The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow...”, 6—11 April 2025, Dubai, UAE

Finding the Optimal Convolutional Kernel Size for Semantic Segmentation of Pole-like
Objects in Lidar Point Clouds

Zezheng Zhang!, Davood Shojaei!, Kourosh Khoshelham?

! Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering,
The University of Melbourne, Melbourne, Victoria, Australia
% Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Victoria, Australia
E-mails: zezzhang @student.unimelb.edu.au, (shojaeid, k.khoshelham)@unimelb.edu.au

Keywords: Mobile Laser Scanning, Street Furniture, Road Assets, Semantic Segmentation, Deep Learning.

Abstract

Pole-like objects (PLOs) are important street assets in urban environments, yet current deep learning methods often underperform in
their segmentation compared to other objects. The main challenge is determining the right kernel size to effectively understand the
unique structure of PLOs with an appropriate receptive field. In this study, we improve the segmentation performance of PLOs by
optimizing the kernel size in a KPConv-based network. Our experiments show that kernel size of 9 yields an Intersection over Union
(IoU) of 95.02% on the Parkville-3D dataset. We also develop a post-processing approach that transforms semantic segmentation
outputs into panoptic segmentation results, enabling accurate detection of individual PLO instances. Furthermore, qualitative tests
on an independent, unlabelled point cloud dataset from a different urban area demonstrate that our method consistently achieves

accurate segmentation.

1. Introduction

Given the significance of PLOs in infrastructure maintenance
(Cabo et al., 2014), 5G network planning (Gholampooryazdi et
al., 2017), and the development of High Definition Maps (HD
Maps) (Dong et al., 2023), there is a pressing need for a special-
ized deep-learning model that excels in recognizing those as-
sets. Current deep learning approaches for point cloud semantic
segmentation underperform when identifying Pole-like objects
(PLOs). For example, as shown by Roynard et al. (2018), the
top five methods in the Paris-Lille-3D benchmark achieved an
82.74% mean Intersection over Union (mloU) across various
classes but only secured a 73.94% mloU for PLOs.

In our analysis of existing studies, we observed that while net-
work designs are optimized for objects that are small and elong-
ated, they struggle with the slender characteristics of poles.
This limitation often results in the poor segmentation per-
formance. To address the identified challenge, we have re-
engineered the kernel of the selected network to feature a larger
receptive field.

We reviewed the literature on various deep learning networks
for point clouds and chose KPConv (Thomas et al., 2019) as
a starting point. We noticed that KPConv is widely used as a
baseline and has shown good performance on different data-
sets during our review. In addition, KPConv’s design preserves
many network settings that we can modify. Compared with
other networks designed specifically for a few targeted datasets,
where most of the architecture settings are fixed and difficult to
change, KPConv provides more flexibility in adjusting the net-
work. This flexibility allowed us to better explore the condi-
tions under which the network can improve the segmentation of
PLOs.

Our contributions are summarized as follows:

1. We propose a method to improve the performance of deep
learning networks for PLOs.

2. We design an experiment to determine the optimal kernel
size for KPConv in semantic segmentation of PLOs and
verify its effectiveness.

3. We introduce a post-processing method for semantically
segmented PLO point clouds to achieve panoptic segment-
ation and accurate detection of PLOs.

2. Related Work

In this section, we review deep neural networks designed for un-
derstanding point cloud features, including tasks such as classi-
fication and segmentation.

2.1 Projection-based Methods

The main idea behind these methods is to use well-established
Convolutional Neural Networks (CNN) that have been success-
fully applied to 2D image classification to address the classi-
fication of 3D point clouds. These methods first project a 3D
shape into several 2D images, extract features from each view,
and then combine those features to classify the point cloud. Ag-
gregating multiple view-wise features into an overall represent-
ation presents a key challenge for these methods.

