effectiveness and rich visual 

information, the typical forward-facing setups often experience 

increased drift and reduced odometry accuracy compared to 360° 

LiDAR systems, which have superior spatial coverage 

(Agostinho et al., 2022). Recent advances in novel view synthesis 

(NVS) techniques offer the potential to simulate a diverse camera 

network from image-only inputs. Notable approaches include 

Neural Radiance Fields (NeRF) (Mildenhall et al., 2020), which 

employs implicit neural representations, and 3D Gaussian 

Splatting (3DGS) (Kerbl et al., 2023) which utilizes explicit 3D 

Gaussian primitives. 3DGS has achieved state-of-the-art 

performance in view-dependent, photorealistic 3D rendering, 

offering both high-quality results and fast rendering speeds. 

However, 3DGS depends heavily on the quality of the input 

images due to its single-view training, and is consequently 

susceptible to overfitting in scenarios with limited training data, 

such as few-shot learning (Chen and Wang, 2024) or sparse-view 

configurations (Wu et al., 2024). Thus, 3DGS often struggles to 

generalize to novel viewpoints that deviate significantly from the 

input trajectory, such as backward-facing views. Artifacts and 

reduced photometric accuracy are common in these scenarios, as 

illustrated in Figure 1.  

To address these challenges while maintaining feasibility, we 

propose a smartphone bi-camera system with one forward-facing 

and one backward-facing camera. The backward-facing camera 

serves to photometrically correct the Gaussian-splatted render of 

the forward trajectory, mitigating artifacts and enhancing 

reconstruction accuracy. This setup provides an efficient, 

lightweight solution that simulates 360° spatial coverage, making 

it well-suited for autonomous perception. 

 

 

 
Figure 1: Forward (top) and backward (bottom) Gaussian 

Splatting render of a KITTI image set, showing poor 

photorealism in the backwards render. 
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2. RELATED WORK 

Different approaches have been proposed to address the 

limitations of Gaussian splatting in generalization from limited 

inputs, with key challenges including the randomly ordered 

single-view training and sensitivity to the structure-from-motion 

(SfM) initialization. Research in improving 3DGS NVS are 

discussed in the following subsections and are typically evaluated 

through photometric accuracy metrics such as peak signal-to-

noise ratio (PSNR ), structural similarity index (SSIM ), and 

learned perceptual image patch similarity (LPIPS ). 

 

2.1 Machine Learning and Related Approaches 

Recent advancements in 3D Gaussian Splatting (3DGS) have 

sought to enhance generalizability through sophisticated machine 

learning techniques. For instance, Self-Ensembling Gaussian 

Splatting (Zhao et al., 2024) introduces a self-ensembling model 

that aggregates information from samples with varying 

uncertainty-based perturbations, serving as an effective 

regularization mechanism. In a similar but stripped-down 

approach, CoR-GS (J. Zhang et al., 2024) utilizes co-

regularization by simultaneously training two 3DGS models and 

leveraging the differences from randomness in densification. 

PixelSplat (Charatan et al., 2024) tackles the propagation of 

initialization errors by using a neural network to predict a dense 

3D probability distribution, from which 3D Gaussians are 

sampled rather than directly placed. This probabilistic approach 

stabilizes training and improves the robustness of 3D scene 

reconstruction. Meanwhile, TranSplat (C. Zhang et al., 2024) 

uses a transformer-based architecture for sparse-view scene 

reconstruction, combining monocular depth estimation with a 

Depth Refine U-Net and MLP to predict 3D Gaussian parameters 

(position, opacity, covariance, color). While these approaches 

effectively use internally derived information to mitigate 

distortions in viewpoints similar to the input images, challenges 

remain in handling extreme viewpoint deviations for 3DGS 

renders. Additionally, computational load, black-box 

architecture, and large dataset requirements continue to pose 

significant barriers to scalability and real-time applications. 

 

2.2 Geometric Prior Approaches 

Geometric priors have been increasingly utilized to enhance the 

robustness of 3DGS. Multi-view geometry techniques, in 

particular, have gained significant traction as a means of 

counteracting the overfitting associated with the single-view 

training of 3DGS models. Since vanilla 3DGS relies on image-

only input, traditional photogrammetric methods and machine 

learning models are commonly employed to extract 

correspondences between multiple views, as outlined below. 

