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Abstract

The accurate semantic segmentation of remote sensing data is of paramount importance to the success of geoscience research 
and applications. In comparison to traditional single-modal segmentation techniques, models based on multi-modal fusion have 
demonstrated superior performance and have been the subject of considerable attention in recent years. However, the majority 
of these models employ convolutional neural networks (CNNs) or visual transformers (ViTs) for fusion operations, which results 
in inadequate modelling and representation of local-global context. In this study, we propose a multi-layer multi-modal feature 
alignment and fusion scheme, designated as MFAFUNet, with the objective of providing a robust and effective multi-modal fusion 
backbone for semantic segmentation. The overarching algorithmic framework is analogous to that of the Unet model. First, the 
data in different modalities is aggregated and the image size is reduced through the use of multi-level downsampling modules based 
on the Haar wavelet transform. The high-frequency and low-frequency information of the features is extracted through a feature 
extraction module composed of a convolutional neural network (CNN) and a visual transformer (ViT). Second, through the semantic 
distribution alignment loss, the high-level features of different modal information are transformed into a common latent space, and 
their distributions are aligned to associate the complementary clues hidden in each modality. The effectiveness of the proposed 
method is demonstrated through experiments.
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1. Introduction

Land use classification based on remote sensing imagery plays
a vital role in land resource management and planning, offer-
ing essential insights into how land is spatially utilized and how
human activities drive its transformation over time(Yue et al.,
2024). By identifying various land cover categories, the clas-
sification process provides a more intuitive understanding of
land use patterns and purposes. In complex environments, land
cover classification supports a wide range of applications, in-
cluding urban development planning (Zhang et al., 2024), map-
ping of geospatial information (Luo et al., 2020), and initiat-
ives in environmental protection (Fraser and Storie, 2016). Re-
cent progress in Earth observation and sensor technologies has
made it easier to access multi-source remote sensing data of the
same geographical scene. Integrating the unique imaging traits
of various data sources enables not only the handling of tasks
beyond the scope of a single modality but also contributes to
enhanced performance overall (Chen et al., 2017)(Ienco et al.,
2019).

Optical and SAR imagery each offer distinct yet complement-
ary advantages in identifying surface features. While both can
discern different terrains with consistency, optical images high-
light surface categories using spectral color cues, whereas SAR
imagery emphasizes object structure and material properties.
Hence, designing robust strategies for integrating the distinctive
attributes of each data source is key to advancing multi-source
land-use classification. In this study, we investigate multiple
fusion schemes that aim to harness these complementary char-
acteristics effectively.

Earlier land-use classification approaches in remote sensing
primarily relied on hand-crafted feature extraction and manual
labeling techniques (Fan and Lin, 2007). These traditional
methods were labor-intensive, prone to subjectivity, and limited

in their ability to extract deep semantic information. With the
rise of deep learning, especially convolutional neural networks
(CNNs) (LeCun et al., 1998), automated and more reliable clas-
sification techniques have gained prominence. Initial adapta-
tions of deep learning for remote sensing tasks often stemmed
from semantic segmentation models developed for natural im-
agery. For example, Zhao et al. (Zhao and Du, 2016) imple-
mented a multi-level and multi-scale model to extract advanced
spatial representations by capturing contextual cues within each
pixel’s receptive field. Similarly, the ”From Contexts to Local-
ity” framework (Li et al., n.d.) merges high-resolution spatial
features with low-resolution semantic cues to enhance classific-
ation representation.

Relying exclusively on single-modality data limits improve-
ments in dense prediction tasks. As sensor systems evolve,
the field has entered a phase characterized by “multi-sourcing,”
where exploiting the synergy between different modalities is
essential for accuracy improvements. A variety of strategies
have been proposed to leverage this advantage. For instance,
AFNet (Yang et al., 2021) incorporates spatial and channel at-
tention to combine low- and high-level features from different
sources, thereby improving classification near object boundar-
ies. MCANet (Li et al., 2022) and CMX (Zhang et al., 2023)
utilize a cross-attention (CA) mechanism that allows features
extracted from different modalities at the same layer to inter-
act and share complementary context, enabling better fusion
performance and enhancing the capacity for global information
exchange.

