
TADNet: A Time and Attention-Based Point Cloud Denoising Network for
Autonomous Driving in Adverse Weather

Yidan Zhang 1, He Huang 1, Xinyuan Yan 1, Yu Liang 1, Yida Li 1,Junxing Yang 1*

1 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing, China-
zhangyidan0925@gmail.com,huanghe@bucea.edu.cn,yan1075783878@126.com,yu748240@gmail.com,yida.li@foxmail.com,yangj

unxing@bucea.edu.cn

Keywords: autonomous driving, LiDAR, adverse weather, point cloud denoising, deep learning.

Abstract

Lidar technology is widely used in the field of autonomous driving by virtue of its high precision. However, under special weather
conditions such as rain, snow, fog, etc., suspended particles in the air can contaminate the point cloud data collected by LIDAR,
which leads to a significant performance degradation of the vehicle sensing system and increases the driving safety risk. To address
this problem, we propose A Time and Attention-Based Point Cloud Denoising Network for Autonomous Driving in Adverse
Weather (TADNet). The method is based on the 3D-OutDet network with the addition of Convolutional Block Attention Module
(CBAM), which highlights important features and suppresses minor ones. The original ResNet base network architecture is changed
to Temporal-Bottleneck ResNet (TB-ResNet) to improve the network's ability to recognize rain, snow and fog noise. We conducted
comparative experiments between the TADNet method proposed in this paper and the filter-based point cloud denoising method and
the deep learning-based point cloud denoising method. The experimental results show that the denoising effect of TADNet in three
kinds of bad weather, namely rain, snow and fog, is better than other methods, which can remove different kinds of noise with
different intensities and retain the environmental features, and has the best performance of IoU and MIoU in all kinds of weather
conditions.

1. Introduction

With the continuous advancement of autonomous driving
technology, vehicles have been able to realize autonomous
driving in most scenarios. However, under special weather
conditions such as snow, rain, and fog, LiDAR's perception
performance suffers, which in turn affects its accuracy.
Therefore, enhancing the perception performance of LiDAR in
bad weather conditions has become a key issue to be solved in
the field of autonomous driving.

Currently, laser point cloud denoising techniques mainly
include two categories: traditional filtering methods and deep
learning methods.In 2011, Rusu and other researchers proposed
two well-known filtering algorithms: the Radius Outlier
Removal (ROR) and the Statistical Outlier Removal (SOR)
(Rusu & Cousins, 2011). Both algorithms are based on the
premise that noisy points usually exist in isolation.The ROR
algorithm calculates the number of neighbors of each point by
counting the number of neighboring points within a set radius,
and if the number is lower than a preset threshold, the point is
determined to be noisy.The SOR algorithm, on the other hand,
iteratively calculates the average of the distances between each
point and its K nearest neighbors and compares them with the
global distance mean and standard deviation, and if the average
exceeds a set global threshold, the point is determined to be a
noisy point. However, relying only on the premise of noise
point isolation may ignore environmental features, so Charron
et al. proposed the Dynamic Radius Outlier Removal (DROR)
algorithm in 2018 (Charron et al., 2018).The DROR algorithm
optimizes the ROR by setting a threshold for each point based
on its distance from the sensor and the horizontal angular
resolution of the laser dynamically changes the search radius. In
this way, DROR solves the problem of misclassification that a
fixed radius may lead to in long-range low-density areas, while

retaining key environmental feature points and effectively
removing noise. Similar to DROR, the Dynamic Statistical
Outlier Removal (DSOR) filtering algorithm was proposed by
Kurup et al. in 2021 (Kurup & Bos, 2021), which improves on
SOR.DSOR overcomes the limitation of SOR in dealing with
non-uniform point cloud density by dynamically adjusting the
threshold value and achieves better denoising effect. In addition
to the spatial characteristics of the noise points, researchers have
also found the intensity characteristics of the noise
points.Huang et al. proposed the Low-Intensity Dynamic
Statistical Outlier Removal (LIDSOR) filter in 2023 (Huang et
al., 2023), which is an improvement of DSOR. LIDSOR added
distance and intensity threshold parameters to optimize point
cloud filtering. In recent studies, researchers have also
introduced temporal characterization of noise points.2024 Yan
et al. proposed a denoising framework for snowy point clouds
based on the disordered nature of snowflakes (Yan et al., 2024).
This framework contains the Time Outlier Removal (TOR)
filter. Its core idea is to let the ordered objects strengthen each
other while let the disordered objects weaken each other. The
experimental results prove that it not only removes the
disordered snowflakes from the air, but also removes some
other disordered noise points, which provides a favorable
guarantee for the realization of autopilot in snowy days.