Depth regularization is a popular paradigm in improving 3DGS 

NVS, with methods such as DNGaussian (J. Li et al., 2024), 

CoherentGS (Paliwal et al., 2025), and MVSGaussian (Liu et al., 

2024) using machine-learning aided monocular depth estimation 

to jointly optimize depth and the 3D Gaussians from the scene. 

On the other hand, Multi-View Regulated Gaussian Splatting 

(MVGS) (Du, Wang and Yu, 2024) enhances 3D Gaussian 

optimization by combining the gradients from camera intrinsics, 

camera extrinsics, and 3D Gaussian parameters across multiple 

views within a single loss function. This approach enables the 

simultaneous refinement of different images in a single iteration, 

improving consistency and rendering quality. Similarly, 

MVSplat (Chen et al., 2025) aggregates multi-view information 

through transformer-based feature extraction and 2D U-Net 

depth recovery, which are then projected to characterize the 3D 

Gaussians. DynSUP (W. Li et al., 2024) and Splatt3R (Smart et 

al., 2024) produce high-fidelity 3D renders from unposed image 

pairs, with the former using traditional dense bundle adjustment 

(BA) at an object-level, and the latter using cross-attention 

transformers to derive correspondences. Although these 

approaches improve photometric accuracy (as measured by 

PSNR, SSIM, and LPIPS), they are mostly evaluated in datasets 

with full six-degree-of-freedom (6-DoF) movement or highly 

convergent rays, which do not fully reflect the motion constraints 

in autonomous driving scenarios (Table 1). Furthermore, the use 

of bi-camera systems for Gaussian Splatting in multi-view 

reconstruction remains underexplored, highlighting the need for 

a more practical, easily integrable, and computationally efficient 

solution for non-holonomic scenarios. 

 

2.3 Proposed Bi-Camera System 

To overcome these challenges, we propose a novel bi-camera 

system consisting of two smartphones, one facing forward and 

one facing backwards. This configuration eliminates overlap 

between the cameras' fields of view, forming a loosely-coupled 

bi-camera system where the backward-facing camera is not used 

for triangulation, but rather to photometrically correct the renders 

generated by the forward-facing camera. Our contribution lies in 

exploring the potential of no-parallax, bidirectional setups for 

enhancing Neural View Synthesis (NVS) using Gaussian 

Splatting in the context of autonomous driving. By utilizing this 

complementary data, our approach offers a more data-efficient 

and computationally feasible solution for improved NVS, which 

can be seamlessly integrated into existing systems. 

 

Dataset Name Camera Description 

Mip-NeRF 360 Single camera, rotating around an 

object 

Tanks and Temples Single camera, 6DOF 

Deepblending Single camera, 6DOF 

DTU Single camera, 6DOF 

NeRF Synthetic  Single camera, close-bounded 

with circular movements 

NVS-RGBD Single camera, close-bounded 

with circular movements 

Table 1. Popular datasets used for photometric accuracy 

assessments for NVS. 

 

3. PRELIMINARY 

3.1 Structure from Motion through COLMAP 

Gaussian splatting intakes a set of posed images ℐ = {ℐ𝒾 ∣ 𝑖 =
1, … , 𝑁𝐼} and a sparse set of 3D points 𝒳 = {𝑋𝑘 ∈ 𝐑3 ∣ 𝑘 =
1 … 𝑁𝑋} which is obtained from a SfM adjustment through 

COLMAP (Schönberger and Frahm, 2016), which accepts an 

unordered set of images. First, feature extraction for each image 

is performed, resulting in correspondences 𝒞 between image 

pairs 𝐼𝑎 and 𝐼𝑎:  
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      𝒞 = {{𝐼𝑎, 𝐼𝑏} ∣ 𝐼𝑎, 𝐼𝑏 ∈ ℐ, 𝑎 < 𝑏} (1) 

 

Then after a two-view reconstruction, images are registered 

through a perspective-n-point (PnP) algorithm, obtaining the 

poses 𝑃𝑐  and camera intrinsics, if uncalibrated.  

