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Abstract 
 
With the advancement of urbanization, building footprint data plays an important role in urban planning, 3D Real Scene and smart 
cities. Traditional manual contouring methods are time-consuming and laborious, while deep learning-based building extraction 
methods often require a large amount of labeled data and have limited generalization ability. In this paper, a zero-shot framework based 
on Segment Anything Model (SAM) is proposed for extracting and regularing building footprints from 3D mesh data. The method 
mainly consists of three steps: 1) Coarse Prompt Generation, irrelevant element’s masks such as ground and vegetation are eliminated 
by semi-global filtering and traditional classification method, and rough building mask is obtained as a boundary box prompt. 2) Fine 
mask generation: Using SAM's mask prompt capability, combined with logits map and grid elevation information with adaptive 
threshold to generate the fine mask prompt. Combine it with the updated bounding box to form hybrid prompt, and input SAM to 
generate a refined building mask. 3) Footprint regularization: Kinetic Partition, Markov random field, and Region Growth Algorithm 
are used to extract regularized building contours. Structural line segments from LSD guide the Kinetic Partitioning of the building. 
Markov random field matches building labels, while a region growth-based boundary reassignment refines the contours. The final 
regularized contour integrates the partitioned building zones. Our method achieved 78.31% AP50 on the Vaihingen dataset and 
obtained regular footprints that closely align with the true building contours on real Mesh data. 
 
 

1. Introduction 

Building regularized footprints extraction play a key role in 
practical applications of urban construction, such as urban 
planning, cadastral and topographic mapping, 3D Real Scene, 
and smart city. Different from rasterized building segmentation, 
building regularized footprints can express the geometric 
structure of buildings in a lighter and more accurate vector form, 
which contains geometric spatial information that can be 
effectively applied to data storage and relational analysis in 
Geographic Information System (GIS). However, due to the high 
accuracy requirements of building regularized footprint, the 
actual engineering applications at this stage are still based on 
manual sketching, which is expensive and time-consuming. 
 
With the rapid development of deep learning technology, 
building extraction has become a hotspot of deep learning 
research for many years, and a large number of excellent works 
based on the architectures of convolutional neural network 
(CNN), recurrent neural network (RNN), graph neural network 
(GNN) and Transform have emerged. Most of the early 
researches were based on mask segmentation methods 
(Ronneberger, 2015; He, 2017), firstly obtaining instantiated 
masks of buildings through the network, and then regularizing 
and vectorizing the masks through a series of post-processing 
steps. Such methods are often trained with the ground-truth of 
pixel classification as a supervision, which makes the model 
ignore high-dimensional region information such as building 
corners and regular boundaries, thus obtaining rounded corners 
and irregular building contours. These errors continue to 
accumulate during post-processing, making it difficult to obtain 
correct results from the vectorization process. 

 
In recent years, methods for directly extracting building polygons 
by learning geometric information such as points and edges of 
buildings have attracted attention. The methods for extracting 
polygonal buildings can be categorized into three main types: 
Vertex-based methods, which predict the building vertices from 
the image and then connect them to obtain the polygons; 
Contour-based methods, which predict and regress the sequence 
of polygonal vertices of a building directly from the contour of 
the building; and graphic primitives-based method, which extract 
the line primitives of a building and directly perform the 
construction of the building polygons. 
 
Vertex-based methods usually include two-stage approaches: 
vertex prediction and vertex connection. The structural vertices 
of the building are first extracted from the image without 
prediction of the connectivity between the vertices. Therefore, 
the prediction of building polygons based on the extracted 
vertices is also needed. In this case, PolyWorld (Zorzi, 2022) 
employs a permutation matrix to represent the connectivity 
relationships between vertices. It utilizes a graph neural network 
to predict the connection strengths for each vertex pair, 
effectively transforming the problem of constructing building 
polygons into an optimization problem akin to a transportation 
problem. HiSup (Xu, 2023) simultaneously extracts masks, 
regional attraction field maps, and vertex features. It predicts 
connection strengths using a mask attraction strategy and 
constructs polygons by integrating the extracted masks and 
vertices according to this strategy. However, these methods 
heavily depend on the accuracy of vertex detection, making them 
prone to missed vertices and polygon construction errors, 
particularly in complex scenes or when obstructed by vegetation.  
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Figure 2. The proposed three stages of pipline. (a) Coarse Prompt Generation: SAM’s automatic segmentation mode is used to extract 
filtered building masks from the orthophoto, which are then converted into coarse bounding box prompts; (b) Fine Mask Generation: 
The confidence feature map obtained from segmentation based on coarse prompts is overlaid with the DSM to incorporate height 
information, generating refined building masks; (c) Footprint Regularization: Line segments detected from the DOM and mask are 
used for kinetic partitioning, and the final regularized building footprints are obtained through Markov Random Field modeling and 
region growing. 
 