Although traditional denoising methods can be directly applied
to 3D sparse point cloud data, they are often limited by preset
fixed parameters, which leads to unsatisfactory denoising results
when the point cloud density increases. Therefore, deep learning
technology in the field of point cloud denoising gradually
highlights its advantages, and has made significant progress.
Currently, the networks for denoising point clouds for severe
weather are mainly divided into two categories: one is for
eliminating rain and fog noise points, and the other is for
eliminating snow noise points.Heinzler et al. firstly applied
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convolutional neural network to the field of point cloud
denoising in 2020, and proposed WeatherNet(Heinzler et al.,
2020).In 2022, Luo et al. proposed SunnyNet based on
WeatherNet (Luo et al., 2022), which is a semantic
segmentation network for removing rain and fog noise from
point clouds. By introducing attention modules such as SENet
(Szegedy et al., 2014), CBAM (Woo et al., 2018), and ECANet
(Wang et al., 2020), SunnyNet is able to focus more on features
in specific regions, which, in turn, improves the performance of
recognition differentiation under rainy and foggy conditions.
Meanwhile, point cloud denoising networks specifically
designed for snowy days are gradually starting to be proposed.
liSnowNet is a CNN-based unsupervised denoising network
released in 2022 (Yu et al., 2022) for processing LiDAR point
cloud data damaged by snowflakes. Previous research has
focused on point cloud denoising networks for one or two
severe weather conditions, and in order to broaden the
application scope of the network, researchers have developed a
variety of integrated networks to cover more kinds of severe
weather denoising needs. In 2023, Seppänen's team developed
SMEDNet (Seppänen et al., 2023), a technique that filters out
valid echoes of targets from LiDAR multi-echo data while
excluding noise caused by airborne particles (e.g., rain, snow,
fog, etc.).SMEDNet utilizes self-supervised learning to generate
a clean point cloud without precise labeling in inclement
weather Data. More recent works are 3D-OutDet proposed by
Raisuddin et al. in 2024 (Raisuddin et al., 2024) and
AdverseNet proposed by Yan et al. in 2025 (Yan et al.,
2025).AdverseNet adopts Cylindrical Tri-Perspective View
representation to represent the point cloud, and uses the
Cylindrical Tri-Perspective View representation. method to
represent the point cloud and uses a two-stage training strategy.
In the first training phase, generic features of rain, snow and fog
noise points are learned; in the second training phase, weather-
specific features are learned. While traditional deep learning
methods usually rely on MLP or standard convolution
operations, 3D-OutDet reduces computational requirements and
maintains efficient denoising performance by directly
convolving the neighborhood.However, the network suffers
from deficiencies in the functionality of determining major
spatial regions and lacks the ability to capture key information
about the time series.

Therefore, we propose A Time and Attention-Based Point
Cloud Denoising Network for Autonomous Driving in Adverse
Weather (TADNet) based on our previous research on the
characteristics of rain, snow, and fog noise point distribution.
We add the Convolutional Block Attention Module (CBAM) to
the 3D-OutDet network and change the original ResNet base
network architecture to Temporal-Bottleneck ResNet (TB-
ResNet), in order to improve the network's rain, snow and fog
noise Recognition ability. The main contribution of this study is:

1. We propose TADNet, a point cloud denoising network
capable of simultaneously handling three types of severe
weather, namely rain, snow and fog.
2. TADNet integrates the CBAM attention mechanism, which
dynamically adjusts the feature map channel importance
through channel attention, while spatial attention captures the
feature map spatial saliency.
3. TADNet enhances time series feature capture, effectively
extracts continuous frame context information, and improves
the recognition accuracy of time series noise point patterns and
features.

