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Abstract 
 
Wearable backpack Light Detection and Ranging (LiDAR) systems have been widely used for high-resolution data collection in urban 
environments. However, they are often limited by the operator's mobility and time required for complete coverage of the area of 
interest. This paper introduces a BikePack LiDAR system, which uses a bicycle for efficient urban data acquisition. Despite its 
advantages, the system face challenges of intermittent Global Navigation Satellite System (GNSS) signal availability due to dense, tall 
buildings and other objects in urban environments. The study proposes a framework to enhance the trajectory and mapping results for 
the BikePack LiDAR in GNSS-challenging urban areas. The proposed framework offers an option to incorporate airborne LiDAR data 
to improve the absolute georeferencing accuracy of the derived point cloud, enabling the integration of the two sources – terrestrial 
and airborne, to produce a comprehensive 3D map of the urban environment. Following the enhancement, this study also demonstrates 
a learning strategy for isolating vegetation from other man-made and natural objects. Based on the well-aligned terrestrial BikePack 
and airborne Geiger-mode LiDAR data, a deep learning strategy is applied to the latter, with derived semantic segmentation results 
transferred to the BikePack point clouds through a cross-labelling process. The experimental results show that the proposed trajectory 
enhancement strategy can significantly improve the relative and absolute accuracy of the BikePack point cloud with the assistance of 
Geiger-mode airborne LiDAR data, achieving planimetric and vertical trajectory adjustments of 0.36 m and 0.27 m, respectively. 
Furthermore, the semantic segmentation results show that the proposed cross-labelling strategy outperforms other methods, improving 
overall accuracy by approximately 16%, and increasing the mean Intersection over Union (IoU) and Cohen’s Kappa score by 0.17 and 
0.24, respectively. 
 
 

1. Introduction 

Urban trees provide essential ecosystem services such as air 
pollution mitigation and carbon sequestration, supporting the 
well-being of urban population. A recent study estimates that 
urban land in the US covers more than 68 million acres and is 
growing at a rate of nearly 10 million acres per decade (Nowak 
et al., 2018). To maintain the desired tree density, an estimated 
31 million trees need to be planted annually in urban areas 
(American Forests, 2025). Hence, urban tree mapping is essential 
for sustainable city planning and environmental monitoring 
(Wallace et al., 2021). Current approaches to map urban trees are 
mainly manual based, which are expensive and time consuming. 
Applications of proximal mapping systems, such as terrestrial 
laser scanners and wearable backpack LiDAR systems, have 
been explored to automate the inventory process. However, these 
proximal systems are often limited by the operator’s mobility and 
time required for complete coverage of the area of interest. 
Vehicle-based mapping systems enable rapid data acquisition but 
cannot access narrow streets or pedestrian pathways, limiting 
their effectiveness in dense urban environments. This paper 
introduces a BikePack system comprising a LiDAR sensor 
directly georeferenced by an integrated Global Navigation 
Satellite System/Inertial Navigation System (GNSS/INS) unit. 
The portability of the system allows for its deployment as a 
backpack pedestrian platform or onboard a manual or powered 
bicycle for efficient urban data acquisition. Despite the 
advantages of mobility and data acquisition efficiency, the 

system faces significant processing challenges. For example, 
GNSS signal obstructions due to buildings and dense vegetation 
can impact the quality of the trajectory, resulting in inaccurate 
point clouds and mapping results (Nagai et al., 2020). 
 
To improve trajectory and mapping results in urban 
environments, Simultaneous Localization and Mapping (SLAM) 
offers an option for accurate mapping in such environments. Liu 
et al. (2019) improved localization accuracy using semantic 
feature extraction for urban environments, where the features 
include ground, road-curbs, edges, and surfaces. Li et al. (2021) 
proposed a semantic point cloud registration and integrated a 
semantic graph place recognition method within a loop closure 
detection module to improve localization accuracy. Du et al. 
(2021) removed dynamic objects from LiDAR scans, then 
extracted and incorporated semantic information into odometry 
and mapping threads to improve localization and mapping 
results. However, these strategies have difficulties in extracting 
sufficient semantic features in complex urban scenarios, resulting 
in compromised mapping results. 
 
