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Abstract 

 

The roofs of ancient Chinese buildings are rich in cultural symbolism, embodying profound historical and artistic significance. To 

preserve the structural and semantic information of these roof components, this study employs point cloud semantic segmentation, as 

point clouds effectively capture their authentic geometry and dimensions. To reduce the high cost of manual annotation, we propose 

a weakly supervised learning approach for point cloud segmentation. However, a significant challenge arises due to the 

overwhelming presence of roof tiles in the point cloud data, which hinders segmentation performance. Since tiles constitute the 

majority of the point cloud, smaller architectural components become underrepresented. As a result, when ground truth labels are 

assigned randomly, the number of labeled points for these smaller elements is insufficient, leading to suboptimal segmentation 

accuracy. To address this issue, we refine the positional encoding method based on advancements in the attention mechanism, 

thereby enhancing the model’s ability to focus on small-scale components. Experimental results demonstrate that our approach 

achieves a 38.61% improvement in mean Intersection over Union (mIoU) compared to SQN, along with a 3.36% increase in overall 

accuracy (OA). Notably, our method even outperforms certain fully supervised networks in segmentation effectiveness. 

 

 

1. Introductory 

Chinese ancient architecture has a long history of development 

and is imbued with unique cultural connotations, serving as an 

important symbol of historical heritage and spiritual cohesion. 

Typically, it comprises three primary components: the 

foundation, the structural frame, and the roof. Its most 

distinctive feature is the prominent large-roof structure, which 

sets it apart from architecture in other regions and has earned it 

the designation of “big-roof architecture ” (Wang, 2011). The 

roof styles of ancient Chinese architecture are complex and 

diverse, primarily comprising the hip roof, gable-and-hip roof, 

overhanging gable roof, flush gable roof, and pyramidal roof, 

among others. The roof structure primarily comprises tiles, 

ridges, ridge beasts, chiwen, and ornamental animals. Beyond 

serving as primary roof components, these features fulfill both 

structural and decorative functions by securing roof tiles while 

enhancing aesthetic appeal. Roof typology served as a critical 

manifestation of hierarchical systems in ancient Chinese 

architecture, embodying the sociopolitical ideologies of 

successive dynasties. Over millennia of architectural evolution, 

traditional Chinese roof structures and their associated eave 

decorations have become significant cultural artifacts that 

preserve historical memory and aesthetic philosophy. However, 

prolonged exposure to meteorological factors-including solar 

radiation, precipitation, aeolian erosion, and cryospheric 

processes-coupled with natural calamities, has resulted in 

progressive material degradation and structural compromise of 

these historic roofing systems. To safeguard this architectural 

heritage, systematic digital documentation of historic Chinese 

structures has become imperative. Terrestrial Laser Scanning 

(TLS) technology enables the acquisition of high-fidelity 

geometric data of architectural elements. Subsequent 

application of point cloud semantic segmentation algorithms 

facilitates the precise identification and preservation of intricate 

component-level details, particularly those pertaining to roof 

assemblies. This methodological framework establishes a 

critical foundation for engineering interventions, including 

structural health diagnostics, material rehabilitation protocols, 

and digital twin development for historic conservation. 

 

Our contributions are as follows: 

Using SQN as the baseline and extending our existing network 

(SQN-DLA) for roof segmentation, we integrate positional 

information-specifically, the coordinates of the central point and 

its neighboring points-into the segmentation process to achieve 

precise results. 

 

2. Related Work 

2.1 Overview of Ancient Roofs 

The roof of an ancient Chinese building comprises several 

components, primarily including the ridge, the roof surface, the 

eaves, supporting elements, and additional parts(Yuan et al., 

2022). The roof ridge, as the highest part of the roof, serves 

load-bearing, decorative, and waterproofing functions. The 

main ridge connects the two roof surfaces and is adorned at both 

ends with decorative ridge beasts and carved cloud motifs. The 

pendant ridges, located at the four corners of the roof, primarily 

enhance structural stability and direct rainwater flow. The bump 

ridges, situated at the roof's turning points, act as connectors 

between the main ridge and the pendant ridges, reinforcing the 

roof against wind forces. The roof surface, which constitutes the 

primary envelope of the structure, provides windproofing and 

thermal insulation. It is covered with roof tiles and features a 

drainage ridge strip, with the tile color indicating the building’s 

intended usage. The eaves, located along the lower edge of the 

roof, serve to block sunlight and prevent rainwater erosion. In 

addition, the dougong elements within the eaves also function 

as load-bearing components, contributing to structural 

stabilization. 
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The various parts of the roof have different roles,to preserve the 

