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Abstract
With the rapid advancement of urbanization, the spatial structures of large-scale public venues such as transportation hubs and 
shopping malls have become increasingly complex. These venues often include diverse and flexible types of transitional spaces 
connecting them with their surrounding environments, which impose a significant cognitive burden on individuals navigating through 
them. However, traditional methods for constructing indoor and outdoor geospatial data for location-based services (LBS) are 
typically conducted independently. These approaches lack a unified topological characterization of transitional spaces, leading to 
several challenges in practical applications, such as the disconnection between indoor and outdoor spaces, difficulties in cross-scene 
transitions, and inaccurate topological correspondences between indoor and outdoor spaces. This highlights the critical need for 
an integrated indoor-outdoor topological modeling approach. To address these issues, this study proposes a systematic workflow 
for constructing an integrated indoor-outdoor topological model based on complete transitional spaces derived from indoor and 
outdoor point cloud data. This approach provides foundational support for subsequent applications, such as path navigation and 
emergency planning for unmanned aerial vehicles (UAVs).

1. Introduction

With the comprehensive advancement of the Real-Scene 3D
China initiative, enhancing the capability of surveying and
mapping geoinformation services to empower various
applications has become a key research focus. This endeavor
aims to provide robust support for the construction and
implementation of Digital China. According to research, over
75% of the global population resides in towns and cities, and
modern urban dwellers spend 80% to 90% of their time living
and working inside buildings (EPA, 2009) , the frequency of
movement between complex buildings and between indoor and
outdoor spaces is steadily increasing. To meet the growing
demand for diverse spatial services and facilitate the
development of 3D city construction for public services, it is
essential to advance integrated topological modeling of indoor
and outdoor spaces.
The automated generation of topological spatial models is
closely related to spatial structures, and earlier studies have
highlighted the structural differences between indoor and
outdoor spaces (Claridades and Lee, 2021). In the description of
spatial topological features, the structural differences between
indoor and outdoor scenes have led to diverse and independent
expressions of their respective topological spatial models.
Generally, outdoor topological models are typically represented
using 2D structures, while indoor models are characterized by
complex 3D network models with spatial depth. Research on
outdoor topological models has achieved significant progress,
greatly enhancing the convenience of daily production and life.
However, despite the maturity of outdoor topological model
applications, indoor models, particularly integrated indoor-
outdoor topological spatial models, remain underexplored and
underdeveloped (Basiri et al., 2017; Kang et al., 2014). The
expression of indoor spatial topological features is highly
diverse, including representations such as regular grids (Zhao et
al., 2022)、 irregular grids (Boguslawski et al., 2016)、 node

relationship diagrams (Yang et al., 2021) , as well as hybrid
graphs (Lin et al., 2017; Yeh and Zhong, 2021) , among others.
Unlike outdoor spatial structures, indoor scenes feature complex
spatial configurations and flexible topological characteristics,
posing significant challenges in the construction of indoor
topological spatial models. Currently, the creation of indoor
navigation topological maps primarily relies on manual
modeling. However, this approach is both time-consuming and
labor-intensive (Liu et al., 2021), making it difficult to meet the
demands of practical applications. Given the current limitations
in the integration of semantics, geometry, and topology within
indoor topological spatial models, as well as deficiencies in the
expression and description of indoor spatial topological features,
many scholars have increasingly focused on the automated
construction of indoor topological models. These efforts aim to
extract the geometric, semantic, and topological attributes of
indoor spatial objects from geospatial data sources such as BIM,
CityGML, CAD, and point clouds, and to model indoor spatial
objects (Boguslawski et al., 2016; Chuang and Sung, 2021; Fu
et al., 2020; Teo and Cho, 2016) . Significant progress has been
made in this area. However, since indoor and outdoor
topological models remain independent, location-based services,
such as navigation and emergency rescue across indoor and
outdoor scenes, inevitably face challenges such as data
switching and global optimization verification (Yeh and Zhong,
2021). Consequently, the automatic generation of integrated
indoor-outdoor topological models has gradually become a
research hotspot (Teo and Cho, 2016; Yan et al., 2019; Yeh and
Zhong, 2021) . These studies primarily focus on achieving
integrated above-ground and below-ground representations and
applications of indoor and outdoor spaces through semantic
hierarchies of buildings and their surrounding scenes.
In existing research, most work has primarily focused on indoor
topological spatial models and their construction methods
(Flikweert et al., 2019; Tessema et al., 2019), with relatively
simple topological representations. Additionally, although some
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studies have explored the integration of indoor and outdoor
topological models, these efforts generally emphasize modeling
and cartographic representation. Research on the automatic
generation of integrated indoor-outdoor topological models
remains relatively scarce, and most studies connect indoor and
outdoor spaces via a single node (Tashakkori et al., 2015; Teo
and Cho, 2016; Wang and Niu, 2018). While this approach is
straightforward, it overlooks the spatial diversity and multi-level
expression between buildings and outdoor roads, failing to fully
reflect the real world and severely limiting navigation path
planning.
Research has shown that certain spaces can be considered
neither fully indoor nor fully outdoor, but rather as transitional
zones between the two. These spaces challenge traditional
spatial classifications and prompt a reevaluation of how they
should be modeled and navigated in applications. Transitional
spaces can act as buffers or circulation pathways between
indoor and outdoor environments, such as building porches,
lobbies, front yards, or plazas, facilitating smooth transitions
from one space to another (Kray et al., 2013; Sabeen and Kim,
2020). Although some studies have investigated the
construction of integrated indoor-outdoor models for
transitional spaces, current research is limited to the horizontal
aspects of transitional spaces, overlooking the vertical
characteristics.
Compared to indoor and outdoor spaces, transitional spaces
serve as a unique buffer zone, a function not only relevant to
pedestrian path navigation but also significant in vertical
scenarios. In special emergency situations such as fires, rescue
devices like drones can access indoor spaces through the doors
and windows of transitional spaces. This critical application and
uniqueness of transitional spaces have not been adequately
considered in prior research.
This study will construct corresponding topological models for
indoor and outdoor point clouds, connecting them through the
shared characteristics of transitional spaces. The final integrated
indoor-outdoor topological model will ensure the coherence of
location-based services across both indoor and outdoor
environments.