2. Methodology

2.1 NeighborHood (NH) Convolution

Most of the existing point cloud processing methods rely on
multilayer perceptron (MLP) or convolutional neural network
(CNN), but these methods suffer from high computational
complexity and memory consumption when processing point
cloud data. To solve these problems, we apply a new
convolution operation, NeighborHood (NH) Convolution,
which deals only with nearest neighbor points, thus reducing
computational complexity and memory consumption.The core
idea of NH Convolution is to directly perform a convolution
operation on the point cloud's nearest neighbors of the point
cloud, rather than through complex approximation or learning
of convolution kernels. Specifically: for each point in the point
cloud, its k nearest neighbors are found using the kNN (k-
Nearest Neighbors) algorithm. Apply the convolutional kernel
to these nearest neighbors instead of the entire point cloud.

The traditional convolution formula:

� ∗ � � = −∞
∞ � � � � − �� , (1)

Where，� is the convolution kernel,� is the data, and � is the
position in the data.
NH Convolution formula:

� ∗ � �ℎ � = −∞
∞ � � � ��� � − �� , (2)

Where,��� � denotes the nearest neighbor of the point.

2.2 TB-ResNet

In this study, the original ResNet base network architecture is
changed to Temporal-Bottleneck ResNet (TB-ResNet).The core
idea of TB-ResNet is to retain the temporal dimension through
(Temporal-Bottleneck Residual Block, TB-ResBlock) the
information. While the traditional ResNet residual block
(ResBlock) reduces the spatial dimension (including the
temporal dimension) by convolution operation, TB-ResBlock
recovers the temporal dimension by introducing transposed
convolution, which avoids the loss of temporal information.
The structure of TB-ResBlock is as follows:

� = ���� �2 �1 � + � � , (3)

Where:�1 is a 3×3 convolution operation with step size (S,2)
followed by Batch Normalization (BN) and ReLU activation
function.�2is a 3×3 transposed convolution operation with step
size (1,2) followed by Batch Normalization. � � is a skip
connection.If the dimension of the input x matches the
dimension of �2 �1 � ,then � � is a constant
mapping;Otherwise, � � is a 1× 1 convolution operation for
dimension adjustment.

2.3 CBAM（Convolutional Block Attention Module）

To further improve the denoising accuracy, the features of
CBAM Attention Module are selectively enhanced and
incorporated into TADNet. The feature representation capability
is enhanced by (Channel Attention Module,CAM) and (Spatial
Attention Module,SAM).CBAM sequentially infers the
attention maps along two independent dimensions (channel and
spatial) and then multiplies the attention maps by the input
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feature maps for adaptive feature modification.As shown in Fig.
1.

Figure 1 Convolutional Block Attention Module.

Channel Attention Module（CAM）

�� � = � ��� ������� � + ��� ������� �

= � �1 �0 ����
� + �1 �0 ����

� , (4)

As shown in Fig. 2, the input feature map F (H×W×C),where
C is the number of channels, and H and W are the height and
width, respectively. Global max pooling and global average
pooling are performed for each channel to obtain two 1 × 1 ×
C vectors, and these two operations capture the global
information and salient features of the channel, respectively.
Next, the results of GAP and GMP are each passed through a
shared two-layer fully connected network (MLP), where the
number of neurons in the first layer is C/r (r is the reduction rate)
and the activation function is Relu, and the number of neurons
in the second layer is C. And after that, the features outputted
from the MLP are subjected to element-wise based summing
operation and sigmoid activation operation to generate the final
channel attention feature, i.e., M_c. Finally, element-wise
multiplication operation is done between M_c and the input
feature map F to generate the input features required by the
Spatial attention module.

Figure 2 Channel Attention Module.

Spatial Attention Module（SAM）

�� � = � �7×7 ������� � ; ������� �
= � �7×7 ����

� ; ����
� , (5)

As shown in Fig. 3, the feature map F' output from Channel
attention module is used as the input feature map of this module.
First do a channel-based global max pooling and global average
pooling to get two H×W×1 feature maps, and then these 2
feature maps are subjected to a splicing operation based on
channel. Then go through a 7× 7 convolution operation to
downsize to 1 channel, i.e.,H×W×1.Then go through sigmoid
to generate spatial attention feature, i.e., M_s. Finally do
multiplication between this feature and the input feature of the
module to get the final generated feature.