Contour-based methods primarily obtain the building polygon by 
starting from the contours of the building instance mask and 
iteratively regressing the corner points to directly generate the 
vertex sequence. Early methods mainly utilized networks such as 
U-Net (Ronneberger, 2015) and Mask R-CNN (He, 2017) to 
detect building masks, followed by recurrent neural networks like 
ConvLSTM (Shi et al., 2015) and ConvGRU (Ballas et al., 2015) 
to detect building vertex sequences and perform coordinate 
regression. However, this approach is often performed under 
theassumption that the number of contour vertices is fixed, and 
thus can easily face the challenge of redundancy or insufficient 
detected building vertices. Therefore, BuilderMapper (Wei, 2023) 
proposes to perform classification filtering while detecting 
building vertices so as to eliminate redundancy. Compared to 
vertex-based methods, contour-based methods provide more 
direct access to building polygons. However, such methods often 
face greater training challenges (Girard, 2021) and struggle to 
handle buildings with holes (Wei, 2019). 
 
Geometric primitive-based methods focus on the line segments 
rather than the vertices. Line2Poly (Wei, 2024) adopts a two-
stage network architecture combining CNN and Transformer to 
propose a coarse-to-fine approach for extracting and optimizing 
building line segments, directly reconstructing building polygons 
from the discrete segments. P2Pformer (Zhang, 2024) directly 
extracts vertices, line segments, and corner points, predicting the 
connection order between these geometric primitives to generate 
building polygons, significantly streamlining the processing 
workflow. 
 
However, the deep learning methods mentioned above usually 
require extensive labeled data and struggle to generalize 
effectively to complex scenarios, making it difficult to meet 
diverse practical needs. In recent years, Large Scale Model (LSM) 
have gained significant attention for their exceptional 
generalization and zero-shot learning capabilities. Among them, 
the Segment Anything Model (SAM) (Kirillov, 2023) 
demonstrates powerful zero-sample segmentation capabilities, 
which only needs to provide prompts such as points, boxes, and 
coarse-grained masks to generate fine masks. 
 
The emergence of SAM makes it possible to transform an 
instance segmentation task into a target detection task. Therefore, 
inspired by SAM’s related work (Chen, 2024), this paper 

proposes a novel zero-shot framework to extract regularized 
footprints of buildings from 3D mesh data based on Segment 
Anything Model. The methodological framework of this paper is 
divided into three main steps: Coarse prompt generation, Fine 
mask generation and Footprint regularization; To sum up, the 
contributions of this work includes three core point:  
 

(i) a zero-shot building footprint extraction and 
regularization method; 
(ii)    a fine mask generation technique integrating image and 
height features;  
(iii) a regularized building footprint extraction method 
based on Markov Random Field and Region Growing 
algorithms. 

 
We tested our method on the Vaihingen dataset and mesh data 
from a city in China. The approach was validated using metrics 
such as Average Precision (AP) and Boundary F1 (denoted by B-
F1) (Perazzi, 2016), demonstrating its strong capability to extract 
regularized building contours from mesh data with high precision 
and reliability. 

 
2. Method 

In this chapter, we introduce a zero-shot building footprint 
extraction method, which is a processing workflow based on the 
SAM framework, specifically designed for Mesh model data. 
This section covers the following aspects: a revisit of the SAM 
framework and a detailed introduction to the three stages of our 
method: coarse prompt generation, refined mask generation, and 
footprint regularization. 
 