intricate details of these roof components, 3D laser scanning 

technology is employed to generate point clouds for digital 

conservation. 

 

2.2 Point cloud semantic segmentation 

Currently, with the continuous development of LiDAR 

technology, point cloud semantic segmentation technology has 

been widely used in the digital preservation of ancient buildings 

and disease detection, and the main methods include traditional 

machine learning (ML), deep learning (DL) and hybrid methods 

(Zhou et al., 2024). Traditional machine learning relies on 

manually designed geometric features with regularization 

algorithms, which are more suitable for segmentation of regular 

components. Elkhrachy (Elkhrachy ,2017) identifies boundary 

points by thresholds such as normal vector pinch angle, 

curvature, etc. Maltezos (Maltezos and Ioannidis, 2018) utilizes 

Hough transform and RANSAC to fit planar, cylindrical and 

other geometries, and Zhang Ruiju (Zhang et al., 2020) et al. 

segmented beams and columns a priori in conjunction with 

building structures. Qian et al. (Qian et al.,2024) and others 

iteratively merge neighboring points using normal vector or 

density as constraints. Wan Fei (Wan et al., 2021) aggregated 

similar points based on covariance matrix and Euclidean 

distance. Grilli (Grilli and Remondino, 2019) explored the 

performance of geometric covariance features under different 

spherical neighborhood radii. Machine learning relies on 

manual feature design and neighborhood knowledge, which has 

insufficient generalization ability for irregular components (e.g., 

flying eaves and arches) in ancient architecture, making it 

difficult to achieve automated segmentation. Deep learning 

solves the problem of relying on rules in traditional methods 

through end-to-end feature learning, and improves the 

segmentation ability of complex scenes. PointNet realizes the 

original point cloud input for the first time; Hu et al. (Hu et al., 

2020) RandLA-Net adopts random sampling with local feature 

aggregation; Zhang et al (Zhang et al., 2021) in MSFA-Net 

proposed Dual Attention Aggregation Module (DAA) with edge 

interaction classifier. However, deep learning relies on a large 

amount of labeled data, and it may take weeks or even months 

to label a complex point cloud of ancient buildings for semantic 

segmentation. In order to balance accuracy and efficiency, 

hybrid methods combine supervised learning methods with  

 

geometric features to further improve the segmentation effect. 

However, fully supervised methods rely on a large amount of 

labeled data and have a large labeling cost, so weakly 

supervised learning is more suitable for segmenting point 

clouds of ancient buildings with a large amount of data, which 

can achieve close to fully supervised segmentation performance 

by using less labeled data, and greatly reduces the time and 

labor cost. In the process of point cloud segmentation of ancient 

buildings, due to the complex structure of ancient building roofs 

and the small size of the target components, the existing 

segmentation methods cannot efficiently and accurately 

segment the detailed information of ancient building roofs, so in 

order to take into account the purpose of high efficiency and 

accurate segmentation, this paper will be improved on the basis 

of weakly supervised learning. 

 

3. Method 

To address the difficulty of segmenting small targets on the roof 

and to ensure that these targets receive greater attention, we take 

SQN(Hu et al.,2022) as the baseline and segment the roof on the 

basis of our existing network (SQN-DLA). To overcome the 

deficiencies of the positional coding in SQN-DLA (Zhao et 

al.,2024) for segmenting the roofs of ancient buildings, we add 

the values of the centroid and the neighboring points, thereby 

achieving improved roof segmentation.  