Figure 3 Spatial Attention Module

2.4 TADNet Design

Our proposed point cloud denoising network TADNet applied
to rain, snow and fog is shown in Fig. 4. It consists of several
modules, including customized convolution blocks
(NHConvBlock) and convolution operations (NHConv), which
enable the network to efficiently process the local structural
information of point cloud data. The core of the network is a
deep neural network consisting of multiple layers of
convolutional blocks and pooling layers, where each
convolutional layer is followed by a CBAM (Convolutional
Block Attention Module) with a temporal bottleneck module,
and residual connectivity is added to each layer to ensure
effective information transfer. In addition, a pooling operation
(PoolTree) performs feature compression between appropriate
layers to reduce computation and improve abstraction. Finally,
the output after deep feature processing is passed through the
fully connected layers for category prediction. The architecture
effectively integrates spatial and temporal features and attention
mechanisms, which significantly improves the processing
accuracy and robustness of point cloud data in time-series
scenarios, and can achieve better results in different 3D point
cloud denoising tasks.

Figure 4 Architecture of our proposed TADNet

3. Experiments

3.1 Datasets

In the experiments of this study, we use two datasets, DENSE
and SnowyKITTI. the DENSE dataset records four very
realistic road scenarios in the CLIMATE CHAMBER
containing two types of inclement weather, rain and fog; the
SnowyKITTI dataset generates a snowy point cloud dataset by
means of a highly realistic physical simulation model, and
provides each point with a non category labels such as noise
point or snow for each point.

We removed duplicate points in the dataset and performed a
more detailed classification based on the severity of the weather.
We divided the dataset into three parts: training set, validation
set, and test set based on the dataset studied by AdverseNet
(Yan et al., 2025), and the details of the division are shown in
Table 1.

Classificat
ion Light Snow Medium

Snow Heavy Snow

Snowfall
Rate [0.5, 1.5) [1.5, 2.5) [2.5, 3.0]
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Number of
Frames 20546 10539 12467

Train 0,2,19 1,5,9,10 6,13,15,21
Valid 17,18 3,4,20 16
Test 8 11,12 7,14

Classificat
ion FogA FogB FogC

Visibility 10-100 m
Number of
Frames 14601 7376 7800

Train 22,24,25 27,28,31 32,35,36,37
Valid 26 29 33
Test 23 30 34

Classificat
ion Rain15 Rain33 Rain55

Rainfall
Rate 15 mm/h 33 mm/h 55 mm/h

Number of
Frames 8626 10157 9854

Train 39,41,42,43,4
4,45

46,47,49,50,5
1,53

55,56,57,59,6
0,61

Valid 38 52 54
Test 40 48 58

Table 1. Division of the severe weather dataset

3.2 Comparison with the State-of-the-art Methods

3.2.1 Evaluation metric: We use IoU, MIoU, and total
execution time as quantitative evaluation metrics, and the
formulas for the quantitative metrics are as follows:

��� = ��
��+��+��

, (6)

���� = 1
� �=1

� ����� , (7)

In the formula, TP denotes the number of noise points correctly
identified as noise points, TN denotes the number of non-noise
points correctly identified as non-noise points, FP denotes the
number of non-noise points incorrectly identified as noise
points, and FN denotes the number of noise points incorrectly
identified as non-noise points.MIoU is the average of all the
category IoUs.

3.2.2 Quantitative Results: We conducted denoising
comparison experiments between TADNet and the state-of-the-
art (SOTA) method under rain, snow, and fog, respectively,
where the data for the control experiment part is from
AdverseNet.

According to Table 2, it can be seen that the IoU values of
TADNet are generally higher in all test scenarios (Rain15,
Rain33, Rain55, FogA, FogB, FogC, Clear). This indicates that
TADNet has higher accuracy. In addition, TADNet's IoU values
fluctuated less under different weather conditions TADNet's
Mean Intersection and Merger Ratio (MIoU) value was 94.86%,
which was the highest among all the compared methods.
However, the average running time of TADNet is longer
compared to the other methods, but given its performance and
accuracy, this time extension is acceptable because the time
increase of the denoising process is not significant.