2.1 Preliminary: SAM 

The SAM framework consists of three main components: an 
image encoder, a prompt encoder, and a mask decoder. It enables 
zero-shot interactive segmentation based on points, bounding 
boxes, and mask prompts. The image encoder in SAM is a pre-
trained Masked Autoencoder (MAE) (He, 2022) based on a 
Vision Transformer (ViT) (Dosovitskiy, 2020), incorporating 
both global and local window attention mechanisms. It processes 
input images of size 1024×1024 and outputs image features with 
a resolution of 256×64×64. The prompt encoder can takes three 
types of prompts: points, boxes, and masks through applying 
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positional encoding to generate embedding tokens. The mask 
decoder, built on a Transformer architecture, interacts with the 
image features and prompt embeddings to generate the final mask. 

 
Figure 2. The architecture of SAM (Segment Anything Model) 

 
2.2 Coarse Prompt Generation  

Since SAM requires 2D images as input, we extract a Digital 
Orthophoto Map (DOM) from the Mesh data and use SAM's 
automatic segmentation mode to divide the entire image into 
multiple masks without semantic information. In an urban 
environment, these masks can be roughly categorized into ground 
(including small objects such as cars), vegetation, and buildings. 
By filtering out irrelevant masks such as ground and vegetation, 
we obtain coarse prompts for buildings. 

 

  
(a) (b) 

  
(d) (c) 

Figure 3. Effect demonstration of the mask filtering method. (a) 
Mask results automatically extracted by SAM; (b) Point cloud 
filtering results; (c) Point cloud classification results using a 
random forest; (d) Coarse building mask after filtering. 

 
To distinguish ground masks, we first perform uniform sampling 
on the Mesh data to generate a point cloud and apply the Semi-
Global Filtering (SGF) algorithm for filtering. The core idea of 
SGF is to create a discrete grid from the point cloud and 
determine the optimal height level for each grid through a semi-
global optimization approach, minimizing the energy function to 
achieve ground point classification. For non-ground points, we 
use Random Forest method to further classify the data and 
remove irrelevant masks such as vegetation. The resulting coarse 
building masks are then converted into bounding boxes, which 
serve as prompts for subsequent refined mask generation. 
  

2.3 Fine Mask Generation 

When generating masks using point and box prompts, SAM also 
outputs a confidence distribution map corresponding to the mask. 
By feeding the confidence map back into SAM as a mask prompt, 
the quality of the generated mask can be effectively improved. 
However, ambiguous regions where building roof textures 
resemble the ground often lead to missing parts in the generated 
masks, as these regions are difficult to distinguish using only 
image information. To address this, we leverage SAM’s ability 
to use confidence maps as prompts and design a method that 
utilizes height information to guide SAM in distinguishing 
ambiguous areas without requiring additional training. 
 
First, based on the coarse bounding box prompts provided in 
Section 2.2, we input them into SAM to generate an initial coarse 
mask along with its logits map. We observe that ambiguous 
regions typically have positive logit values close to zero, while 
non-building areas have strictly negative values. Therefore, we 
normalize the DSM height values within the mask region to 
obtain a height distribution map 𝐻𝐻. For each pixel value ℎ_ij in 
𝐻𝐻, if its corresponding logit value is negative, we assign the pixel 
a value of −ℎ_𝑖𝑖𝑖𝑖; otherwise, it remains unchanged. The processed 
height distribution map is denoted as 𝐻𝐻’, which is then multiplied 
by a threshold 𝛼𝛼 and added to the logits map. This combined 
result is used as a refined mask prompt for SAM to generate a 
more precise building mask. The process can be expressed by the 
following equation: 

 
 (ℳ0,ℒ0) = SAM(BBox), (1) 

 𝐻𝐻𝑖𝑖𝑖𝑖 =
𝐻𝐻raw,𝑖𝑖𝑖𝑖 − 𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚
𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚

,∀(𝑖𝑖, 𝑖𝑖) ∈ Ω , (2) 

 𝐻𝐻𝑖𝑖𝑖𝑖′ = �
−𝐻𝐻𝑖𝑖𝑖𝑖 , if ℒ0,𝑖𝑖𝑖𝑖 < 0
   𝐻𝐻𝑖𝑖𝑖𝑖 , if ℒ0,𝑖𝑖𝑖𝑖 ≥ 0 , (3) 

 ℒ1 = ℒ0 + 𝛼𝛼𝐻𝐻′, (4) 