 

The overall structure of the DLA is illustrated in Fig. 1. The 

inputs consist of spatial information and previously learned 

features. After encoding the spatial information, it is combined 

with the learned features and passed through a self-attention 

block to generate local attention features. These local attention 

features are then concatenated with the original features to form 

a residual connection, which is subsequently processed by an 

attention pooling block to yield enhanced local attention 

features. Finally, these enhanced features are summed with the 

original features to produce the final spatial attention features. 

To capture richer information, our input features are encoded 

using features that include color information. 

 

 

 

 

 

 

Figure 1 DLA overall framework 

 

The DLA network comprises two components: a point-local 

feature extractor and a point-feature query network. 

 

First, we integrate the DLA residual module into the point-local 

feature extraction process. The input consists of N points with 

xyz coordinates and RGB values. These points are initially 
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passed through a fully connected layer that increases the feature 

dimension to 8. The encoder consists of four layers, each 

comprising a DLA module and a random sampling (RS) 

operation. After four iterations of DLA and RS, the feature 

dimensions become 32, 128, 256, and 512, while the number of 

points is reduced to N/4, N/16, N/64, and N/256, respectively. 

 

Next, at each layer, the xyz coordinates are used to query the 

neighborhoods of the labeled points. The Euclidean distance 

between the centroid and its neighboring points is employed as 

a weight, which is then used to perform trilinear interpolation 

on the encoded features. Finally, the interpolated features are 

concatenated and fed into a series of MLPs to directly infer the 

semantic categories of the points. The predicted points can 

subsequently be used to generate weak labels. 

 

3.1 Network 

From a local perspective, ridge beasts, chiwen, and ornamental 

animals are connected with ridges and exhibit similar 

appearances, which leads to these small target classes of point 

clouds being easily categorized as ridges. We introduce a self-

attention mechanism based on the previously studied SQN-DLA 

[] to better distinguish the classes of point clouds, and we 

continue on the basis of this network. Since the positions of  

 

 

ridge beasts, ornamental animals, and chiwen in the roofs of 

ancient buildings are relatively fixed (the chiwen are all on both 

sides of the main ridge and directly above it, the ornamental 

animals are basically in the corners of the roof, and ridge beasts 

are generally located behind the ornamental animals), the 

information of the center point and its neighboring points is 

very important and plays a crucial role in the segmentation of 

the individual categories. 

 

The positional coding method is constructed using centroids, 

neighborhood points, relative positional distances, and 

Euclidean distances. Equation (1) is provided below: 

 

( )( )|||| k

ii

k

ii

k

ii

k

i ppppppMLPr −−=        （1） 

 

Where pi and pi
k denote the centroid and its neighboring points, 

respectively, pi-pi
k denotes the relative distance between the 

centroid and the neighboring points, ||·|| represents the Euclidean 

distance between the computed centroid and its neighboring 

points, and MLP represents a linear transformation function. 

 

The specific structure of the positional coding is shown in Fig.2: 

 

Figure 2 Position encoding method 

 

In this regard, our overall pipeline is shown in Fig. 3. It 

comprises the SQN-DLA network, with the DLA component 

incorporating the positional encoding defined in Eq. (1). The 

input points are downsampled using a grid and then passed 

through the network, thereby completing the training of the  

 

 

model. The model generated by the network can be used not 

only for testing but also for generating pseudo-labels on the 

training set. The pseudo-labels are then employed to train new 

models. 

 

 

Figure 3 Roof Segmentation Process 
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4. Experiments 

4.1 Dataset 

The 3D laser scanning point cloud of the Beiding Niangniang 

Temple is used as the experimental data in this study. The 

temple, constructed over 600 years ago, is a significant 

architectural landmark along Beijing’s central axis, possessing 

considerable cultural heritage value. As a traditional timber 

structure, it features a well-organized spatial layout that 

exemplifies the architectural characteristics of the Ming and 

Qing dynasties. 