Nevertheless, many of these approaches focus solely on either
spatial or channel-wise fusion and project the fused features
into a one-dimensional semantic embedding space, which may
be insufficient due to the complexity and redundancy of multi-
modal features. Additionally, traditional CNN and Transformer
extractors may struggle to establish fine-grained semantic con-
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nections between pixels. To overcome these limitations, and
drawing inspiration from the Convolutional Block Attention
Module (Woo et al., 2018) and the work of Chen et al. (Chen et
al., 2022), we introduce a Feature Decomposition Module. This
module leverages CNNs for extracting high-frequency, local-
ized patterns and utilizes transformers to capture broader, low-
frequency global context—thereby enhancing feature repres-
entation completeness.

Our framework adopts a U-Net-like structure in which multi-
modal features are combined and spatial resolution is reduced
through successive downsampling layers built on the Haar
wavelet transform. Following this, a semantic distribution
alignment loss function is employed to project high-level fea-
tures from each modality into a shared latent space. This align-
ment facilitates the integration of complementary information
across modalities and strengthens the network’s semantic con-
sistency.

2. Method

In this paper, we present a multilevel feature decomposition and
reconstruction image fusion framework designed to effectively
integrate complementary information from different sensors,
specifically SAR and optical images. The framework consists
of several key components: a feature decomposition module, a
feature reconstruction module, and a cross-feature fusion block,
forming a deep fusion network that follows a U-Net-like struc-
ture. An overview of the framework is shown in Fig. 1.

The input SAR and optical images are first transformed using
the Haar wavelet, with their resolution reduced to half of the
original size before being passed through the feature decompos-
ition module via channel splitting. The feature decomposition
module is divided into high-frequency and low-frequency fea-
ture extraction branches, with the high-frequency branch cap-
turing texture details and the low-frequency branch focusing
on global background structure information. To further op-
timize the fusion process, the framework adopts a multi-level
processing approach. At each level, the ratio of high- and low-
frequency feature extraction modules is adjusted by different
channel splitting coefficients. This multi-level decomposition
allows the model to gradually extract rich semantic information
while preserving local details.

At each level, the cross-modal feature fusion module enables
fine-grained interaction between features extracted from both
source images. The extracted features from both modalities,
along with the fused features and features sampled for recon-
struction at the next level, are input into the feature reconstruc-
tion module. After multi-level feature decomposition and fu-
sion, the structural information from the SAR image and the
texture and color information from the optical image are gradu-
ally combined, ensuring the full utilization of image details.
The final fusion result retains high-resolution details while cap-
turing global semantic information.

We will now describe the various modules of the framework in
detail, including the downsampling module, the feature decom-
position module, the cross-fertilization module, and the feature
reconstruction module. We will also outline the training pro-
cess and loss function design for the self-supervised learning
setup.

2.1 Feature Decomposition Module(FDM)

Once the input data is fed into the feature decomposition mod-
ule, it undergoes downsampling using the Haar wavelet trans-
form, reducing its resolution to half. The downsampled data
is then directed into the high-frequency and low-frequency fea-
ture extraction branches through a channel splitting mechanism,
ensuring the accurate extraction of features at different frequen-
cies. The module’s structure is illustrated in Fig. 2 and Fig. 3.

2.1.1 Downsampling Module According to the Nyquist-
Shannon sampling theorem, frequencies higher than the
Nyquist frequency (half the sampling rate) are lost during
downsampling. For example, frequencies above 1/4 are aliased
in a 2-fold downsampling operation (e.g., using a 1x1 convo-
lutional layer with a stride of 2, resulting in a sampling rate
of 1/2). To mitigate information loss, we utilize a first-order
Haar wavelet transform layer for downsampling. This reduces
the spatial resolution of the feature maps to half of the ori-
ginal, while preserving essential frequency information. Ad-
ditionally, to capture long-range dependencies, a Transformer
with spatial self-attention is used. To balance performance and
computational efficiency, we adopt the LT block, which extracts
low-frequency basis features (LFE) with reduced computational
complexity. Instead of using a fully connected neural network,
we use a 1x1 convolution to reduce computational effort. The
LFE is responsible for extracting low-frequency features from
the input, as shown in the following formula(1):

ΦO
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(
ReLU

(
Batch

(
(Conv1×1)

(
HWT

(
(sar)i−1

)))))
ΦS
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(
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(
Batch

(
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(
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(
(sar)i−1

)))))
(1)

Where HWT () denotes the Haar wavelet transform,
(Conv)1×1 denotes 1×1 convolution, Batch represents
batch normalization, Relu represents the ReLU activation
function, ΦO

i and ΦS
i represent the processed outputs of optical

and SAR images, respectively.