 

      𝒫 = {𝑃𝑐 ∈ 𝑆𝐸(3) ∣ 𝑐 = 1 … 𝑁𝑃}  (2) 

 

Registered images must observe existing points and new scene 

points, which are added through triangulation. After a threshold, 

a bundle adjustment is performed to minimize the reprojection 

error, to prevent the reconstruction from drifting to a non-

recoverable state: 

 

    𝐸 = ∑ ρ𝑗 (||π(𝑃𝑐, 𝑋𝑘) − 𝑥𝑗||
2

2
)

𝑗

 

 

(3) 

where π is a perspective transformation, 𝑥𝑗 is the 2D image point, 

and ρ𝑗  is a loss function that reduces the influence of outliers. 

 

3.2 3D Gaussian Splatting 

In 3D Gaussian Splatting (3DGS), each point is represented by a 

3D Gaussian primitive, meaning it has a spatial extent, 

orientation, and shape. This helps in representing continuous 

surfaces rather than just discrete points. To describe the size, 

shape, and orientation of these Gaussians, each one is 

characterized by: a) a covariance matrix 𝛴, which controls scale 

and spread in all directions; b) a mean μ, which controls the 

position; c) spherical harmonic coefficients 𝐶, which control the 

color; and d) opacity α. The 3D Gaussian function on point 𝑥 in 

space can be represented as: 

  

         𝐺(𝑥) = 𝑒−
1
2 𝑥𝑇Σ−1 𝑥

 
(4) 

 

which results in a 3D volumetric and continuous representation 

of a scene. The covariance 𝛴 is parametrized as: 

 

       𝛴 = 𝑅𝑆𝑆𝑇𝑅𝑇  (5) 

 

to enable optimization using gradient descent and anisotropy of 

the Gaussians, which allows for high-fidelity representation of 

complex areas (many anisotropic 3D Gaussians) and compact 

representation of sparse scenes (fewer, larger 3D Gaussians). The 

Gaussians are initially initialized as isotropic points derived from 

the Structure-from-Motion (SfM) sparse point cloud. Tile-based 

rasterization is then performed by dividing the screen into tiles, 

and in each tile the Gaussians are ordered by depth. During the 

forward pass, color and 𝛼 are accumulated per pixel as Gaussians 

are blended front-to-back (α-blending). For backpropagation, the 

four parameters are optimized by comparing the render to the 

ground truth images, using a loss function that combines L1 

(absolute difference of rendered and true pixel value) and D-

SSIM (preserve higher-level structure of photo) for photorealism: 

 

           ℒ = (1 − λ)ℒ1 + λℒ𝐷−𝑆𝑆𝐼𝑀   (6) 

 

where λ = 0.2 is a hyperparameter that controls the balance 

between the two loss terms. Additionally, Gaussian Splatting 

implements adaptive density control, where it clones 3D 

Gaussians in underrepresented parts of the scenes and splits them 

in over-reconstructed areas. It also culls Gaussians that are below 

an opacity threshold to prevent artifacts. 

Currently, the original 3DGS source code employs a randomly 

ordered single-view training to optimize the parameters, which 

makes it susceptible to overfitting especially in non-holonomic 

trajectories where the images usually face only forward. 

Additionally, non-holonomic monocular trajectories can exhibit 

significant drift when inputted into SfM techniques due to low 

parallax between subsequent images (Zambra et al., 2024) for 

high and constant frame-rate systems, such as those used in 

autonomous vehicles. 

 

4. METHODOLOGY 

4.1 Data Collection 

Two Google Pixel 7 smartphones (GP7P1 – forward, GP7P4 – 

backwards) were used for this experiment, capturing images 

alongside UNIX timestamps via the SensorLogger app 

(Tszheichoi, 2024) at a frame rate of 30 FPS (Figure 2). The 

phones were mounted side by side on a cart with a short, 

uncalibrated baseline (Figure 3), and data collection took place 

indoors at the Schulich School of Engineering, University of 

Calgary using a forward-only trajectory with turns (Figure 4). 