To overcome this limitation, Rufus et al. (2020) proposed a real-
time odometry and mapping approach. They calculate 
approximate pose parameters, which are used for a point-to-plane 
Iterative Closest Point (ICP) to refine the matching and 
transformation parameters among successive scans. Shan et al. 
(2020) proposed a framework for a tightly-coupled LiDAR 
inertial odometry and mapping. This strategy combines LiDAR 
and inertial data using a factor graph for real-time state estimation 
and mapping, reducing drift and improving localization accuracy. 
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Ramezani et al. (2022) introduced a LiDAR-inertial SLAM to 
extract and match surface elements from sliding-window scans. 
The authors reported that their proposed method can efficiently 
map environments through pose graph optimization by 
incorporating Inertial Measurement Unit (IMU) and LiDAR data. 
Despite these advances, none of the methods can incorporate 
other geospatial data, which prevents the integration of multi-
platform/multi-temporal LiDAR point clouds. 
 
Beyond improving the quality of derived point clouds, 3D data 
classification and segmentation are needed to extract meaningful 
information for urban tree mapping. Recent advancements in 
deep-learning approaches have introduced novel architectures 
that significantly enhance classification and segmentation 
performance, enabling robust and scalable processing of 3D data 
(Sarker et al., 2024). Landrieu and Simonovsky (2018) proposed 
Superpoint Graph (SPG), which segments point clouds into 
geometric superpoints and uses graph convolutions to capture 
contextual relationships. This approach enhances segmentation 
accuracy, particularly in large-scale outdoor LiDAR data, by 
modelling long-range dependencies. Robert et al. (2023) 
introduced Superpoint Transformer (SPT), a resource-efficient 
model that partitions point clouds into hierarchical superpoints 
and employs sparse self-attention for improved segmentation. 
SPT achieves superior accuracy while significantly reducing 
model size and training time, making it well-suited for scalable 
LiDAR processing. Wu et al. (2024) introduced Point 
Transformer V3 (PTv3), which improves point cloud 
segmentation by replacing the k-Nearest Neighbours (KNN) with 
a serialized neighbourhood mapping, expanding the receptive 
field while reducing computational complexity. PTv3 achieves 
state-of-the-art performance across 3D perception tasks, making 
it highly relevant for LiDAR applications. These learning 
strategies rely heavily on training data, making them sensitive to 
variations in dataset characteristics. For point cloud segmentation, 
if the dataset used to train the model has different characteristics 
from the dataset being processed, prediction quality may suffer, 
often requiring retraining from scratch (Saltori et al., 2023). 
Transfer learning can help mitigate this limitation by adapting a 
pretrained model to a new dataset with different characteristics, 
reducing the need for retraining from scratch. However, it does 
not fully resolve the issue, as differences in point cloud properties 
– such as density, noise levels, or sensor types – may still lead to 
suboptimal segmentation performance (Williams et al., 2020). In 
such cases, further fine-tuning or additional domain-specific 
training data may be required to achieve high accuracy. 
 
To address the aforementioned limitations, the presented study 
proposes a General Trajectory Enhancement and Mapping (G-
TEAM) framework to improve the trajectory and mapping results 
using an in-house developed BikePack LiDAR system operating 
in GNSS-challenging urban areas. The proposed framework 
offers an option to incorporate airborne LiDAR and legacy 
elevation data to improve the absolute georeferencing accuracy 
of derived point clouds, enabling the integration of multi-
platform LiDAR data and comprehensive mapping of urban 
environments. Following the enhancement, this study also 
demonstrates a point cloud segmentation method (referred to as 
cross-labelling) for isolating vegetation from other objects such 
as buildings, streetscapes, vehicles, and utility poles. The 
remainder of this paper is structured as follows: Section 2 
introduces data acquisition systems and datasets used in this 
study; Section 3 covers the background of point cloud 
reconstruction followed by a detailed explanation of the proposed 
G-TEAM and semantic segmentation framework; Section 4 
presents results from the proposed framework and assesses its 

performance; and lastly, Section 5 summarizes the findings of the 
research and provides recommendations for future work. 
 

