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Abstract

In space exploration missions, planetary rovers require precise navigation to ensure operational safety and efficiency. This paper
presents a novel visual-LiDAR odometry method designed specifically for planetary rovers, aiming to address the challenges of
accurate navigation in planetary environments that are GNSS-denied and characterized by low texture and unstructured surfaces.
By combining visual information from a monocular camera with the high-precision geometric measurements of the LiDAR sensor,
the system is capable of achieving accurate localization and pose estimation in a planetary-like scenario. Furthermore, the incor-
poration of ground segmentation for the LiDAR point cloud and the application of ground plane constraints can effectively alleviate
the attitude drift during the motion process, thereby enhancing the overall accuracy. Experimental results on the Erfoud dataset
show that the proposed system achieves positioning accuracies (i.e., absolute trajectory error) of 3.334% and 3.869% over the full
trajectory length of two sequences, outperforming state-of-the-art methods. This research provides a promising solution for the
autonomous navigation of planetary rovers in complex environments.

1. Introduction

Planetary rovers play a pivotal role in space exploration, en-
abling in-situ scientific data acquisition, geological analysis,
and the search for extraterrestrial life (Wang et al., 2017). Most
planetary missions have successfully deployed rovers for geo-
logical surveys and sampling (Lai et al., 2020). Precise nav-
igation and localization are critical for rovers. However, the
absence of a Global Navigation Satellite System (GNSS) and
significant communication delays with Earth pose substantial
challenges to real-time high-precision positioning (Kaichang et
al., 2018). Consequently, rovers rely on autonomous navigation
systems for path planning and obstacle avoidance in unknown
environments, ensuring safe and efficient exploration.

Dead reckoning (DR), utilizing Inertial Measurement Units
(IMU) and wheel odometers, is widely adopted in planetary
rovers (Green and Sasiadek, 1998). However, drift errors are ac-
cumulated over long distances using IMU as odometry, and the
loose soil and rugged terrain of planetary surfaces often cause
wheel slippage, reducing accuracies of DR to approximately
10% of the traveled distance (Ali et al., 2005, Jia et al., 2022,
Sicong et al., 2022). In recent years, Visual Odometry (VO)
has been employed in rovers, achieving higher localization ac-
curacy through feature matching and tracking in camera im-
ages (Andolfo et al., 2022, Maimone et al., 2007). VO systems
enhanced with optimization and mapping modules are referred
to as Visual Simultaneous Localization and Mapping (SLAM),
which performs loop closure and global optimization to correct
accumulated errors, maintaining long-term accuracy (Cheng et
al., 2022, Xia et al., 2021). These features make VO and SLAM
prominent techniques in autonomous rover navigation.

Planetary surfaces, characterized by low texture and significant
illumination variations, present challenges for visual sensors,
including feature extraction errors, inaccurate depth estimation,
and unreliable terrain mapping in low-contrast scenes. These
challenges are exacerbated in key exploration areas, such as
the Moon’s south pole, where permanently shadowed regions

(PSRs) lack direct sunlight, rendering optical cameras inef-
fective for navigation (Brown et al., 2022). Light Detection
and Ranging (LiDAR) systems, unaffected by lighting con-
ditions, provide high-precision 3D coordinates and real-time
dense point cloud maps, offering significant advantages for
obstacle detection and navigation (Guo et al., 2022, Li et al.,
2024). LiDAR has been utilized for precise planetary land-
ings and is considered essential for exploring PSRs (Cremons,
2022). However, the largely unstructured planetary surfaces of-
ten lack sufficient geometric features, leading to the degener-
acy of LiDAR-only systems in open and unstructured environ-
ments (Ebadi et al., 2023). Moreover, planetary rover traject-
ories rarely form loops, making SLAM loop closure ineffective
and computationally costly (Xia et al., 2023). Consequently,
odometry is mainly used for short-range navigation due to its
weakness in dealing with long-distance localization.