Each smartphone underwent two data collection sessions at the 

2nd (ENGG2) and 4th (ENGG4) floors of the building, resulting 

in a total of four image sets which were downsampled (Table 2) 

to evaluate the proposed bi-camera system. The images were 

cropped to omit static parts of the photo (ie. the cart). Lastly, to 

achieve coarse time synchronization, images taken before the 

ego-cart was in motion were discarded. 

 
 

ENGG2 

 

GP7P1 

Forward 

  
GP7P4 

Backward 

  
 

ENGG4 
 

GP7P1 

Forward 

  
GP7P4 

Backward 

  
Figure 2: Sample images collected from the two smartphones. 
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Figure 3: The two-smartphone platform used for data collection. 

 

 ENGG2 ENGG4 

 Forward Backward Forward Backward 

Number 

Images 

2358 262 653 14 

Description With loops, feature-rich No loop corridor, with 

one turn 

Resolution 2125 × 2367 [pixels] 

Table 2: Metadata of each smartphone image set. 

 

 

 
Figure 4: The indoor trajectories for ENGG2 (top) and ENGG4 

(bottom). 

 

4.2 Data Preprocessing 

To mitigate reconstruction drift, forward-facing images were 

downsampled by a factor of four (resulting in 7.5 FPS) before 

being processed in COLMAP to extract image extrinsics and 

generate a sparse point cloud and prevent drift. The backwards 

facing images were downsampled at a higher rate to prevent 

artifacts from spawning in the forward-facing render. The 

original 3DGS implementation includes a COLMAP converter 

that outputs an image.txt file, which contains the image index, 

image filename, camera pose (represented as a quaternion and a 

3D translation vector), and 2D-3D correspondences. A 

corresponding /image directory stores all images used for 3DGS 

training. In this experiment, the methodology is summarized as: 
 

1. 

 

 

 

 
 

2. 

 

 

 
 

3. 

 

 

 

 
 

4. 

 

 
 

5. 

Downsample backward-facing images: A 

downsampling factor of 30 was heuristically found to be 

optimal for ENGG2 (a feature-rich environment with 

loops), while a factor of 90 worked best for ENGG4 (a 

straight corridor without loops). 
 

Establish temporal correspondence: After time 

synchronization, a mapping table was created to link 

forward-facing image timestamps (or indices) to their 

corresponding backward-facing images. 
 

Integrate backward-facing images: Using the 

COLMAP reconstruction, forward-facing images with 

corresponding backward-facing images were identified. 

The backward-facing images were then appended to 

image.txt with their poses locally rotated by 180°. 
 

Update the image dataset: The matched backward-

facing images were added to the /images directory for 

training. 
 

Train and compare reconstructions: Two separate 

3DGS training runs were conducted—one using only 

forward-facing images and another using both forward- 

and backward-facing images—to evaluate the impact of 

additional viewpoints on reconstruction quality. 

 

The baseline offset was not accounted for in data augmentation 

due to: (a) the inherent scale ambiguity in monocular COLMAP 

reconstructions, and (b) the flexibility of the four trainable 

parameters in 3DGS, which require only approximate initial 

values rather than exact ones. 

 

5. RESULTS 

The results show similar performance for the forward-facing 

renders (F1, F2, F3), with a minor loss of detail, particularly on 

glossy surfaces. However, a notable improvement is observed in 

the backward-facing render (B1, B2, B3) when both image sets 

are used across both data collection areas (Figures 5-6). The 

PSNR and SSIM metrics are summarized in Table 3. 

Qualitatively, the inclusion of backward-facing images acts as a 

'smoothing' mechanism, preventing the 3D Gaussians from 

becoming excessively sharp and anisotropic, which could 

otherwise lead to overfitting to the forward-facing images. 

Furthermore, bounded structures, such as pillars, are more 

accurately represented due to the constraints provided by both the 

forward and backward views. An especially noteworthy case 

occurs when turning a corner in ENGG4 (Figure 6, row 5), where 

the forward-only render is completely disintegrated, likely due to 

the drift in the camera extrinsic estimation while it is rotating. In 

contrast, using both image sets maintains photorealism, with the 

sofa remaining clearly distinguishable. 