 

The roof structure primarily comprises tiles, ridges, ridge beasts, 

chiwen, and ornamental animals, and is equipped with wires for 

lightning protection. The dataset includes three roof types-flush 

gable, overhanging gable, and round gable-hip roofs-as shown 

in Fig. 4. Since both the round gable-hip and overhanging gable 

roofs originally feature mountain flowers, these elements were 

removed to ensure consistency between the training and testing 

datasets. The round gable-hip roof dataset was then merged with 

that of the overhanging gable roof, and the two were manually 

separated to expand the dataset. The input data and 

corresponding ground truth values are presented  

 

in Fig. 4. These roofs pertain to the Niangniang Hall, the Hall of 

the Heavenly King, and its two side halls. The roof datasets of 

the Niangniang Hall and its two supporting halls, totaling 

2.04 GB, are used for training, while the roof dataset of the Hall 

of the Heavenly King, at 788 MB, is used for testing. 

 

Our dataset comprises six categories: tiles, ridges, ridge beasts, 

chiwen, ornamental animals, and wires. All roofs include two 

ridge types-the main ridge and the pendant ridge. The main 

ridge is situated between the two chiwen, while the pendant 

ridge is oriented perpendicular to the main ridge. Roofs with hip 

structures also feature impinging (forked) ridges that intersect 

the pendant ridge at a 45 ° angle externally, and roofs with 

pediments include an additional ridge positioned below the 

pediment. These elements are collectively referred to as ridges 

and are indicated in orange in Fig. 5. On the pendant and 

impinging (forked) ridges, secondary ridge elements are present 

and are shown in gray in Fig.5. Ridge beasts and ornamental 

animals, collectively referred to as walking animals, are 

distributed along the vertical or bump ridges and are marked in 

red in Fig. 5. The chiwen, tiles, and wires are depicted in yellow, 

green, and black, respectively, in Fig. 5. 

 

   
round gable-hip roof overhanging gable roof flush gable roof 

 

Figure 4 Dataset roof types
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Figure 5 Dataset roof types 
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Table 1 presents the training set point cloud statistics, from 

which it is evident that the vast majority of points belong to the 

tile category. Categories such as ornamental animals, ridge 

beasts, and wires account for only a very small fraction; notably, 

ornamental animals comprise less than one percent relative to 

tiles. Due to computational constraints, it is not feasible to input  

 

all point clouds into the network, making down sampling 

inevitable. Consequently, the number of points representing 

these minor targets is further reduced or may even vanish, 

potentially preventing the network from learning sufficient 

features and leading to poor segmentation performance. 

 

Types ridges 
ridge 

beasts 
chiwen 

ornamental 

animals 
tiles wire 

Number of point clouds 1731069 141515 333935 66888 6806225 111891 

Table 1 Number of various types of points in China's roof point cloud dataset 

 

4.2 Experimental details 

We adopt the data preprocessing method of RandLA-Net (Hu, 

2020) to perform grid-based down sampling on the raw data, 

with a sampling point spacing set to 0.01 meters. For data 

annotation, we randomly select 0.1% of the points for labelling 

and conduct end-to-end training based on these annotations. All 

experiments were performed on an environment equipped with 

an Intel® Xeon® Platinum 8255C CPU @ 2.50 GHz and an 

NVIDIA RTX 2080Ti GPU. During training, 40,960 points are 

randomly sampled from each scene as model input. Owing to 

the rapid convergence of the loss function, we set the number of 

training epochs to 60, with an initial learning rate of 0.01 and a 

decay of 5% after each epoch. Additionally, we configure the 

nearest neighbour search with a K value of 16 and employ a 

batch size of 3. Considering that some segmentation targets are 

small, the pseudo-label generation process may yield relatively 

high prediction errors for these targets-and the errors in the 

original network are even higher-which could compromise the 

fairness of the experiment. Therefore, in this study, we do not 

perform iterative pseudo-labelling, thereby ensuring the 

objectivity and consistency of the experimental comparisons. 

 

4.3 Contrast Experiment 

To validate the feasibility of our method, we compare it with 

several state-of-the-art networks from recent years, including 

fully supervised approaches (RandLA-Net [Hu et al.,2020], 

BAAF [Qiu et al.,2021]) and weakly supervised methods (SQN 

[Hu et al.,2022], SQN-DLA [Zhao et al.,2024], PSD [Zhang et 

al.,2024]).  