 (ℳ1,ℒ1) = SAM(ℒ1) , (5) 
 
where  ℳ0 = coarse mask 
 ℒ0 = logits map of  ℳ0 
 Ω = the set of pixels in the ℳ0 mask area 
 𝐻𝐻raw = original DSM  
 𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚

(𝑖𝑖,𝑖𝑖)∈Ω
𝐻𝐻raw,𝑖𝑖𝑖𝑖 ,  𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚

(𝑖𝑖,𝑖𝑖)∈Ω
𝐻𝐻raw,𝑖𝑖𝑖𝑖 

 𝐻𝐻 = normalized DSM 
 𝐻𝐻′ = normalized DSM after process 
 𝛼𝛼 = the average score of logits in the ℳ0 area 
 ℒ1 = new logits map after DSM enhancement 
  
 
2.4 Footprint Regularization 

To address irregularities in the generated masks, such as rounded 
corners or aliasing boundaries, we employ Kinetic Partitioning 
(Bauchet, 2018), Markov Random Field (MRF) modeling, and 
region growing algorithms to extract regularized building 
footprints. 
 
In the preprocessing stage, we use OpenCV’s LSD method to 
detect structural line segments from the DOM image within the 
building mask region. These detected segments are then 
directionally and spatially corrected together with the mask 
contour lines to obtain a set of regularized line segments. We 
utilize the segment regularization algorithm integrated into 
CGAL to optimize both the direction and distance of these 

Image
Encoder Mask Decoder

Prompt Encoder
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Figure 4. Datasets used in the experiment. Real Mesh data from a city in China (left), Vaihingen dataset (right). 
 
segments. Next, using these regularized line segments as input, 
we apply kinetic partitioning to divide the building mask region 
into multiple partitions. At this stage, we observe that the 
regularized building mask can be reconstructed by stitching 
together the contours of selected partitions. Therefore, obtaining 
the final regularized building footprint becomes a problem of 
selecting the partitions belonging to the building. This selection 
problem can be formulated as a binary label matching task, where 
each partition is assigned a label l={in:1,out:0}. This problem is 
modeled as an MRF optimization task, which is solved by 
constructing an energy function. The data term is defined as: 
 

 𝐷𝐷𝑐𝑐 = 𝐴𝐴𝑖𝑖 ⋅ �
1 − 𝑝𝑝𝑖𝑖 ,     if  𝑙𝑙𝑖𝑖𝑐𝑐 = in
    𝑝𝑝𝑖𝑖 ,         if  𝑙𝑙𝑖𝑖𝑐𝑐 = out , (6) 

 
where  𝐴𝐴𝑖𝑖 = the area of sub-partition 
 𝑝𝑝𝑖𝑖 = IoU of partition and fine mask 
 𝑙𝑙𝑖𝑖𝑐𝑐 = sub-partition 
 

The smoothing term is defined as: 
 

 𝑉𝑉�𝑙𝑙𝑖𝑖𝑐𝑐 , 𝑙𝑙𝑖𝑖𝑐𝑐� = len𝑖𝑖,𝑖𝑖2 ⋅ �1 − �𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖�� ⋅ 1𝑙𝑙𝑖𝑖𝑐𝑐≠𝑙𝑙𝑗𝑗𝑐𝑐  , (7) 
 
where  len𝑖𝑖,𝑖𝑖 = common side length of the two sub-partition 
 𝑙𝑙𝑖𝑖𝑐𝑐 , 𝑙𝑙𝑖𝑖𝑐𝑐 = adjacent sub-partition 
 
The energy function is defined as a linear combination of data 
terms, smoothing terms, and equilibrium coefficients 𝜆𝜆 (0.02): 

 

 𝐸𝐸𝑐𝑐(𝑙𝑙) = �𝐷𝐷𝑐𝑐(𝑙𝑙𝑖𝑖𝑐𝑐)
𝑖𝑖∈𝑉𝑉𝑐𝑐

+ 𝜆𝜆 � 𝑉𝑉(𝑙𝑙𝑖𝑖𝑐𝑐 , 𝑙𝑙𝑖𝑖𝑐𝑐)
{𝑖𝑖,𝑖𝑖}∈𝐸𝐸𝑐𝑐

 (8) 