 

 ENGG2 ENGG4 

 F FB F FB 

 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

F1 28.161 0.659 28.196 0.656 28.161 0.659 28.196 0.656 

F2 29.785 0.736 31.387 0.712 28.872 0.707 29.292 0.703 

F3 28.539 0.690 28.134 0.716 28.337 0.660 28.375 0.641 

B1 27.882 0.705 28.321 0.748 27.935 0.687 28.117 0.724 

B2 28.298 0.681 28.536 0.689 27.935 0.687 28.254 0.703 

B3 28.072 0.644 29.015 0.684 27.937 0.620 28.593 0.684 

Table 3: A comparison of the PSNR () and SSIM() for 

forward-only (F) vs. forward-and-backward renders (FB). 
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ENGG2 

3DGS Render from Forward 

Images Only 

3DGS Render from Forward 

and Backward Images 

  

  

  

  

  

  
Figure 5: Comparison of backward renders from the Forward-

Only and Forward-and-Backward 3DGS renders for ENGG2. 
 

ENGG4 

3DGS Render from Forward 

Images Only 

3DGS Render from Forward 

and Backward Images 

  

  

  

  

  

  
Figure 6: Comparison of the backward renders from Forward-

Only and Forward-and-Backward 3DGS renders for ENGG4. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1677-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1681



 

Additionally, a comparison of the 3D point clouds generated 

from 3DGS densification reveals that the forward-only model is 

more prone to artifacts (Figures 7-8). This leads to an excess of 

Gaussians acting as “embellishments” to overfit the forward-

facing view (Table 4). 

 

 

 
Figure 7: Comparison of 3DGS point clouds: forward-and-

backward results (top), and overlay of forward-only and 

forward-and-backward (bottom) for ENGG2. 

 

 

 
Figure 8: Comparison of 3DGS point clouds: forward-and-

backward results (top), and overlay of forward-only and 

forward-and-backward (bottom) for ENGG4. 

 

 ENGG2 ENGG4 

 Forward 

Only 

Forward- 

Backward 

Forward 

Only 

Forward-

Backward 

Number 

of Points 
670,962 444,957 853,692 833,626 

Number 

of Images 
2,358 2,620 653 667 

Table 4: The number of points contained in each resulting 

3DGS point cloud. 

 

In the closed loop environment of ENGG2, the forward only 

point cloud contained 50% more points than the forward-and-

backward render, showing that more points may not always be 

desired and can indicate overfitting. This demonstrates that 

quality in 3D reconstructions is not solely determined by the 

quantity of points, but by how effectively they represent the 

underlying scene. This finding underscores the importance of 

accounting for additional views to improve model generalization 

and reduce overfitting. 

 

6. CONCLUSIONS AND OUTLOOK 

In this paper, we have explored the limitations of traditional bi-

camera systems and the challenges posed by single-view training 

in 3D Gaussian Splatting (3DGS) for Neural View Synthesis 

(NVS). We introduced a novel bi-camera configuration utilizing 

forward- and backward-facing smartphone cameras to enhance 

3DGS reconstruction accuracy. Our approach leverages the 

complementary nature of the backward-facing camera, not for 

triangulation but for photometric correction, effectively 

mitigating artifacts and improving rendering consistency. By 

addressing the limitations of traditional forward-facing camera 

setups, our method provides an efficient and lightweight 

alternative to existing multi-view stereo and sensor fusion 

techniques, making it particularly well-suited for autonomous 

perception in constrained vehicular motion scenarios. 

Our results demonstrate that integrating a backward-facing 

camera into a smartphone-based system can significantly 

enhance NVS performance, especially in scenarios with limited 

training data or sparse-view configurations. The proposed 

method offers a cost-effective and scalable solution that 

minimizes the need for complex calibration while maintaining 

high reconstruction fidelity. Furthermore, by reducing reliance 

on computationally intensive machine learning models, our 

approach enhances real-time applicability and accessibility for 

autonomous driving systems and outdoor mapping applications. 

Future work in this area includes assessing the 3D reconstruction 

in addition to photometric accuracy, investigating the use of 

alternative viewpoints, such as side-facing or top-down 

configurations, and evaluating the system in outdoor driving 

scenarios. 
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