Visual-LiDAR fusion odometry integrates the advantages of
both sensors and has demonstrated remarkable robustness and
accuracy in terrestrial environments (Zhu et al., 2023). Nev-
ertheless, achieving comparable performance under feature-
sparse planetary conditions remains a significant research chal-
lenge. To address these limitations, this study proposes a visual-
LiDAR fusion odometry method tailored for extreme planetary
environments, which takes full advantage of the complementary
strengths of a monocular RGB camera and LiDAR, enhances
the robustness and reliability of the system, and achieves stable
and accurate autonomous positioning.

The main contributions of this paper are summarized as follows:

• We propose a monocular camera-LiDAR fusion odometry
pipeline for high-precision rover localization, validated on
the Erfoud planetary simulation dataset.

• Through ground constraints between LiDAR point clouds
and tight coupling between multiple sensors, sensor de-
generacy in unstructured planetary environments is sup-
pressed, and vertical trajectory drift is effectively reduced.
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2. Related Work

2.1 Localization Methods for Planetary Rovers

Global localization directly determines the absolute position of
the rover on a global map (Tian et al., 2024). Celestial nav-
igation is the most straightforward global localization method,
using solar sensors or star trackers to determine the direction
of the Sun or the positions of stars for localization (Yang et al.,
2014). Another solution is to utilize satellite communication
for global localization, where an orbiter maintains a connection
with the rover to achieve precise positioning (Jun et al., 2022).
The matching of Planetary Remote Sensing Images (PRSI) can
also be used for the navigation and positioning of rovers, but it
requires more computing resources and time (Wan et al., 2025).
Landmark-based matching is another representative approach,
where the rover’s acquired data is matched with global inform-
ation provided by orbiters or satellites for localization (Daftry
et al., 2023). Lunar or Martian craters are the most commonly
used landmarks, and their recognition in images enables nav-
igation when matched with satellite maps (Ye et al., 2025). At
present, multi-source remote sensing image-matching techno-
logies in the field of planetary exploration have begun to at-
tract widespread attention (Huang et al., 2024). Some research-
ers have also proposed suggestions for cooperation between
rovers and orbiters to improve the accuracy of VO. (Sasaki et
al., 2020). However, this method does not provide the detailed
information required for accurate navigation and is dependent
on communications between the Earth and the rover.

Relative localization determines the rover’s position by comput-
ing its cumulative motion between consecutive frames. In plan-
etary rover missions, the accuracy of wheel odometry is often
affected by wheel slippage; therefore, it is typically combined
with IMU to enhance accuracy and reliability (Kaichang et al.,
2021). VO estimates motion based on 3D geometric structures
obtained from stereo images rather than velocity measurements,
determining the rover’s movement relative to its starting posi-
tion (Maimone et al., 2007). However, in feature-sparse planet-
ary terrains, this method is prone to accumulating localization
errors. Moreover, harsh lighting conditions, low-texture envir-
onments, and hardware constraints further exacerbate error ac-
cumulation challenges (Harrell et al., 2021).

2.2 Visual-LiDAR Odometry

By integrating the rich texture information from visual sensors
with the high-precision depth perception of LiDAR, visual-
LiDAR-based odometry methods significantly enhance system
robustness and localization accuracy (Wu et al., 2021), par-
ticularly in planetary environments with poor lighting condi-
tions and sparse textures (Xie et al., 2023). DEMO (Zhang et
al., 2017), a depth-enhanced VO method, fused depth inform-
ation to improve localization accuracy while maintaining real-
time processing capabilities. LIMO (LiDAR-Monocular Odo-
metry) (Graeter et al., 2018) combined LiDAR point clouds
and monocular images to achieve robust VO, demonstrating
good adaptability in sparse observation environments. Bey-
ond point cloud-based approaches, geometric primitives such
as lines can also be used in monocular VO to enhance local-
ization performance in complex environments (Huang et al.,
2020). By integrating depth features and loop closure detection,
tightly coupled visual-LiDAR odometry methods significantly
improve accuracy and robustness in dynamic and uncertain en-
vironments (Meng et al., 2022). These studies provide strong

evidence for the feasibility of visual-LiDAR odometry methods
in planetary rover navigation under complex space conditions.
However, existing visual-LiDAR odometry systems designed
for terrestrial urban environments fail to adequately address two
critical challenges in feature-sparse, unstructured planetary sur-
face scenarios: cumulative drift and sensor degeneracy (Chi-
odini et al., 2021, Li et al., 2022). SLAM usually employs
loop closure to correct accumulated errors. However, planetary
rovers seldom backtrack their paths, thereby limiting the ap-
plicability of this method (Kaichang et al., 2021). Furthermore,
due to inherent computational limitations in space systems and
stringent certification procedures, SLAM has not yet been ap-
plied in actual space missions (Geromichalos et al., 2020).