 

Table 2 presents the quantitative segmentation results, while 

Fig.6 provides a qualitative comparison between our method 

and SQN. The results indicate that our approach outperforms 

the competing methods in most category IoU, with overall 

performance surpassing that of the fully supervised methods.  

 

This demonstrates that our method not only significantly 

reduces time and labor costs but also achieves superior 

segmentation outcomes. In particular, our method shows 

enhanced performance in segmenting small targets (such as 

ornamental animals, ridge beasts, and chiwen). The baseline 

network struggles to differentiate between the various types of 

beast ornaments on the roof ridge, resulting in lower 

segmentation accuracy, and it also exhibits a higher rate of 

misclassification within the tile category. This is mainly due to 

the overwhelming proportion of tile points and the difficulty in 

distinguishing the features of the beast ornaments. Overall, 

compared with SQN, our method improves the mIoU by 32.9% 

and the overall accuracy (OA) by 2.15%. The relatively modest 

increase in OA is primarily attributable to the fact that tiles  

account for the majority of points and thus exert a greater 

influence on overall accuracy. However, from the perspectives 

of mIoU and per-category IoU, our method achieves more 

precise segmentation of the various beast ornaments on the roof 

ridge, further validating its effectiveness in the semantic 

segmentation of complex ancient architectural point clouds. 

 

 

 

methods Labeling ratios mIoU(%) ridges ridge beasts chiwen wire ornamental animals tiles OA(%) 

SQN 0.1% 45.83 70.20 37.04 2.83 34.51 35.12 95.26 93.28 

Randla-net 100% 71.97 73.99 56.96 56.57 86.94 62.37 95.01 94.61 

SQN-DLA 0.1% 74.07 79.78 48.44 39.58 87.88 91.63 97.14 96.03 

BAAF 100% 73.71 66.23 63.78 61.29 86.84 70.05 94.06 93.99 

PSD 1% 38.94 54.81 0 0 86.30 0.02 92.52 91.31 

Ours 0.1% 78.73 74.02 74.81 38.99 91.66 93.92 96.79 95.43 

Table 2  Various types of segmentation IoU, mIoU and OA of the roof as a whole of the roof of the ancient building 
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Figure 6  Comparison of multi-view segmentation 

 

4.4 Ablation Experiments 

Using SQN as the baseline, we conducted ablation experiments. 

We introduced a self-attention module and 4-position encoding, 

and the experimental results are presented in Table 3. Since the 

baseline already employs 4-position encoding, it serves as the 

point of comparison. SQN-DLA is presented separately because 

it uses 2-position encoding; its segmentation performance is 

shown in the second row of Table 3, which clearly demonstrates 

that incorporating the self-attention module is indeed necessary 

relative to the baseline. Subsequently, by adding 4-position 

encoding on top of the self-attention module, the segmentation 

performance was further enhanced, as shown in the third row of 

Table 3. Although the OA decreased slightly, the mIoU 

improved. As can be clearly seen from Table 2, the drop in OA 

is mainly due to reduced performance in tile segmentation, 

whereas the segmentation of ridge beasts and walking animals 

improved considerably. This indicates that augmenting the 

positional encoding and integrating it with the attention module 

can effectively enhance the segmentation of small targets. 

 

baseline 
4-position 

encoding 

self-attention 

module 
mIoU(%) OA(%) 

√ √  45.83 93.28 

√  √ 74.07 96.03 

√ √ √ 78.37 95.44 

Table 3  Roof split ablation experiment 

 

5. Conclusions and outlook 

For the refinement of roof components in ancient buildings, we 

propose a discussion on positional encoding based on our 

previous research in weakly supervised semantic segmentation. 

This method not only reduces the cost of point cloud annotation 

but also enables fine-grained segmentation of each roof 

component. Notably, most of the primary segmentation targets 

belong to small-scale architectural elements. Furthermore, we 

reaffirm the effectiveness of our method (SQN-DLA) in point 

cloud semantic segmentation of roof components. This study 

provides an important theoretical and methodological 

foundation for the future conservation, digital modeling, and 

mapping of ancient building roofs. 
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