MVCNN Su et al. (2015) is such a pioneering work that
achieved that. It generated 80 simulated photos from differ-
ent angles of the target 3D point cloud object, used the same
trained CNN to extract their features, and then composed those
80 views of features into a global descriptor by max-pooling
layers. However, simple max-pooling only retains the max-
imum elements, which may discard a significant amount of 3D
point information. Some other methods have been proposed to
improve classification accuracy, such as using multi-resolution
filtering CNN (Qi et al., 2016), adding one more grouping layer
after pooling each view (Feng et al., 2018), using Graph Con-
volutional Network (GCN) on the projected images (Wei et al.,
2020), and leveraging relation networks to exploit relationships
among views (Yang and Wang, 2019).
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2.2 Voxelization-based Methods

As mentioned in the previous section, simply projecting a 3D
point cloud to 2D and applying 2D CNN models does not cap-
ture the 3D features well. Therefore, researchers turned to 3D
CNN models that directly extract 3D features. The basic idea
is to convert the original point cloud into voxels, which are 3D
pixels, and then directly extend 2D CNN methods into 3D, to
extract features from these 3D voxels.

Voxnet (Maturana and Scherer, 2015) and 3D ShapeNets (Wu et
al., 2015) are two pioneering studies in those 3D CNN methods.
They introduced volumetric occupancy grids as an intermedi-
ate format for dense point clouds and designed three-layer and
two-layer 3D CNN models, respectively. However, their per-
formance was limited by the increased computation and VRAM
cost when voxelizing point clouds at higher resolutions, since
the number of training parameters grows cubically.

Later, studies such as OctNet (Riegler et al., 2017) and O-CNN
(Wang et al., 2017) used hierarchical grid structures to lower the
computational cost. Octree is a geometric modelling technique
that represents 3D objects with a tree structure where each par-
ent node has eight children (Meagher, 1982). In the context
of 3D tasks, this data structure divides a cube recursively into
eight equal sub-cubes. Using an Octree for feature learning al-
lows for more compact storage and faster computation while
maintaining similar accuracy.

2.3 Point-based Methods

To better use the information from dense point clouds, many
studies have designed network structures that take points as in-
put directly, rather than relying on intermediate representations
such as 2D images or 3D voxels.

Point-wise MLP Methods PointNet innovatively pioneered
this field, it processes each point using a multilayer perceptron
(MLP) while taking into account three key characteristics of
point clouds: their unordered nature, the interactions among
points, and robustness to transformations (Qi et al., 2017a).
Since all the points have no order, their designed network used
MLPs to read points disorderly. All those MLPs shared the
parameters to learn the relation among all the points. Then,
they added T-Net which allows the model to ignore differences
in rotation and focus on the underlying shape of the point cloud.
In the backbone of Pointnet, points are transformed into feature
vectors of dimensions 64, 128, and 1024, and a max-pooling
operation then aggregates those features into a global descriptor
of length 1024. That global feature vector is used by a fully con-
nected network for object classification or by a similar decoder
structure for point segmentation.

One critical limitation of Pointnet is it cannot extract local
features at different scales. To overcome this, PointNet++
was developed (Qi et al., 2017b). The key difference is that
PointNet++ does not directly reduce point features from an
N-dimensional space to a single dimension. Instead, it hier-
archically extracts features, similar to the layer-by-layer fea-
ture extraction in convolutional neural networks (CNNs), where
higher-level features are derived from groups of lower-level fea-
tures. Unlike the sliding stride in traditional CNNs, PointNet++
uses the farthest point sampling (FPS) algorithm to generate re-
ceptive fields. This sampling method has been widely adopted
in many point cloud deep learning methods and continues to
perform well in recent studies such as PointASNL (Yan et al.,
2020) and Point-NN Zhang et al. (2023).

Graph-based Methods Earlier methods focused mainly on
the x, y, and z coordinates of each point. In contrast, graph-
based methods aim to represent and learn from the relationships
between points. In these methods, a point cloud is treated as a
graph, where each point is a vertex and each pairwise relation-
ship is represented as an edge.

Dynamic Graph CNN (DGCNN) is such a graph network con-
structed based on the k-nearest neighbours of each point (Wang
etal., 2019). The term ”dynamic” indicates that the graph struc-
ture is updated in each layer as the point features change. A
key component of DGCNN is the EdgeConv operation, which
applies convolution to the edges of the graph, capturing local
geometric structures of the point cloud. This approach of learn-
ing relationships from key points makes DGCNN particularly
well suited for point clouds representing individual objects and
indoor scenes.