2. Data Acquisition Systems and Datasets Description 

BikePack and Geiger-mode LiDAR systems have been used in 
this study, as shown in Figure 1. The BikePack system comprises 
a Velodyne VLP-16 Hi-Res LiDAR, a Sony DSC-RX1 camera, 
and a NovAtel PwrPak E2 GNSS/INS unit. A BikePack dataset 
was collected at the Purdue University campus in West Lafayette, 
IN, USA in January 2024. This dataset covered an area of 700 × 
400 m, visualized in Figure 1c, at a speed of 5 m/s. The Geiger-
mode LiDAR data was acquired in December 2021 over the same 
area. BikePack data captures detailed information about the 
lower parts of objects in urban environments but encounters 
misalignment issues due to GNSS signal outages. However, 
Geiger-mode data offers high georeferencing accuracy but 
struggles to capture detailed object structures. 
 

  
 (a) (b) 

 
(c) 

Figure 1. Mapping systems used in this study and the location 
surveyed: (a) BikePack LiDAR, (b) Geiger-mode airborne 

LiDAR, and (c) study site covered by LiDAR data (region of 
interest is highlighted by a red box). 

 
3. Methodology 

LiDAR point cloud reconstruction is based on the point 
positioning equation, as described in Equation (1) with a 
graphical illustration in Figure 2. Laser ranges and beam 
orientation are used to derive the position (𝑟𝑟𝐼𝐼

𝑙𝑙𝑙𝑙(𝑡𝑡)) of the laser 
beam footprint at an object point 𝐼𝐼 captured at time 𝑡𝑡 relative to 
the laser unit frame (𝑙𝑙𝑙𝑙). The pose parameters of the laser unit 
frame at the time 𝑡𝑡 , comprising its position and orientation  
(𝑟𝑟𝑙𝑙𝑙𝑙(𝑡𝑡)

𝑚𝑚 /𝑅𝑅𝑙𝑙𝑙𝑙(𝑡𝑡)
𝑚𝑚 ), are used to evaluate the 3D coordinates of the 

object point 𝐼𝐼  in the mapping frame (𝑚𝑚), represented by 𝑟𝑟𝐼𝐼𝑚𝑚 . 
Based on the equation, accurate pose parameters (𝑟𝑟𝑙𝑙𝑙𝑙(𝑡𝑡)

𝑚𝑚 /𝑅𝑅𝑙𝑙𝑙𝑙(𝑡𝑡)
𝑚𝑚 ) 

directly derived from the GNSS/INS trajectory are crucial to 
derive accurate point cloud coordinates in the mapping frame 
(𝑟𝑟𝐼𝐼𝑚𝑚 ). In scenarios with GNSS signal outages, it may not be 
possible to achieve the desired level of accuracy through direct 
georeferencing. The proposed framework aims to improve 
trajectory and mapping results for the BikePack system, and 
subsequently conduct an efficient semantic segmentation for 
urban tree mapping. Figure 3 outlines the workflows of the 
proposed approaches, which comprises two key steps: G-TEAM 
and SPT segmentation. The following subsections discuss these 
steps in detail. 
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𝑟𝑟𝐼𝐼𝑚𝑚 = 𝑟𝑟𝑙𝑙𝑙𝑙(𝑡𝑡)
𝑚𝑚 + 𝑅𝑅𝑙𝑙𝑙𝑙(𝑡𝑡)

𝑚𝑚 𝑟𝑟𝐼𝐼
𝑙𝑙𝑙𝑙(𝑡𝑡) (1) 

 

 
Figure 2. Parameters and coordinate systems for LiDAR 

point cloud reconstruction. 
 

 
Figure 3. Workflow of the proposed approaches: G-TEAM 

and SPT segmentation. 
 