 
Considering the ambiguity in extracting mask boundaries, we set 
a strict confidence threshold β (0.95) for determining partitions 
as "in", only retaining those partitions fully within the building 
mask. Remaining partitions with non-zero confidence are 
considered "pending partitions." A region-growing-based 
boundary reassignment method is then introduced to reassign 
these "pending partitions." guided by grid height information: 
For each pending partition, its height approximation relative to 

neighboring "in partitions." 𝑁𝑁𝑝𝑝 is computed using the following 
formula: 
 

 𝐻𝐻𝑝𝑝 =
∑ 𝑤𝑤𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖∈𝑁𝑁𝑝𝑝
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈𝑁𝑁𝑝𝑝

 , (9) 

 
where  𝐻𝐻𝑝𝑝 = height approximation 
 𝑁𝑁𝑝𝑝 = the set of neighboring "in partitions." 
 𝐻𝐻𝑖𝑖 = the height of the neighboring partition i 
 𝑤𝑤𝑖𝑖 = 1, weight factor 
 
If the height difference is less than the threshold ℎ (1.5), the 
partition is reassigned as "in"; otherwise, it is skipped. This 
process continues until no pending partitions remain. Finally, all 
partitions classified as "in" are merged to obtain the regularized 
building footprint. 

3. Experiment 

3.1 Dataset and Evaluation 

To demonstrating the capability to extract regularized building 
footprints from Mesh data, we validate the proposed method 
using real Mesh data from a city in China. The dataset is in OSGB 
format and covers an area of 0.12 km². Additionally, to ensure 
the reliability of our method, we conduct quantitative and 
qualitative comparison experiments using the Vaihingen dataset. 
The dataset consists of 33 remote sensing images of varying sizes, 
each extracted from a larger top-level orthophoto image. The 
image selection process ensures that no areas without data are 
included. Both the top-level image and the DSM have a spatial 
resolution of 9 cm. The remote sensing images are in 8-bit TIFF 
format and consist of three bands: near-infrared, red, and green. 
for this experiment, we extract only the blue building masks with 
an RGB value of (0, 0, 255). 
 
To evaluate the performance of our method on the Vaihingen 
dataset, we uses classical instance segmentation evaluation 
metrics: AP (averaged over intersection-over-union (IoU) 
thresholds of 0.50:0.05:0.95), AP50 (IoU threshold of 0.5), and 
AP75 (IoU threshold of 0.75). The IoU used for calculating APs 
in this study is based on masks rather than bounding boxes, with 
a larger AP indicating more accurate instance segmentation  
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Figure 5. Qualitative results on the Vaihingen dataset. (a) Ground truth; (b) Image; (c) Mask R-CNN; (d) HiSup; (e) Ours. 

 
masks. Furthermore, to assess the degree of alignment between 
the predicted building boundaries and the ground truth, we use 
Boundary F1 (B-F1) (Perazzi, 2016) for evaluation. Compared to 
traditional region-level metrics, B-F1 is more sensitive and direct 
in evaluating boundary quality, making it more reliable for 
assessing fine-grained structure extraction tasks. Its calculation 
formula is as follows:  

 BF1 =
2 × Precision × Recall

Precision + Recall
 , (10) 

 
where  Precision = predicted boundary points within tolerance 
 Recall = ground truth boundary points matched 
 
3.2 Results and Comparisons 

We employed two types of dataset to evaluate the proposed 
method. First, we conducted qualitative and quantitative 
comparison experiments with two learning-based methods: a 
pixel-based method Mask R-CNN, and a contour-based method 
HiSup. Second, we tested the zero-shot extraction capability of 
our method for regular footprints using real Mesh data. 
 