Convolution-based Methods Different from the methods in
projection-based and Voxelization-based categories, methods in
this section use point convolution that directly operates on a
point cloud instead of intermediate representations. KPConv
is a representative model in this area, which designed a *Point
kernel’ to eliminate the traditional ’Grid kernel’ (Thomas et al.,
2019). They first created a rigid kernel with fixed point posi-
tions by solving the optimization problem, and that kernel per-
formed very well when giving spherical point domains. Then,
they also trained their network by leaving the position of the
kernel point trainable and named it deformable KPConv. Their
experiment found that the deformable KPConv outperformed
the rigid version on large and diverse datasets.

3. Method

KPConv performs well on a variety of datasets and yields res-
ults comparable to state-of-the-art methods (Roynard et al.,
2018; Xiang et al., 2023). However, its performance on PLOs
is notably weak. In this study, we investigate the reasons be-
hind this limitation and explore ways to improve the KPConv
network for better feature understanding of PLO.

We observe that the KPConv model trained with the default set-
tings produces segmentation results with many false negatives
across different parts of PLOs. In our tests, two nearly identical
PLOs display distinct error patterns, one shows false negatives
mainly at the top, while the other exhibits them at the bottom.
That indicates that the issue is not a failure to understand the in-
dividual parts, but rather an issue to ’see’ the complete structure
of the object. Additional evidence supporting this assumption
comes from cases where some tree trunks were segmented as
PLOs. That may occur because the model only captures the
middle part of the tree trunk, which is similar to the middle
portion of many PLOs.

Therefore, we adjust the size of the ball point kernel to in-
crease its receptive field and modify the parameters to fit within
VRAM limits. This architectural refinement allows the model
to capture the entirety of PLOs more effectively, thereby im-
proving semantic segmentation accuracy as shown in Figure 1.

Unlike panoptic segmentation, semantic segmentation does not
include instance information, making it difficult to separate ob-
jects such as vegetation, vehicles, and buildings that are of-
ten in close proximity. However, for PLOs, there is common
knowledge that gaps typically exist between them. Even when
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Baseline Receptive Field Our Receptive Field

Figure 1. Example receptive fields of our method and baseline
KPConv.

some PLOs are near trees or other roadside elements, the se-
mantic segmentation results treat each PLO as a separate en-
tity. This allows us to divide them into distinct instances using
simple post-processing steps. To extract detailed instance in-
formation from our semantically segmented results, we employ
connected-component labelling (He et al., 2017). This tech-
nique segments the point clouds of detected PLOs, enabling
further analysis of instances. As an example, we estimate the
height of each segmented instance by calculating their convex
hulls.

4. Experiments and Results
4.1 Quantitative result on Parkville-3D dataset

We used the Parkville-3D dataset (Zhang et al., 2024) in this
study because, compared with other datasets such as Paris-
Lille-3D (Roynard et al., 2018) and Toronto-3D (Tan et al.,
2020), it focuses more on PLOs and offers a greater variety
of their shapes. The original dataset distinguishes among elec-
trical poles, light poles and road signs. In our experiments, we
combined those three types into a single ”Pole” category to bet-
ter fit our method.

Table 1 presents our model achieved a 95.02% mloU for PLOs,
which is a significant improvement from 65.58%, the result
of the default baseline. Comparative visualizations (Figure 2)
highlight the classification errors of the original KPConv net-
work at the attachments at the top and the base of PLOs as a
result of the network’s previously smaller receptive field which
failed to capture the full semantic scope of those structures. Our
enhanced model significantly resolved this issue, providing a
more comprehensive understanding of PLOs as cohesive units.