3.1 G-TEAM 

Using available LiDAR scans and GNSS/INS trajectory 
information, the G-TEAM framework starts with keyframe 
selection. Within a sequence of successive scans, keyframes are 
scans where there is a significant pose change exceeding a certain 
threshold.  In challenging environments with slow data collection, 
the pose change threshold is lowered to include more keyframes, 
ensuring stable and accurate mapping. The keyframe selection is 
followed by several layers of map optimization that use surface 
elements (surfels) as primitives. Map optimization starts at a 
submap level by combining multiple successive keyframes. The 
first optimized submap is used to create an initial map to which 
subsequent submaps are sequentially registered. Similar to the 
submap optimization, each integrated submap, combining 
multiple submaps, is optimized and registered with a global map, 
which consists of optimized and registered submaps. Lastly, a 
global map optimization further improves point cloud alignment 
and mapping quality. As an option, existing geospatial LiDAR 
data can be incorporated into the framework for multi-platform 
data integration.  
 
3.1.1 Surfel-based Optimization 

 The surfel-based optimization is performed within the submap, 
integrated submap, and global map optimization layers. The 
workflow of the optimization is shown in Figure 4. Surfels are 
generated by voxelizing point clouds and defining points within 
each voxel as a surfel. The planarity measure of a surfel is derived 
using eigenvalue analysis of a variance-covariance matrix 
describing the 3D spread of points within the corresponding 
voxel (Demantké et al., 2011). Surfels with a planarity value less 
than a threshold (e.g., 0.3) are removed. A non-linear least 
squares adjustment (LSA) is conducted to minimize the sum of 
normal distances between points and the corresponding surfel in 

each voxel. Pose and surfel parameters are refined during the 
optimization. The refined pose parameters are then used to update 
the point cloud. The updated point cloud is then used as input to 
iteratively conduct the surfel-based optimization. The voxel size 
gradually decreases within the iterative process, and the process 
stops when it falls below a threshold (e.g., 0.2 m). The pose 
parameters and point cloud are optimized throughout the iterative 
procedure. A sample tree before and after applying the surfel-
based optimization for a submap, is shown in Figure 5. 
 

 
Figure 4. Workflow of the surfel-based optimization. 

 

 
(a) 

 
(b) 

Figure 5. A sample tree (colored by keyframe ID) from a 
submap (a) before and (b) after applying surfel-based 

optimization. 
 
3.1.2 Map Registration 

As shown in Figure 3, submaps and integrated submaps are 
registered with the global map through the respective 
optimization steps. The workflow of the registration is shown in 
Figure 6. The reference and target maps are denoted as 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 and 
𝑀𝑀𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡. In this study, 𝑀𝑀𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡 can be a submap or an integrated 
submap, 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟  is a subset of the global map. Points from the 
global map within the 2D bounding box of 𝑀𝑀𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡  are 
established as 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟. First, the reference and target point clouds 
are used to generate corresponding surfel maps 𝑆𝑆𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟  and 
𝑆𝑆𝑀𝑀𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡. Next, surfel correspondences are identified based on 
the distance between the two surfel maps. Point-to-surfel 
constraints are established to optimize the pose parameters of the 
target point cloud through a non-linear LSA. The target surfel 
map is updated using the optimized pose parameters. The process 
iterates until a prespecified number of iterations has been 
reached. The pose parameters of the target map are changed 
through the iterative process. 
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Figure 6. Workflow of map registration between submap or 

integrated submap and global map. 
 
3.1.3 Incorporation of Existing Geospatial Data  

The proposed G-TEAM provides an option to incorporate other 
geospatial data to improve the georeferencing accuracy through 
the integration of multi-platform LiDAR data. First, bare earth 
( 𝐵𝐵𝐵𝐵 ) and above-ground (𝐴𝐴𝐴𝐴 ) points are identified in the 
supplemental geospatial data (e.g., Geiger-mode data) using a 
modified cloth simulation algorithm (Lin et al., 2021). Both the 
𝐵𝐵𝐵𝐵 and 𝐴𝐴𝐴𝐴 point clouds are voxelized and surfel maps (𝑆𝑆𝐵𝐵𝐵𝐵 and 
𝑆𝑆𝐴𝐴𝐴𝐴 ) are generated using points in each voxel. Surfels with 
normal vectors that are approximately perpendicular to the XY 
plane are identified as ground surfels, 𝑆𝑆𝐵𝐵𝐵𝐵; whereas those with 
normal vectors parallel to the XY plane are classified as vertical 
surfels, 𝑆𝑆𝐴𝐴𝐴𝐴. The ground and vertical surfel maps for a sample 
Geiger-mode LiDAR data are shown in Figure 7. Ground and 
vertical surfels are also extracted from the BackPack point cloud 
and matched with corresponding surfel maps from Geiger-mode 
data. Then, point-to-surfel constraints are established and 
incorporated into surfel-based optimization within the different 
optimization layers to improve the georeferencing accuracy of 
BikePack data.  
 