Method AP AP50 AP75 Boundary F1 

Mask RCNN 56.54 77.13 64.96 41.92 

HiSup 60.97 78.45 68.21 81.30 

our 61.78 78.31 68.82 62.73 
 

Table 1. Result on Vaihingen Dataset 
 

As shown in Table 1, compared to Mask R-CNN, the proposed 
method demonstrates a significant improvement in instance 
segmentation accuracy across AP, AP50, AP75, and boundary 
accuracy B-F1. Specifically, AP increased by 5.24%, AP50 by 

1.18%, AP75 by 3.86%, and B-F1 by 20.81%. In comparison 
with HiSup, our method achieves an improvement of 0.81% in 
AP and 0.61% in AP75, though it performs slightly lower in 
AP50. Analyzing our building detection approach, this may be 
attributed to missed or misclassified small objects during the 
coarse prompt generation stage, leading to a relatively lower 
number of correctly segmented instances with IoU > 50%. 
Regarding boundary prediction, HiSup outperforms our method 
in B-F1 by 18.73%. This discrepancy is primarily due to the rule-
based contour approach used in our method, which may produce 
more small protrusions when handling complex contours or 
textures, thereby affecting the B-F1 metric, which is based on the 
count of correctly predicted contour points. 
 
Figure 5 compares the visualization results of Mask R-CNN, 
HiSup, and our method. The pixel-based method Mask R-CNN, 
can correctly detect buildings, but its mask results are irregular 
and do not fully cover the building areas. HiSup effectively 
extracts building polygons, and the predicted polygon outlines 
align well with the actual building boundaries. However, while 
HiSup generates polygons with relatively uniform vertices, it 
does not perfectly align with the structural points of buildings. 
Compared to Mask R-CNN, the proposed method better 
approximates building boundaries and accurately locates 
building corners. Additionally, for buildings with complex 
structures, our method outperforms HiSup. However, for 
buildings with regular structures, minor errors may occur, 
affecting the final accuracy. 
 
Figure 6 presents the visualization results of HiSup and our 
method on real Mesh data. To HiSup, it can’t extract building 
polygon correctly without training. To our method, most 
buildings are correctly segmented, and the extracted regularized 
footprints align well with the building structures, effectively 
demonstrates it’s good generalization ability. However, minor 
errors may occasionally occur at corners. In terms of building  
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(a) Segment Anything results (b) HiSup (Without training) (c) Our mask results (d) Regular footprint results 

 
Figure 6. Testing results on real Mesh data. Obviously, HiSup fails to produce correct results on untrained data, while our method 
effectively extracts refined building masks from SAM’s cluttered mask set and obtains regularized footprints that align with real 
building contours. 
 
detection, some areas with dense surrounding vegetation or 
similar colors are easy to misclassification or omission. 
 

4. Conclusion 

In this paper, we propose a zero-shot framework based on the 
Segment Anything Model (SAM) for extracting and regularizing 
building footprints from 3D mesh data. Experimental results 
onthe Vaihingen dataset and real Mesh data validate the 
effectiveness of the proposed method, achieving performance 
comparable to classic learning-based approaches such as HiSup. 
However, our method still has certain limitations. Since each 
processing step operates independently, the overall processing 
speed is relatively affected. In future work, we aim to transform 
this workflow into a weakly supervised or self-supervised 
learning-based approach to enhance both processing speed and 
quality. 
 

Acknowledgements 

This work was supported by the National Natural Science 
Foundation of China (Grant No. 42201474), the State Key 
Laboratory of Micro-Spacecraft Rapid Design and Intelligent 
Cluster (Grant No. MS01240125), and  Hubei Provincial Natural 
Science Foundation of China(2024AFD8) 
 

References 

Ballas, N., Yao, L., Pal, C., & Courville, A., 2015. Delving deep
er into convolutional networks for learning video representation
s. arXiv preprint arXiv:1511.06432. doi.org/10.48550/arXiv.151
1.06432. 
 
Bauchet J P., Lafarge F., 2018: Kippi: Kinetic polygonal partitio
ning of images. Proceedings of the IEEE Conference on Comput
er Vision and Pattern Recognition (CVPR), 3146-3154. doi.org/
10.1109/cvpr.2018.00332. 
 
Chen, K., Liu, C., Chen, H., Zhang, H., Li, W., Zou, Z., & Shi, 
Z., 2024: RSPrompter: Learning to prompt for remote sensing in
stance segmentation based on visual foundation model. IEEE Tr
ansactions on Geoscience and Remote Sensing, vol.62. doi.org/1
0.1109/tgrs.2024.3356074. 
 
Dosovitskiy, A., 2020. An image is worth 16x16 words: Transfo
rmers for image recognition at scale. arXiv preprint arXiv:2010.
11929. doi.org/10.48550/arXiv.2010.11929. 
 