Table 2.Quantitative Denoising Experiment Results for Rainy
and Foggy Weather

In Table 3, we present the results of denoising experiments in
snowy environments, where the deep learning denoising method
SunnyNet is replaced by LiSnowNet. By comparing the
different methods, we find that TADNet has the highest IoU for
most of them, which again proves its excellent performance in
the snowy day detection task. Also, TADNet has the highest
MIoU on Light Snow, Medium Snow, Heavy Snow and Clear
categories. This indicates that TADNet is extremely adaptable
to different snow levels and is able to provide stable and reliable
performance in a variety of environments. Although TADNet's
average runtime (81.03ms) is not the fastest, such a runtime is
relatively acceptable considering its excellent performance. In
real-world applications, the balance between performance and
runtime is critical, and TADNet provides a good compromise in
this regard.TADNet incorporates the advantages of the temporal
attention mechanism, which helps the model capture key
information in the time series, allowing TADNet to perform
well in the snowy day scenario task, which is in line with its
performance in rainy and foggy weather.
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Table 3.Quantitative Denoising Experimental Results under
Snowy Conditions

3.2.3 Qualitative Results:We present qualitative results of
denoising comparison experiments under different severe
weather conditions such as rain, snow, and fog, as well as
qualitative results for various weather conditions with different
degrees of severity, respectively.

Figure 5 shows the visualization results of the rainy day scene,
where the blue dots indicate CLEAR, while the green dots
indicate rain noise points. The de-noising effects of SOR and
ROR are observed under Rain15, Rain33 and Rain55 conditions,
and the results show that both of them have a large number of
noise points that are not removed, while many non-noise points
are mistakenly deleted. In contrast, ROR generally outperforms
SOR. further analysis of the denoising performance of DSOR
and DROR under the same conditions reveals that they remove
more noise points while retaining the non-noise points better.
When evaluating the denoising performance of SunnyNet and
3D-OutDet in Rain15, Rain33, and Rain55, it is found that these
two methods effectively remove most of the noise points, and
their denoising performance is significantly better than that of
DSOR and DROR.When comparing all the methods
comprehensively, the denoising performance of TADNet in
Rain15, Rain33, and Rain55 is the best, which verifies the
effectiveness of our method in dealing with these three different
intensity rainy day point cloud scenes.

Rain15 (Origin) SOR ROR DSOR

DROR SunnyNet 3D-OutDet TADNet

Rain33 (Origin) SOR ROR DSOR

DROR SunnyNet 3D-OutDet TADNet

Rain55 (Origin) SOR ROR DSOR

DROR SunnyNet 3D-OutDet TADNet

Figure 5. Visualization of denoising results for rainy weather

Figure 6 shows the visualization analysis for the foggy case,
where blue dots indicate CLEAR, while purple dots indicate fog
noise points. Similar to the rainy day case, SOR and ROR
denoising for the FogA, FogB, and FogC cases are not effective,
and many noise points are not removed while numerous non-
noise points are mistakenly deleted.DSOR and DROR
denoising is better than SOR and ROR, but there are still some
noise points remaining.SunnyNet and 3D-OutDet successfully
remove most of the noise points, with only a small amount
remains.TADNet almost completely removes the noise points,
which verifies the effectiveness of our method in processing
three different concentrations of foggy sky point clouds, FogA,
FogB and FogC.

FogA (Origin) SOR ROR DSOR

DROR SunnyNet 3D-OutDet TADNet

FogB (Origin) SOR ROR DSOR

DROR SunnyNet 3D-OutDet TADNet

FogC (Origin) SOR ROR DSOR

DROR SunnyNet 3D-OutDet TADNet

Figure 6. Visualization of denoising results for foggy weather

Fig. 7 represents the visualization results for a snowy day,
where the blue dots indicate CLEAR, while the red dots indicate
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snow noise points. By comparing the denoising effect of SOR
and ROR, we notice that both of them fail to remove numerous
noise points completely, although ROR outperforms SOR in
preserving the environmental features.Further observing the
denoising performance of DSOR, we find that it outperforms
light snow in medium snow and heavy snow cases.This
suggests that the DSOR method has a This shows that the
DSOR method has a limitation: it cannot achieve the same
denoising effect for point clouds with different degrees of
snowfall using a uniform parameter. Comparatively speaking,
the denoising effect of DROR is more consistent in the light
snow, medium snow and heavy snow cases, which shows a
stronger robustness to the point clouds with different snowfall
levels. Although there are still a few noise points left in the
denoising results of DSOR and DROR, the performance of
these two methods is better in snowy weather compared to the
performance in rainy and foggy weather.LiSnowNet's denoising
results have a large number of noise points left in the denoising
results, which is not as effective as DSOR and DROR, which
indicates that although setting more threshold hyperparameters
can shorten the average running time of the model, it also limits
the performance of the model in snowy weather. This shows
that although setting more threshold hyperparameters can
shorten the average running time of the model, it also limits the
advantage of deep learning over traditional filters in parameter
setting, and cannot automatically adjust the threshold
hyperparameters according to the amount of snowfall.3D-
OutDet eliminates almost all the noise points in the light snow,
medium snow, and heavy snow scenarios, and achieves
excellent denoising effect. And our proposed TADNet achieves
a slight performance improvement based on 3D-OutDet. Since
the denoising effect of these two methods is close to complete
denoising, it becomes more difficult to improve the accuracy.
Considering the denoising results of three kinds of bad weather,
namely rain, snow and fog, our proposed 3D-OutDet shows
good denoising performance under different kinds and degrees
of bad weather.