 
(a) 

 
(b) 

Figure 7. Sample (a) Geiger-mode point cloud (colored by 
height) and (b) corresponding ground (in blue) and vertical 

(in red) surfel maps. 

 
3.2 Point Cloud Segmentation 

3.2.1 Superpoint Transformer 

The SPT is a superpoint-based architecture specifically designed 
for efficient semantic segmentation of large-scale 3D point 
clouds. The method begins by partitioning the input point cloud 
using a hierarchical superpoint structure, where geometrically 
homogeneous superpoints are created across multiple scales. 
This hierarchical partitioning is achieved through a 
computationally efficient energy minimization approach, 
leveraging adjacency graphs to encode relationships among 
superpoints. Inspired by U-Net, the SPT architecture comprises 
an encoder-decoder structure (Ronneberger et al., 2015), where 
the encoder aggregates features across hierarchical superpoints 
and the decoder refines these features for classification. At each 
stage, the model employs self-attention mechanisms to propagate 
context between superpoints within the same hierarchical level, 
capturing both local and long-range interactions. The model 
outputs semantic labels for superpoints instead of individual 
points, significantly improving computational efficiency. Thanks 
to these characteristics, SPT is highly practical for large-scale 
datasets as it efficiently processes massive point clouds by 
grouping points into hierarchical superpoints, reducing both 
memory usage and computational costs. 
 
3.2.2 Cross-labelling Strategy for Segmentation 

In this study, a cross-labelling strategy is proposed. Given that 
the Geiger-mode LiDAR and BikePack datasets are spatially 
well-aligned, it is possible to leverage the segmented Geiger-
mode data as a reference for cross-labelling the BikePack point 
cloud. This approach helps in segmenting the BackPack point 
cloud by transferring reliable class labels from the Geiger-mode 
dataset. The cross-labelling procedure is consisted of the 
following steps. First, a pretrained SPT is applied to the Geiger-
mode dataset, producing a set of labelled points. Then, cross-
labelling using the KNN algorithm is performed to transfer labels 
from the Geiger-mode dataset to BikePack point cloud. Taking 
advantage of the well-aligned Geiger-mode and BikePack 
datasets, neighbouring points in the BikePack point cloud are 
identified for each point in the Geiger-mode data and assigned 
with the same label. 
 

4. Experimental Results 

To evaluate the proposed framework, the BikePack and Geiger-
mode datasets collected at the study site were processed using G-
TEAM. Figure 8 presents sample tree trunk cross sections taken 
at an elevation of 1.4 m from ground before and after applying 
the G-TEAM algorithm. The quality of point cloud alignment is 
greatly improved when comparing the enhanced point cloud with 
that reconstructed using the initial GNSS/INS trajectory. Figure 
9a depicts the alignment of Geiger-mode point cloud with that 
from the BackPack derived solely by the G-TEAM showing a 0.7 
m elevation discrepancy and a 0.4 m planimetric difference for 
the sample building. On the other hand, Figure 9b highlights a 
noticeable improvement in alignment achieved by incorporating 
the Geiger-mode data into G-TEAM. Another sample of the 
Geiger-mode-assisted G-TEAM, Geiger-mode, and combined 
point clouds are shown in Figure 10a, 10b and 10c, respectively. 
Through a comparison of these datasets, one can notice that the 
combined point cloud takes advantage of ground and airborne 
LiDAR data, providing comprehensive details of existing 
structures based on well-aligned datasets. The statistics of 
trajectory adjustments using Geiger-mode assisted G-TEAM are 
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presented in Table 1, where the mean, Standard Deviation (STD), 
and Root Mean Squared (RMS) of adjustment values for the 
trajectory comprising 4,030 sets of pose parameters are reported. 
The Geiger-mode assisted G-TEAM results in an adjustment of 
around 0.36 m for X and Y directions, along with a vertical 
change of approximately 0.27 m for the trajectory. For the 
orientation parameters of the trajectory, an adjustment of around 
0.1 degrees is applied for roll and pitch angles, while the heading 
angle shows a change of 0.2 degrees.  
 