3. Methodology

The proposed fusion-based odometry method consists of a
depth-enhanced VO module and a ground-constraints LiDAR
odometry (LO) module, as shown in Figure 1.

Figure 1. Flowchart of the proposed pipeline.

To address sensor degeneracy and odometry drift issues in the
weakly textured, unstructured environment of planetary sur-
faces, we propose an improved approach that achieves low-
drift, 6 degree-of-freedom (DOF) pose estimation. The visual-
LiDAR odometry module receives images Ik and LiDAR point
clouds Pk as inputs. Through feature extraction and matching,
image feature points between adjacent frames Ik and Ik−1 are
tracked to estimate the changes in x, y displacements, and yaw
angle. The LiDAR point cloud Pk undergoes ground segment-
ation to obtain the ground plane point cloud P gr

k . Fusing the x,
y displacement and yaw angle estimates from VO, the z, pitch,
and roll angle variations are estimated by registering P gr

k with
P gr
k−1, resulting in the complete frame-to-frame transformation

T k
k−1.

3.1 Depth-Enhanced Visual Odometry

On planetary surfaces, the lack of significant textures makes
it highly challenging to accurately reconstruct pixel depths
through disparity and triangulation, especially when using mon-
ocular cameras, as in the proposed system. To overcome this,
we leverage the high-precision distance measurement capab-
ilities of the LiDAR sensor. By applying the intrinsic matrix
K of the camera and extrinsic transformation TC

L between the
LiDAR coordinate system L and the camera coordinate system
C, using Eq. 1 we project the LiDAR point cloud into the image
frame to generate a depth map.

P I
k = K · TC

L · PL
k (1)
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where PL
k represents the 3D coordinates of the LiDAR point

cloud in the LiDAR coordinate system, and P I
k is the 3D co-

ordinates of the LiDAR point cloud in the image coordinate
system, with the z-axis value representing the pixel depth.
Through this projection, we combine the high-precision depth
information from LiDAR with the image features, generating a
depth-enhanced VO system. Figure. 2 illustrates an example of
projecting LiDAR points onto the image plane coordinate of the
corresponding camera frame.

Figure 2. Illustration of LiDAR point cloud projection onto the
image plane.

For the same feature point Xi in k frames (Xk
i ) and k − 1

(Xk−1
i )there are:

Xk
i = Rk

k−1X
k−1
i + tkk−1 (2)

where Rk
k−1 is the rotation matrix between adjacent frames,

and tkk−1 is the translation vector, transformationTk
k−1 =

(Rk
k−1|tkk−1). Subsequently, we use nonlinear least squares op-

timization to estimate the pose transformation:

min
Rk

k−1
,tk

k−1

(
∑
i

∥∥∥Xk
i −Rk

k−1X
k−1
i + tkk−1

∥∥∥2

) (3)

By Eq.3, we get the optimal transform between adjacent frames.

3.2 Ground-constraints LiDAR Odometry

Although LiDAR point clouds provide high-precision depth in-
formation, the point densities are low, especially in the vertical
direction. In unstructured environments with a lack of vertical
features, there can be substantial depth differences between ad-
jacent LiDAR points. This leads to considerable pose drift
along the z-axis, roll and pitch directions when using VO.
To address this issue, we introduce ground-plane constraints
for LiDAR point clouds. We adopted the idea of LEGO-
LOAM (Shan and Englot, 2018) and utilized the ground plane
information. Firstly, we performed clustering and segmenta-
tion on the collected point cloud to separate the ground point
cloud P gr and filter out the abnormal points. We treat the en-
tire ground plane as a unified feature rather than extracting in-
dividual feature points. Figure. 3 illustrates the schematic dia-
gram of ground point cloud segmentation for a single frame of
LiDAR point cloud.