Girard, N., Smirnov, D., Solomon, J., & Tarabalka, Y., 2021. Po
lygonal building extraction by frame field learning. Proceedings

 of the IEEE Conference on Computer Vision and Pattern Recog
nition (CVPR), 5891-5900. doi.org/10.1109/cvpr46437.2021.00
583.  
 
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R., 202
2. Masked autoencoders are scalable vision learners. Proceeding
s of the IEEE Conference on Computer Vision and Pattern Reco
gnition (CVPR), 16000-16009. doi.org/10.1109/cvpr52688.2022.
01553. 
 
He, K., Gkioxari, G., Dollár, P., & Girshick, R., 2017. Mask r-c
nn. Proceedings of the IEEE/CVF International Conference on 
Computer Vision (ICCV), 2961-2969. doi.org/10.1109/ICCV.20
17.322. 
 
Kirillov A., Mintun E., Ravi N., et al., 2023: Segment anything. 
Proceedings of the IEEE/CVF International Conference on Com
puter Vision (ICCV), 4015-4026. doi.org/10.1109/ICCV51070.2
023.00371. 
 
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gros
s, M., & Sorkine-Hornung, A., 2016. A benchmark dataset and e
valuation methodology for video object segmentation. Proceedi
ngs of the IEEE Conference on Computer Vision and Pattern Re
cognition (CVPR), 724-732. doi.org/10.1109/cvpr.2016.85. 
 
Ronneberger O., Fischer P., Brox T., 2015: U-net: CoGnvolutio
nal networks for biomedical image segmentation. Medical Imag
e Computing and Computer-Assisted Intervention MICCAI Inter
national Conference, 234-241. doi.org/10.1007/978-3-319-2457
4-4_28. 
 
Shi, X., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Wo
o, W. C., 2015. Convolutional LSTM network: A machine learn
ing approach for precipitation nowcasting. Advances in neural i
nformation processing systems, 28. 
 
Wei, S., Ji, S., & Lu, M., 2019. Toward automatic building foot
print delineation from aerial images using CNN and regularizati
on. IEEE Transactions on Geoscience and Remote Sensing, 58
(3), 2178-2189. doi.org/10.1109/TGRS.2019.2954461. 
 
Wei, S., Zhang, T., Ji, S., Luo, M., & Gong, J., 2023. BuildMap
per: A fully learnable framework for vectorized building contou
r extraction. ISPRS Journal of Photogrammetry and Remote Sen
sing, 197: 87-104. doi.org/10.1016/j.isprsjprs.2023.01.015. 
 
Wei, S., Zhang, T., Yu, D., Ji, S., Zhang, Y., & Gong, J., 2024. 
From lines to Polygons: Polygonal building contour extraction f
rom High-Resolution remote sensing imagery. ISPRS Journal of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1777-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1782



 

 Photogrammetry and Remote Sensing, 209: 213-232. doi.org/1
0.1016/j.isprsjprs.2024.02.001. 
 
Zhang, T., Wei, S., Zhou, Y., Luo, M., Yu, W., & Ji, S., 2024. P
2PFormer: A Primitive-to-polygon Method for Regular Building
 Contour Extraction from Remote Sensing Images. IEEE Transa
ctions on Geoscience and Remote Sensing, 62. doi.org/10.1109/
TGRS.2024.3459011. 
 
Zorzi, S., Bazrafkan, S., Habenschuss, S., & Fraundorfer, F., 20
22: Polyworld: Polygonal building extraction with graph neural 
networks in satellite images. Proceedings of the IEEE Conferen
ce on Computer Vision and Pattern Recognition (CVPR), 1848-
1857. doi.org/10.1109/cvpr52688.2022.00189. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1777-2025 | © Author(s) 2025. CC BY 4.0 License.

 
1783


	1. Introduction
	2. Method
	2.1 Preliminary: SAM
	2.2 Coarse Prompt Generation
	2.3 Fine Mask Generation
	2.4 Footprint Regularization

	3. Experiment
	3.1 Dataset and Evaluation
	3.2 Results and Comparisons

	4. Conclusion
	Acknowledgements
	References