2. Method

This paper proposes a method to integrate indoor and outdoor
topological models by fully utilizing the entire three-
dimensional transitional space. For indoor point clouds, an
indoor topological model is constructed by segmenting and
extracting features from point clouds of doors, windows, rooms,
and floors, dividing the model into semi-indoor and other parts.
For outdoor point clouds, an outdoor topological model is
designed through door and window recognition and road point
cloud extraction, catering to the needs of pedestrian movement
and UAV navigation, and dividing it into semi-outdoor and
other parts. The semi-indoor and semi-outdoor sections from
both the indoor and outdoor topological models are merged to
form the transitional space, and the integration of the indoor and
outdoor topological models is achieved by connecting the nodes
within the transitional space. The overall technical framework is
shown in Figure 1.

Figure 1. Technical Framework for Integrated Indoor-Outdoor
Topological Modeling.

2.1 Indoor Topological Model Construction

2.1.1 Indoor Point Cloud Spatial Segmentation: From the
perspective of indoor spatial partitioning, floor space is a
composite space, typically divided into individual floors for
processing using methods like elevation histograms. The first
step is to segment the unstructured scanned point cloud into
individual floors and extract the permanent structures (such as
stairs). Subsequently, spatial segmentation is performed
separately for each floor and the stairs.
In the floor division process, this study relies on prior
knowledge to partition the floors, assuming that the floor of
each level lies on the same elevation plane, with the ceiling
height being consistent. When the sampled point cloud is evenly
distributed, the point clouds on the upper and lower surfaces of
the floor exhibit distinct peaks on the elevation histogram. This
characteristic allows for the determination of floor height, as
well as the elevation of the floor and ceiling, based on the point
cloud's height histogram.

Figure 2. Floor Height Histogram.

Figure 3. Floor Segmentation Results.

Near the ceiling height, the point clouds between rooms are
usually disconnected. Therefore, for single-floor point clouds,
the ceiling height is also determined using the elevation
histogram method. The point cloud is then sliced based on the
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ceiling height, which facilitates the subsequent segmentation of
individual rooms.
To represent the point cloud as an image, the first step is to
partition the point cloud into a 2D virtual grid. Based on the
minimum and maximum values of the point cloud's bounding
box along the x-axis and y-axis, as well as the grid cell
dimensions �� and ��, the 2D virtual grid is defined as follows:

2����� = ���� �, � (1)

In the equation, � and � represent the 2D coordinates of the
image pixels. 0 ≤ u ≤ INT Xmax−Xmin

dx
, 0 ≤ v ≤ INT Ymax−Ymin

dy
,

Where (�max , �max), (���� , ����) represent the maximum and
minimum coordinates of the point cloud's 2D projected
bounding box, respectively, �� and �� represent the horizontal
and vertical resolution, respectively. According to the definiton
of a room, a single room is a closed space, which, in a 2D plane,
is surrounded by a closed contour. Therefore, by performing a
connected component analysis on the binary image, each room
will be segmented into a separate region, allowing for the quick
extraction of the point cloud for each individual space.