For each point P gr
i on the ground plane, we construct a point-

to-plane residual and directly estimate the optimal pose trans-

Figure 3. Illustration of the ground segmentation result of
LiDAR point cloud. The yellow points represent the segmented

ground points.

formation T using the ICP (Iterative Closest Point) algorithm,
as defined in Eq. 4.

min
Tk

k−1

n∑
i=1

∥P gr
k,i −Tk

k−1P
gr
k−1,i∥

2 (4)

where P gr
k,i and P gr

k−1,i are the i-th points from the ground-plane
point clouds in the current and previous frames, respectively,
and Tk

k−1 is the pose transformation between the frames k and
k−1. When vertical drift occurs, the point-to-plane distance un-
dergoes significant changes, providing an effective constraint in
the vertical direction. Furthermore, since feature point extrac-
tion is not required, this approach reduces computational com-
plexity and improves processing efficiency, making it more suit-
able for planetary rovers with limited computational resources.
In this process, the initial value of Tk

k−1 is obtained from the
VO module, as described in Eq. 3.

It is important to note that during the solution of Eq. 4, only
the vertical components of Tk

k−1 (i.e., z, roll, and pitch) are
iteratively optimized, while the horizontal components (i.e., x,
y, and yaw) are kept fixed. This is because, on planetary sur-
faces, the environment is vast and featureless, resulting in weak
horizontal constraints from the LiDAR sensor, which can lead
to catastrophic drift in the horizontal pose components, a phe-
nomenon known as degeneracy. Therefore, with this specially
customized pose coupling strategy, we use ground-plane con-
straints to optimize only the vertical component of the VO res-
ult, avoiding degeneracy while improving positioning accuracy.

4. Experiments

4.1 Experimental Dataset

We use the Erfoud dataset (Lacroix et al., 2020) to evaluate
the performance of the proposed method. This dataset was
collected at three Mars-analog sites in the Tafilalet region of
Morocco. We selected two sequences recorded using a stereo
navigation camera and a Velodyne HDL-32 LiDAR: Traject-
ory21re1 and Trajectory22re3, with travel distances of 622.071
m and 919.628 m, respectively. These distances exceed the
autonomous driving ranges of all the landed planetary rovers,
providing an ideal test case for validating our method. Since
our visual module is based on monocular vision, we only use
images from the left camera. The environment in the Erfoud
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dataset closely resembles the actual Martian landscape (Fig-
ure 4), characterized by low texture, open, and unstructured
terrain, making it well-suited for the needs of our research.

Figure 4. The Erfoud dataset collection environment compared
to the actual Martian landscape. (a) shows the scene in

Trajectory21re1. (b) shows the scene in Trajectory22re3. (c)
shows a real Martian image captured by the “Perseverance”

rover, which successfully landed on Mars in 2021.

4.2 Evaluation Criteria

4.2.1 Odometry Trajectory Evaluation To assess the ac-
curacy of a SLAM system, we evaluate its performance by com-
paring the estimated trajectory with the ground truth trajectory.
The Absolute Trajectory Error (ATE) is adopted as the primary
metric to quantify the deviation between the estimated traject-
ory and the ground truth at the same timestamp. The Root Mean
Square Error (RMSE) of ATE is used to summarize the overall
trajectory deviation. Specifically, for the i-th frame, the ATE
RMSE is defined as:

ATERMSE =

√√√√ 1

N

N∑
i=1

∥test
i − t

gt
i ∥2 (5)

where N is the total number of frames, and test
i and t

gt
i denote

the estimated and ground truth translational components of the
i-th frame, respectively.