2.1.2 low-frequency Feature Extraction Module In con-
trast to BTE, DCE extracts high-frequency detail information
from the assigned channel features. Since high-frequency fea-
tures play a critical role in capturing edge and texture inform-
ation, which is essential for successful image fusion, the CNN
architecture in DCE is designed to preserve as much detailed in-
formation as possible. The formula for this operation is presen-
ted as follows.

The INN module facilitates the preservation of input inform-
ation by establishing a feedback loop between the input and
output features. It serves as a lossless feature extraction mod-
ule, making it ideal for this application. Therefore, we employ
INN blocks with affine coupling layers, where the processing
for each modality is identical. For an optical image, the trans-
formation can be expressed as follows.

ΦO
i = L

(
ΦO

i

)
,ΦS

i = L
(
ΦS

i

)
(2)

The formula L denotes the low-frequency feature extractor.

2.1.3 high-frequency Feature Extraction Module In con-
trast to BTE, DCE extracts high-frequency detail information
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Figure 1. The overall framework of a network for SAR and optical image fusion based on multi-level feature decomposition.

Figure 2. The architecture of the High-Frequency branch

Figure 3. The architecture of the Low-Frequency branch

from the assigned channel features. Since high-frequency fea-
tures play a critical role in capturing edge and texture inform-
ation, which is essential for successful image fusion, the CNN
architecture in DCE is designed to preserve as much detailed in-
formation as possible. The formula for this operation is presen-
ted as follows.

ΦO
i = H

(
ΦO

i

)
,ΦS

i = H
(
ΦO

i

)
(3)

Where H denotes the high-frequency feature extractor.

The INN module facilitates the preservation of input inform-
ation by establishing a feedback loop between the input and
output features. It serves as a lossless feature extraction mod-
ule, making it ideal for this application. Therefore, we employ
INN blocks with affine coupling layers, where the processing
for each modality is identical. For an optical image, the trans-
formation can be expressed as follows.

ΦO
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i,c2 +DWConv
(
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)
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O
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)
(4)

In Eq. (4), the DWConv denotes the separable convolution,
ΦO

i,c1 and ΦO
i,c2 denotes the C1 and C2 channel branches that
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have been divided equally at the ith level, and the
⊙

denotes
the Hadamard product.

Figure 4. The architecture of the Cross-Fusion Block

2.2 Cross feature fusion Block (CFFB)

In this module, images from the two modalities are initially
transformed linearly to generate their respective key and value
vectors. To capture joint features from both modalities, query
vectors are created by concatenating the features from both the
SAR and optical images. The features are then weighted and
integrated by calculating attention weights between the key and
query vectors. The SAR and optical image features are recon-
structed by combining their respective weighted value vectors,
and the reconstructed features from both modalities are fused
to produce the final output. This approach enables effective
cross-modal information fusion by adaptively assigning feature
weights to each modality. The block structure is shown in Fig.
4, with the corresponding formula provided below.

Φi = Concat
(
C
(
ΦO

i ,Φ
s
i

))
(5)

Where C denotes the interactive feature fusion module, and Φi

denotes the fusion feature information.

2.3 Loss Design

Images from different modalities often have varying visual
characteristics, and these differences can obscure the underly-
ing semantic information, making it challenging for the model
to capture shared semantics between modalities. Consequently,
the network might focus more on superficial appearance dif-
ferences than on the common meaning shared by both images,
leading to semantic inconsistency. Thus, ensuring semantic
alignment across feature distributions and extracting comple-
mentary cues from each modality becomes essential for effect-
ive fusion (Li et al., 2023).

In recent work, maximum mean discrepancy (MMD) has
emerged as a common metric for estimating the divergence
between two distributions due to its non-parametric nature. The
fundamental idea behind MMD is that two distributions can be
considered equivalent if their statistical properties are the same.
This is achieved by projecting features into a reproducing kernel
Hilbert space (RKHS), where the distance between distributions
is computed. In our framework, we leverage high-dimensional
feature outputs to construct a semantic distribution alignment

loss, guiding the model to emphasize semantic consistency. To
simplify the implementation, we use an upper-bound approx-
imation of the original MMD formulation, making the method
more interpretable and computationally manageable.