 
(a) 

 
(b) 

Figure 8. Sample point cloud (colored by height) for a single 
tree reconstructed using the (a) original GNSS/INS trajectory 

and (b) enhanced trajectory from G-TEAM. 
 

 
(a) 

 
(b) 

Figure 9. Sample illustration of Geiger-mode point cloud (in 
red) alignment with BackPack point clouds from (a) G-TEAM 

only (in green) and (b) Geiger-mode-assisted G-TEAM (in 
blue). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Sample point clouds from BikePack and Geiger-
mode datasets: (a) BikePack after applying the Geiger-mode 

assisted G-TEAM, (b) Geiger-mode point cloud, and (c) 
combined Geiger-mode and BackPack data (zoom-in views 

of the areas within the red rectangle are illustrated on the 
left). 

 
 Mean STD RMS 

𝑿𝑿𝑑𝑑𝑑𝑑𝑟𝑟 (m) -0.192  0.300 0.356 
𝒀𝒀𝑑𝑑𝑑𝑑𝑟𝑟 (m) 0.142 0.334 0.363 
𝒁𝒁𝑑𝑑𝑑𝑑𝑟𝑟 (m) 0.261 0.059 0.267 
𝝎𝝎𝑑𝑑𝑑𝑑𝑟𝑟 (°) 0.007 0.120 0.120 
𝝋𝝋𝑑𝑑𝑑𝑑𝑟𝑟 (°) 0.011 0.094 0.095 
𝜿𝜿𝑑𝑑𝑑𝑑𝑟𝑟 (°) 0.060 0.200 0.209 

Table 1. Statistics of differences between initial and refined 
trajectory parameters for the BikePack dataset using the Geiger-

mode assisted GTEAM (number of adjusted sets of pose 
parameters: 4,030). 

 
To evaluate the performance of the proposed cross-labelling 
strategy for semantic segmentation of the BikePack dataset, the 
results are compared with another two segmentation approaches. 
The first approach uses a pretrained SPT model on the DALES 
airborne LiDAR dataset (Varney et al., 2020). The second 
approach utilizes a refined SPT model through transfer learning 
using the labelled Toronto-3D dataset (Tan et al., 2020), which 
was collected using a Mobile Mapping System (MMS). The 
Toronto data was used for the transfer learning as it has similar 
characteristics to that derived from the BackPack. Figure 11 
presents the segmentation results from three different 
segmentation strategies. A significant number of building points 
are incorrectly segmented as vegetation for the pretrained and 
refined SPT models, as shown in Figure 11a and 11b, 
respectively. In contrast, Figure 11c shows the results after 
applying cross-labelling, demonstrating a significant 
improvement with most building points correctly segmented. 
Figure 12 shows samples of segmented trees. 
 
In terms of quantitative analysis, a manually labelled BikePack 
dataset is used as a reference. Based on this reference, accuracy, 
IoU, and Cohen’s Kappa score are reported to assess 
segmentation performance, as shown in Table 2. The point cloud 
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is segmented into ground, vegetation, buildings, and others (i.e., 
streetscapes, vehicles, bushes, and utility poles). The difference 
in the number of points between the segmentation results is 
primarily due to the application of the KNN algorithm in the 
cross-labelling approach. Among the three semantic 
segmentation strategies, cross-labelling yields the best results. 
For vegetation segmentation, the proposed method achieves the 
highest user’s accuracy of 0.801. This accuracy is further 
supported by around 30% improvement in the IoU for vegetation. 
Compared to the refined SPT model, the proposed approach 
shows a more substantial improvement. Building segmentation 
from cross-labelling method shows the best results with the 
producer’s accuracy and IoU increasing by approximately 50% 
compared to those from the pretrained model. Similarly, ground 
segmentation benefits from the proposed approach, with 
producer’s accuracy and IoU increasing by approximately 10%. 
Even though the cross-labelling strategy is scoring lowest 
accuracy and IoU for others’ class, it still achieves the highest 
overall accuracy. Since the others’ class accounts for only 3% of 
the dataset, its lower segmentation accuracy has minimal impact 
on the overall accuracy and Cohen’s Kappa score. In contrast, 
ground points make up approximately 50% of the dataset, 
reinforcing the significance of accurate segmentation for major 
classes. Overall, the cross-labelling approach outperforms both 
the pretrained and refined SPT models, as reflected in its superior 
accuracy, mean IoU, and Cohen’s Kappa score. These 
performance metrics highlight the effectiveness of leveraging the 
well-aligned Geiger-mode and BackPack LiDAR data for label 
transfer, significantly improving segmentation quality 
across all classes. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Sample segmentation results of BikePack dataset 
from (a) pretrained and (b) refined SPT models together 