2.1.2 Door and Window Extraction: We start with existing
mature 2D image-based object detection algorithms to perform
object detection on 3D point clouds. The segmented room point
cloud is processed using the RANSAC algorithm (Schnabel et
al., 2007) for plane extraction, where vertical walls are retained
based on their normal direction. A colored composite image of
the wall surface is generated through point cloud projection.
Simultaneously, the correspondence between the pixel points in
the 2D image and the 3D indoor point cloud is maintained.
After obtaining the image containing doors and windows, object
detection is applied to identify them. The colored wall image
synthesized from the point cloud is input into the YOLO neural
network (Farhadi and Redmon, 2018). This allows the
extraction of bounding boxes for doors and windows, providing
a rough estimate of their location. By utilizing the
correspondence between the 2D and 3D data, a rough extraction
of the indoor door and window point clouds can be achieved.
Then, using the α-shape algorithm (Edelsbrunner and Mücke,
1994) for contour extraction, the method assumes that a circle
with radius α rolls around the point set S. As α varies, the circle
moves around the inside and outside of the point set, and the
trace left by the rolling circle forms the convex hull of the point
set S. When the points in S are evenly distributed and α is
appropriately chosen, the inner and outer boundaries of the
point set S can be obtained.
This combined 2D-3D approach improves both extraction
efficiency and accuracy, preventing errors caused by holes due
to occlusion by indoor clutter.

2.1.3 IndoorGML Topological Model Construction: In
IndoorGML, the topological structure between "cells" is derived
through the use of Poincaré duality, which maps the layout of
indoor spaces. According to Poincaré duality theory, a k-
dimensional object in the N-dimensional primal space is
mapped to an (N-k)-dimensional object in the dual space. For
example, a cell (such as a room within a building) in the three-
dimensional primal space is mapped to a node (0-dimensional)
in the dual space. The common 2D surface shared by two
adjacent cells is transformed into an edge (1-dimensional) in the
dual space, connecting the two adjacent nodes. Figure 4
illustrates the dual transformation in both two-dimensional and
three-dimensional primal spaces.
To construct the IndoorGML topological model, we first extract
the contour points from the room point cloud and the

door/window point cloud. For the room point cloud, we slice
the Offset region (an additional spatial area defined outside the
ceiling height range, which allows including points slightly
below the ceiling height) to obtain the contour point cloud. The
extracted contour point cloud is then normalized, and the
centroids of each region are calculated as the State points of the
topological model. The normalized contour is used to define the
shape of the cell.
IndoorGML also provides specific definitions for components
such as doors and windows. If a door is represented as a gml:
Curve in two-dimensional space, it can be mapped to the
<IndoorNavi::ConnectionBoundary> or <IndoorNavi::Anchor-
Boundary> in the indoor navigation extension module, which is
known as the "thin door model. " If a door is represented as a
gml:Solid in three-dimensional space, it can be mapped to the <
IndoorNavi::ConnectionSpace> or <IndoorNavi::AnchorSpace>
in the indoor navigation extension module, which is known as
the "thick door model. " Since all doors and windows in this
study are assumed to be navigable, they are set as thick door
and thick window models. During topological relationship reco-
nstruction, it is assumed that all doors and windows are connect
ed to the room nodes by default.

Figure 4. Transformation Relationship Between Primal and
Dual Spaces Based on Poincaré Duality (Lee, 2004) .