Moreover, the original baseline models offen misclassify tree
trunks as poles, particularly in urban settings where utility poles

First Kernel Radius PLO IoU (%)
3 65.580
6 85.657
9 95.020
12 94.410
15 93.821

Table 1. Semantic Segmentation Results for PLOs on the
Parkville-3D Dataset: Comparison of KPConv with Kernel Size
3 (Default) and Kernel Size 9 (Optimized)

often consist of unprocessed tree trunks. This resemblance
poses a substantial challenge for deep learning models, lead-
ing to frequent misclassifications of orderly, plant-based struc-
tures as utility poles. Our model has markedly reduced these
errors, demonstrating improved discrimination between natural
tree trunks and man-made poles.

(b)

Figure 2. Comparison of semantic segmentation results for poles
(highlighted in red) on Parkville-3D dataset: (a) KPConv, (b)
proposed model.

4.2 Qualitative results

Domain shift is a common issue in deep learning models for
point clouds, it refers to the situation where a model trained on
one dataset performs noticeably worse when applied to a new
point cloud environment (Luo et al., 2020). In our study, even
though the training and testing sets are different portions of the
Parkville-3D dataset, they still share many similarities. To fur-
ther evaluate the performance and generalizability of our pro-
posed method, we designed a qualitative experiment using an
unlabelled point cloud dataset captured in another city within
the greater Melbourne area as shown in Figure 3. This data-
set contains more complex road assets, such as dense vegeta-
tion and a variety of PLO shapes, providing a more challenging
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Figure 3. Qualitative Experimental Result (Down-sampling applied to other objects for better visualization of PLO point clouds).

Figure 4. Instance segmentation results of connected-component labelling

scenario for our model.

Following semantic segmentation, we applied the Connected-
component labelling algorithm (He et al., 2017) to the point
clouds identified as belonging to the pole category, segment-
ing them into separate instances, as shown in figure 4. Next,
we extracted the height of each PLO and used the center of
each instance as its location. Because the point cloud is geo-
referenced, we can display those locations on a base map along-
side reference results from satellite imagery, as shown in Figure
5. Out of 360 poles present, our method successfully detected
310, yielding an accuracy rate of 86.11%.

We analyzed the error cases and identified two main issues. Fig-
ure 6 demonstrates that when a PLO is surrounded by dense
vegetation, the model sometimes fails to detect the PLO hid-
den among the thick branches and leaves. Figure 7 reveals that
palm trees—which were absent from the training and valida-
tion sets—confuse the model, causing it to mistakenly segment
the long, straight trunks of those palms as PLOs. One inter-
esting observation is that even though our model has never en-
countered palm trees before, it tends to segment the top part
as vegetation. In contrast, when faced with unseen man-made
structures resembling PLOs, the model consistently segments
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Figure 6. Example of undetected PLOs due to nearby dense
vegetation (highlighted in red circle) in our qualitative
experiment.

them as PLOs. This indicates that our model effectively un-
derstands the features of PLOs and, to a certain extent, demon-
strates strong generalizability.

5. Discussions and Future Directions

Our experiments show that selecting an appropriate kernel size
increases the receptive field and, in turn, improves semantic
segmentation performance, especially for PLOs. This finding
indicates that for a target-specific point cloud classification or
segmentation task, tuning the kernel size according to the di-
mensions of the target data is an effective approach.

However, due to the limited availability of point cloud data, do-
main shift remains an issue when applying the trained model
to unseen datasets. One solution is to expand the training data
by capturing and labeling more point clouds in different envir-
onments, or by using synthetic point clouds while addressing
the gap between synthetic and real data. Another approach is

Figure 7. Example of undetected PLOs due to unseen vegetation
(highlighted in red circle) in our qualitative experiment.

to investigate few-shot learning methods (Zhang et al., 2024)
for point cloud classification and segmentation, which could
achieve similar performance in new environments with only
a few labelled examples. We believe those approaches offer
promising directions to close the current research gap.

6. Conclusion

This paper presents a method to improve the accuracy of pole
segmentation by focusing on optimizing the network’s recept-
ive field. We also implement post-processing techniques that
extract detailed information from the segmented point cloud,
which enhances the model’s utility in urban mapping and in-
frastructure analysis. Experimental results indicate that our
method outperforms existing approaches for semantic segment-
ation of PLOs. These findings demonstrate the potential of spe-
cialized deep learning models for addressing challenges in com-
plex urban environments.
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