4.2.2 Degeneracy Evaluation Degeneracy in odometry
systems refers to situations where the system fails to fully con-
strain the optimization problem, leading to unreliable pose es-
timates. Current methods for detecting degeneracy are primar-
ily based on analyzing the properties of the Hessian Matrix used
in nonlinear least-squares optimization. Some researchers pro-
poses using the minimum eigenvalue (λmin) of the Hessian mat-
rix as an indicator of degeneracy (Zhang et al., 2016). They
argue that a smaller λmin suggests a higher likelihood of degen-
eracy, as it implies that the system is less constrained in certain
directions. Although this method is intuitive, other research-
ers points out that the physical interpretation of eigenvalues
is often unclear, and their measurement can be challenging in
practice (Zhen and Scherer, 2019). Moreover, the eigenvalue-
based methods for detecting degeneracy in LiDAR systems are
limited due to their sensitivity to environmental factors, such
as measurement noise and the number of valid points in point
cloud registration. Therefore, the current mainstream idea is
to use the condition number (κ(H)) of the Hessian matrix to
evaluate degeneracy (Hinduja et al., 2019).

κ(H) =
λmax

λmin
(6)

where λmax and λmin are the maximum and minimum eigenval-
ues of the Hessian matrix H, respectively. A larger condition
number indicates a higher likelihood of degeneracy. Compared
to the single eigenvalue detection method, the condition number
approach emphasizes the overall conditioning of the optimiza-
tion problem, making degeneracy more pronounced while re-
ducing the influence of environmental variables, such as noise
and point cloud density.

5. Experimental Result

To comprehensively evaluate the performance of the proposed
algorithm, we conducted comparative experiments on the Er-
foud dataset against VLOAM (Zhang and Singh, 2015), a rep-
resentative visual-LiDAR fusion SLAM algorithm known for
its strong performance in terrestrial environments. Table 1
presents the RMSE of the ATE for both methods on the Erfoud
dataset, while Figure 5 illustrates the estimated trajectories on
the Trajectory21re1 and Trajectory22re3 sequences. The exper-
imental results show that the proposed algorithm achieves lower
ATE RMSE values on the two sequences, which are 20.739m
and 35.584m respectively. Compared with the full length of the
ground truth trajectory, the errors are only 3.334% and 3.869%
respectively, which is significantly better than VLOAM. The
ATE RMSE of VLOAM is 57.417m and 246.531m respect-
ively, and the errors reach 9.230% and 26.808% of the trajectory
length. For planetary exploration missions, this is completely
unacceptable level of accuracy. The performance gap is largely
attributed to the challenges posed by large-scale, open, and flat
environments, where LiDAR point clouds exhibit a concentric
circular distribution with minimal geometric features and weak
curvature variations. This makes it difficult to accurately extract
edge and flat points, when enforcing feature extraction would
result in high noise levels in the feature extraction results. As
shown in Figure 6, even though the motion between consecut-
ive frames is extremely small and the distribution structure of
the point cloud remains almost the same, the extracted features
are inconsistent, and a large number of feature points that do
not actually correspond to each other are forced to be matched,
which brings a large amount of error to the feature matching.
If this phenomenon is to be ameliorated, sufficient a prior in-
formation is needed to continuously adjust the parameters of
the feature extraction and matching process, which is difficult
to achieve in real planetary exploration missions.

Table 1. Comparison of the localization accuracy of different
odometry methods with ATE RMSE (m) using the Erfound

dataset.

VLOAM Ours

Trajectory21re1 57.417 20.739
Trajectory22re3 246.531 35.584

VLOAM was able to maintain the approximate shape of the tra-
jectory similar to the ground truth during the initial phase of the
Trajectory21re1 sequence, despite the inaccuracy of the estim-
ated rover’s position. However, the effectiveness of its initial
attitude guidance diminishes as VO drift accumulates, eventu-
ally leading to the degeneracy of the system at a later stage. In
the Trajectory22re3 sequence, an abrupt turn at the beginning
prevented the VO from providing effective guidance, leading
to a noticeable degeneracy directly across the trajectory. By
leveraging the superior horizontal constraints of VO, our sys-
tem guides LO in estimating horizontal poses, thereby enhan-
cing localization accuracy. Figure 7 illustrates the distribution
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Figure 5. Results of trajectory estimation from different
odometry methods in Erfoud dataset. (a) is Trajectory21re1. (b)

is Trajectory22re3.

Figure 6. The figure shows LiDAR point distribution in the
Erfoud dataset and feature extraction results from VLOAM.