2.2 Outdoor Topological Model Construction

In this paper, outdoor spaces are divided into semi-outdoor and
other parts (such as roads), and separate outdoor topological
models are constructed for each. Following the definition by
Yan (Yan et al., 2019) , we extend the definition of semi-
outdoor space, where the entire area from the exterior building
wall to the bottom step of the staircase connected to the building
exit is defined as the semi-outdoor space. Given the absence of
point cloud data for the semi-external space, we adopt a spatial
division approach. This involves dividing the space extending
outward from the building's external walls by a specified
distance. The RANSAC algorithm is then employed to extract
the main façade of the building's exterior walls. Based on the
orientation of this main façade, we extend outward to construct
the semi-external space's CellSpace. The preliminary spatial
division is subsequently refined through a secondary division
based on the floor height obtained in section 2. 1. 1, resulting in
the construction of subspaces.
Next, it is essential to identify and extract traversable
components on the building’s external walls. Compared to
interior walls, the external walls are less obstructed, allowing
for the use of hole extraction methods to detect doors and
windows. This algorithm constructs an irregular triangular mesh
through triangulation, extracting longer edge points which are
then clustered. The edge points belonging to the same hole are
marked, and the adjacency relationships between inner and
outer boundary triangles are analyzed to distinguish between the
internal and external edges of the hole. This process ultimately
enables the extraction of the contours of windows or other
openings (Pu and Vosselman, 2007). The algorithm constructs
an irregular triangular mesh through triangulation, extracting
longer edge points which are then clustered. Edge points
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belonging to the same hole are marked, and the adjacency
relationships between inner and outer boundary triangles are
analyzed to distinguish between the internal and external edges
of the hole. This enables the extraction of the contours of
windows or other openings. However, considering the large
volume of outdoor building point cloud data and the relatively
slow speed of triangular mesh construction, we employ the
same 2D-3D cross-data method used for interior detection for
window and door detection.
Based on the results of the window and door extraction, the
nodes of the windows and doors are extended outward along the
wall’s normal direction to define semi-external subspace State
nodes. In constructing the outdoor portion, we not only consider
pedestrian accessibility but also integrate emergency path
planning into the unified model. For example, in the event of a
fire or other emergencies, this feature can assist drones and
other devices in entering the building through all accessible
passages. To ensure model compatibility, we account for both
scenarios in the construction requirements, ensuring path
planning flexibility in both horizontal and vertical directions.
Thus, all adjacent nodes are connected using transitions in both
vertical and horizontal directions.
As the IndoorGML model is more oriented towards indoor
building representations, the outdoor road network is modeled
using different formats. Currently, the outdoor models known to
connect to the IndoorGML model through anchor nodes include
CityGML, GDF, and PNspec. In this study, we adopt the
CityGML model as the standard for the outdoor portion. This
model not only effectively represents the geometric information
of three-dimensional urban space but also offers rich semantic
layers, enabling detailed descriptions of the attributes and
relationships of elements such as buildings, roads, and green
spaces. This provides strong support for integrated indoor-
outdoor modeling.

2.3 Construction of an Integrated Indoor-Outdoor
Topological Model Based on Transitional Spaces

Transitional spaces not only physically connect the indoor and
outdoor environments but also provide necessary buffer zones
functionally. These spaces facilitate both the physical
connection between indoor and outdoor areas and the multi-
route accessibility for entry and exit. In this study, we aim to
integrate the indoor and outdoor topological models based on
the model proposed by Claridades (Claridades and Lee, 2021).
The Transfer_Link is a data model connection method
introduced by the authors, designed to establish spatial
relationships between indoor and outdoor navigation networks.
It utilizes unique identifiers and connection information of
indoor and outdoor network nodes to achieve seamless
connectivity between different datasets and database schemas,
eliminating the need for data conversion or complex
implementations. This approach supports continuous navigation
activities of agents across indoor and outdoor spaces. Moreover,
since roads or sidewalks may have multiple access points,
multiple Transfer_Links are permitted within the transitional
space, thus avoiding the single-point connection issue seen in
the IndoorGML model (as shown in Figure 5).
By leveraging the model's advantage of enabling multi-point
connections, all nodes within the vertical region of the
transitional space can be utilized for integrated indoor-outdoor
connectivity. The semi-indoor and semi-outdoor topological
models must remain consistent at transitional components, such
as doors and windows, which is a key factor in achieving
integration. Thus, we treat the window and door nodes in the
semi-indoor topological model as connection points for the
indoor topological model, while the semi-outdoor subspace

nodes serve as connection points for the outdoor topological
model. By using Transfer_Link, we establish a connection
between the two models, constructing an integrated indoor-
outdoor topological model (as shown in Figures 6 and 7).

Figure 5. Definition of AnchorNode in the SeamlessNavigation
Module of the IndoorGML Model.

Figure 6. Network Representation of the Generated Transitional
Space (Claridades and Lee, 2021).

Figure 7. UML Class Diagram of the Proposed Data Model.

3. Experimental Results

We selected integrated indoor-outdoor point cloud data from a
company in Beijing, China, to conduct experiments on the
construction of the integrated indoor-outdoor topological model,
with the outdoor road network connected directly through an
existing road topology model. First, we processed the indoor
point cloud data. To analyze the impact of spatial resolution on
room partitioning, tests were conducted with spatial resolutions
of 0.1 m, 0.2 m, 0.3 m, and 0.4 m. Among these, a spatial
resolution of 0.2 m yielded the best results. Figure 8 shows the
indoor point cloud segmentation results achieved through
distance transform at a spatial resolution of 0.2 m, while Table 2
presents the room segmentation accuracy data for different
floors.