with the (c) proposed cross-labelling strategy. 
 

 

Figure 12. Sample segmented trees from the BikePack 
dataset. 

 
5. Conclusions and Recommendations for Future Work 

This study introduced a framework to integrate airborne and 
BikePack LiDAR data for trajectory enhancement and mapping, 
together with a learning-based point cloud segmentation for 
urban tree mapping. The proposed G-TEAM applies surfel 
features within multi-layer mapping optimization to improve 
trajectory and mapping results in urban environments. It also 
offers an option to incorporate other geospatial data to improve 
georeferencing accuracy for BikePack data, enabling integration 
of multi-platform LiDAR point clouds. Based on experimental 
results, the relative and absolute accuracy of BikePack point 
cloud after applying the airborne-assisted G-TEAM are 
significantly improved, achieving seamless integration with 
Geiger-mode data. Additionally, the proposed cross-labelling 
method transfers segmentation results between well-aligned 
datasets. Experimental results demonstrate a significant 
improvement over both the pretrained and refined-SPT models. 
The proposed cross-labelling method effectively utilizes well-
georeferenced data, enabling segmentation without the need for 
additional training datasets. This makes it a practical and efficient 
solution for addressing training data scarcity in traditional 
learning-based strategies while also providing useful 
segmentation information for urban tree mapping. 
 
For the limitations of the proposed framework, surfels used for 
map optimization in G-TEAM may struggle to present fine 
structural details in complex urban environments. Additionally, 
the presence of dynamic objects can also impact mapping 
accuracy.  Future work will explore the incorporation of a mesh-
based model to enhance the representation of fine structures. 
More accurate representation of objects in urban environments 
within a trajectory enhancement and mapping strategy can result 
in better point clouds. Moreover, dynamic object segmentation 
could be employed to mitigate the impact of moving elements. 
Another limitation is the dependency of the proposed cross-
labelling strategy on the segmented Geiger-mode dataset. 
Segmentation errors in the Geiger-mode data will be directly 
transferred to the BikePack dataset. Future work could focus on 
enhancing the cross-labelling method by implementing error-
filtering mechanisms or correction strategies before transferring 
labels between datasets. 
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Methods Pretrained Model Refined SPT Model Cross-Labelling 
Number of points 200,637,510 200,637,510 193,222,322 

Metrics Producer’s 
Accuracy 

User’s 
Accuracy IoU Producer’s 

Accuracy 
User’s 

Accuracy IoU Producer’s 
Accuracy 

User’s 
Accuracy IoU 

Labels 

Ground 0.865 0.994 0.860 0.699 0.998 0.698 0.948 0.943 0.897 
Vegetation 0.997 0.486 0.485 0.992 0.493 0.491 0.966 0.801 0.780 
Building 0.234 0.980 0.232 0.578 0.944 0.512 0.732 0.912 0.684 
Others 0.134 0.716 0.128 0.511 0.557 0.364 0.022 0.081 0.018 

Overall Accuracy 0.733 0.727 0.890 
Mean IoU 0.426 0.516 0.594 

Cohen’s Kappa Score 0.588 0.596 0.823 
Table 2. Quantitative evaluation of segmentation results for the BikePack dataset. 
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