Orange and purple points represent current and previous frame
LiDAR points, while large red and blue points denote their
respective feature points. Despite minimal motion between
frames, the feature extractions are significantly different.

of the Hessian matrix condition number before and after apply-
ing the visual-LiDAR pose fusion in the nonlinear least squares
optimization of LO. Results indicate a significant reduction in
condition numbers, from 38.73–495.46 to 6.67–60.55 on Tra-
jectory21re1, and from 56.25–408.30 to 37.46–16.20 on Tra-
jectory22re3. This demonstrates that the multi-sensor fusion
effectively mitigates odometry degeneracy between frames, sig-
nificantly improving system robustness.

Figure 7. Condition number of the hessian matrix with and
without visual fusion.

Additionally, the introduction of ground plane constraints ef-
fectively suppresses pose drift in the z-axis, roll, and pitch dir-
ections for depth-enhanced VO. By treating the entire ground
plane as a single feature and constructing point-to-plane resid-
uals, the system provides strong vertical constraints, as any ver-
tical drift results in a noticeable change in point-to-plane dis-
tances. Table 2 shows the RMSE of drift along the z-axis direc-
tion relative to the ground truth, which visually demonstrates
the effectiveness of the ground-plane point cloud constraints
in suppressing vertical pose drift in depth-enhanced VO. The
”Without Constraints” results are derived from the pose estim-
ation obtained through depth-enhanced VO (Eq. 3), while the
”With Constraints” results are obtained from the final pose es-
timation (Eq. 4), with the calculation method following Eq. 5.
As seen, the ground-plane constraints effectively limit the drift
in the vertical direction within a reasonable range. Specifically,
with the ground-plane point cloud constraints, the vertical drift
in Trajectory21re1 decreases from 40.730 m to 2.168 m, a re-
duction of approximately 95%. Similarly, in Trajectory22re3,
the drift decreases from 46.120 m to 3.421 m, a reduction of
about 93%. These results clearly demonstrate the significant
impact of the ground-plane constraints. These findings validate
the effectiveness of our point cloud ground segmentation and
constraints in reducing vertical drift, ensuring that the cumulat-
ive error across the entire trajectory remains within an accept-
able range.

Table 2. The localization results of methods with and without
ground constraints with RMSE (m) in z-axis using the Erfound

dataset.

Without constraints With constraints
Trajectory21re1 40.730 2.168
Trajectory22re3 46.120 3.421

Experimental results indicate that existing SLAM systems face
two major challenges in planetary surface environments: (1)
LO degeneracy in large-scale, open scenes due to sparse fea-
tures; and (2) VO suffers from unstable feature tracking in low-
texture environments. The proposed algorithm effectively ad-
dresses these issues through tightly coupled visual-LiDAR fu-
sion and planar constraints. Specifically, LO utilizes ground
plane features to provide vertical constraints, while VO en-
hances the horizontal constraints, mitigating the random drift
in LO. Although the proposed algorithm demonstrates excellent
performance on the Erfoud dataset, certain limitations remain.
Future improvements include reducing computational overhead
to achieve a more lightweight system, integrating multi-sensor
data into a joint back-end optimization framework to enhance
robustness and localization accuracy, and reconstructing maps
of the exploration scene for planetary rover obstacle avoidance.
This study demonstrates the system’s strong potential for real-
world deployment in planetary rover navigation and localiza-
tion tasks. Further research will focus on translating this poten-
tial into practical applications.

6. Conclusion

We propose a visual-LiDAR fusion odometry method specific-
ally designed for planetary environments. By incorporating
ground-plane constraints from LiDAR point clouds, the method
effectively suppresses pose drift in planetary rovers operating
on weakly textured and open, unstructured terrains. By closely
integrating the horizontal constraints from VO measurements
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with the vertical constraints from LO measurements, effect-
ively addressing the problem of sensor degeneracy, and signi-
ficantly enhancing the robustness of the system. Experiments
on the Erfoud dataset, a planetary surface simulation environ-
ment, validate the effectiveness of the proposed improvements
and confirm the algorithm’s applicability to planetary surface
scenarios. This research provides strong technical support for
the autonomous navigation and localization of planetary rovers,
showing substantial potential for future applications in space
exploration.
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