Data Number of Points( × 106) Area(m2)
Floor1 14. 865166 1836
Floor2 16. 462953 1836
Floor3 16. 740668 1836
Floor4 16. 089905 1836
Floor5 16. 385180 1836

Table 1. Point Cloud Information for Each Floor of the Building.
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Figure 8. Indoor Space Partitioning Results.

Floor Precision(%) Recall(%)
F1 89. 4 95. 6
F2 88. 3 93. 7
F3 81. 0 74. 2
F4 85. 1 88. 2
F5 88. 5 94. 1

Table 2. Spatial Partitioning Accuracy for Different Floors.
The same method using the YOLO neural network was applied
to extract doors and windows in both indoor and outdoor
environments. We created 2, 000 indoor and outdoor point
cloud color composite images for training, enabling coarse
extraction of doors and windows. The fine extraction was then
performed using the α-shape method. Figure 9 shows the results
of our door and window extraction, where the first column
displays the detection results from the point cloud color
composite images, the second column shows the coarse
extraction based on 2D-3D relationships, and the third column
illustrates the fine extraction results.
The error calculation requires the true locations of the door and
window feature corner points. In this study, we manually
annotated the sample data to obtain the true positions, and then
used the calculated results from the algorithm to assess the
effectiveness of the proposed method by comparing the
maximum and average errors between the computed values and
the true values. These two functions are defined as:
Maximum error function:

emax = max gi − ci , i = 1, . . . , N (2)

Average Error Function:

eavg = i=1
N gi−ci�

N
(3)

Where · denotes the Euclidean distance between two points, g
represents the set of true feature points, and c denotes the set of
computed points.

Figure 9. Door and Window Extraction Results from Coarse to
Fine.

Index ���� ����
1 0. 045 0. 023
2 0. 044 0. 019
3 0. 038 0. 019
4 0. 036 0. 020
5 0. 039 0. 026

Table 3. Door and Window Recognition Accuracy.
Figure 10 shows the final constructed integrated indoor-outdoor
topological model, where the yellow portion represents the
indoor topological model, the gray area represents the
transitional space topological model, and the green lines
indicate the spatial unit connections in the IndoorGML model.
The white circles represent the spatial unit nodes, and the blue
lines represent the outdoor road topology model. The enlarged
view on the left side of the image illustrates the specific
connections within the transitional space, where the red
geometric cubes represent the thick door models, and the yellow
geometric cubes represent the thick window models.
This study uses two metrics for model evaluation: the
proportion of floor points included in the floor surface (Floor
Coverage) and the proportion of wall points included in the wall
surface (Wall Coverage). These metrics indicate that the
reconstructed model closely matches the original data and
effectively reflects the true structure of the building. To
demonstrate that the integrated topological model fully utilizes
the advantages of the vertical transitional space, we conducted
an unmanned aerial vehicle (UAV) flight path planning
experiment, where the shortest route from a designated outdoor
node through the transitional space to a designated indoor node
was calculated. This confirms that the model is applicable in
scenarios such as emergency response.

Figure 10. Integrated Indoor-Outdoor Topological Model.
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Figure 11. UAV Path Planning (with the red line representing
the planned flight path).

Data Floor Coverage Wall Coverage
Floor1 0. 955 0. 944
Floor2 0. 968 0. 952
Floor3 0. 974 0. 945
Floor4 0. 975 0. 954
Floor5 0. 969 0. 956

Table 4. Model Construction Accuracy.

4. Conclusion

To meet the demands of cross-scenario navigation and
emergency UAV flight, this study proposes a topological
modeling method for integrated indoor-outdoor spaces based on
transitional spaces. By revisiting the definition of transitional
spaces, we redefined semi-indoor and semi-outdoor spaces, and
established node connections between indoor door/window
nodes and the semi-outdoor space, addressing the limitations of
single-point connections that fail to meet navigation
requirements. This led to the construction of the final integrated
indoor-outdoor topological model.
The topological model developed in this study not only
considers ground-level scenario navigation but also fully
incorporates the vertical aspects of transitional spaces,
extending the outdoor topological model from a two-
dimensional to a three-dimensional application. The integrated
indoor-outdoor model not only satisfies routine pedestrian path
planning needs but can also serve as an offline model for
emergency scenarios such as UAV path planning during fires
and escape route planning for trapped individuals, offering
significant practical applications.
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