Light (Origin) SOR ROR DSOR

DROR LiSnowNet 3D-OutDet TADNet

Medium
(Origin) SOR ROR DSOR

DROR LiSnowNet 3D-OutDet TADNet

Heavy (Origin) SOR ROR DSOR

DROR LiSnowNet 3D-OutDet TADNet

Figure 7. Visualization of denoising results for snowy weather

3.3 Ablation Study

In order to verify the effectiveness of TB-ResNet and CBAM
attention mechanisms, we designed ablation experiments with
gradual transition from the 3D-OutDet model to the TADNet
model to evaluate the effects of both on the experimental results,
and the results of the ablation experiments are shown in Table 4.
Four groups of experiments are included in each data type, the
first group is using the 3D-OutDet base model, the second
group replaces the network framework of 3D-OutDet with TB-
ResNet, the third group of experiments incorporates the CBAM
attention mechanism on top of 3D-OutDet, and the fourth group
is the TADNet proposed in this paper.

The results of the comparison experiments show that TB-
ResNet and CBAM attention mechanisms generally have a
positive effect on model performance. The use of TB-ResNet
and CBAM attention mechanism improves the IoU and MIoU
metrics of the model under different intensity of rain, snow and
fog weather conditions, and only slightly reduces them in very
few cases. Taken together, the introduction of TB-ResNet and
CBAM attention mechanism is effective.

Method 3D-
OutDet

3D-
OutDet
+TB-
ResNet

3D-
OutDet
+CBAM

TADNet

Rain15 IoU (%) 97.07 97.11 97.97 98.51

Rain33 IoU (%) 87.95 88.03 88.14 88.25

Rain55 IoU (%) 97.39 97.51 97.84 98.07

FogA IoU (%) 97.34 97.34 97.37 97.37

FogB IoU (%) 94.52 95.39 94.93 95.74

FogC IoU (%) 82.61 83.63 82.92 84.63

Clear IoU (%) 99.5 99.6 99.73 99.86
Rain Fog MIoU

(%) 93.76 94.09 94.13 94.63

Light Snow IoU
(%) 90.11 91.28 91.76 92.35

Medium Snow
IoU (%) 94.13 94.06 93.99 93.98

Heavy Snow
IoU (%) 92.06 93.83 92.6 94.56

Clear IoU (%) 98.69 99.21 99.21 99.54

Snow MIoU (%) 93.75 94.6 94.39 95.11
Table 4 Module Effectiveness Analysis
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4. Conclusion

In this paper, a novel point cloud denoising network, TADNet,
is proposed to solve the noise problem of LiDAR point cloud
data under rain, snow and fog. The number of temporal frames
is preserved by changing the ResNet base network architecture
to Temporal-Bottleneck ResNet (TB-ResNet). By enhancing the
temporal information, TADNet is able to aggregate well-
preserved temporal features.The Convolutional Block Attention
Module (CBAM) is incorporated into TADNet, which further
strengthens the extraction of noisy features and significantly
improves the denoising accuracy. Experimental results show
that TADNet significantly outperforms existing traditional
filtering techniques and deep learning methods in removing
noise under severe weather conditions such as rain, snow, fog,
etc., and exhibits stable performance under weather conditions
of different intensities. Compared to other methods, TADNet
achieves the highest accuracy in both MIoU and IoU evaluation
metrics. Under severe weather conditions, TADNet enhances
the perception capability of LiDAR and promotes the stability
of the environment perception of the autonomous driving
system, which in turn promotes the utilization of autonomous
driving technology and its performance under severe weather
conditions.
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