LossMMD =
∥∥∥Ep

[
φ
(
F optical

)]
− Eq

[
φ
(
FSAR

)]∥∥∥
H
(6)

The transformed distributions of F optical and FSAR through
φ(x) lie in the reproducing kernel Hilbert space (RKHS) and
are denoted by p and q, respectively, where Ep and Eq are their
expected values. When the maximum mean discrepancy satis-
fies MMD(p, q) = 0, it indicates that the distributions p and q
are statistically equivalent.

3. Results

In this section, we conduct a comparative analysis of our
method and other methods such as UNet from multiple eval-
uation metrics. Through two sets of experiments, we respect-
ively evaluate the per - class segmentation results of image -
level fusion on the WHU - OPT - SAR dataset (see Table 1)
and visualize the detailed results of this dataset (see Table 2).
These experimental results show that different methods have
their own advantages and disadvantages in different indicators
and categories, but our method demonstrates significant advant-
ages.

In Table 1 (Some visualization of detailed results), our method
also performs well in the aAcc and mIoU indicators. The aAcc
reaches 84.72, slightly higher than 84.69 of UNet(Optical +
SAR); the mIoU is 36.79, also leading. Among various cat-
egories, the accuracy of our method for the ”houses” category
reaches 84.9, which is significantly higher than other methods,
indicating that our method has obvious advantages in identify-
ing the house category.

In Table 2 (Per - class segmentation results of image - level
fusion), in terms of the average accuracy (aAcc), our method
reaches 84.61, which is higher than 74.99 of UNet(SAR), 82.5
of UNet(Optical), and 82.39 of UNet(Optical + SAR). Regard-
ing the mean intersection over union (mIoU), our method is
36.83, also outperforming several other UNet - related meth-
ods. In terms of the segmentation accuracy of each category,
for the ”bareground” category, the accuracy of our method
reaches 93.9, far exceeding other methods; for the ”vegeta-
tion” category, the accuracy of our method is 76.3, which is
also higher than other UNet methods. This indicates that our
method has higher accuracy in identifying land categories such
as bare ground and vegetation.

Overall, based on the results of the two tables, our method
outperforms other comparative methods in multiple indicators.
This advantage benefits from the spatial - aware circular module
we adopted. It enhances the transferability of features between
pixels and establishes a cross - modal receptive field, effectively
correlating features from different modalities. At the same time,
the supervision mechanism we designed ensures that the two
modalities share a common semantic representation, explores
complementary cues between modalities, creates favorable con-
ditions for feature fusion, and prevents the network from only
focusing on appearance differences, thus improving the overall
segmentation performance.

Our method achieves the highest overall accuracy (OA) of 84.2
and mean intersection over union (mIoU) of 58.5, outperform-
ing several other methods. Compared to the latest MCANet,
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Table 1. Some visualization of detailed results on the YYX dataset.

Methods aAcc mIoU Class
bareground vegetation trees houses water roads

UNet(SAR) 84.19 34.2 85.8 65.3 23.7 65.5 29.7 43.1
UNet(Optical) 79.15 29.88 84.1 68.7 26.9 61 12 28.5
UNet(Optical +

SAR)
84.69 36.73 88.8 68.9 23.5 67 48.4 42.9

Ours 84.72 36.79 89.8 81.9 22.6 84.9 10.1 39.3

Table 2. Per - class segmentation results of image - level fusion on the WHU-OPT-SAR dataset.

Methods aAcc mIoU Class
farmland city village water forest roads

UNet(SAR) 74.99 22.1 85.8 23.9 27.2 50.6 – 39.6
UNet(Optical) 82.5 29.96 86.8 50.6 32.4 76.1 7.8 47.9
UNet(Optical +

SAR)
82.39 30.59 80.3 74.1 36 60.8 3.1 22.1

Ours 84.61 36.83 93.9 76.3 21 73.4 3.7 40.9

Figure 5. Per - class segmentation results of image - level fusion
on the YYX dataset.

our approach improves OA by 2.1 and mIoU by 3.0. This im-
provement is due to our spatial-aware circular module, which
globally enhances the transferability of features across pixels
and establishes a cross-modal receptive field that correlates
features from different modalities. Additionally, by ensuring
that both modalities share a common semantic representation,
we design a supervision mechanism to explore complementary
cues between them. This supervision creates an ideal condi-
tion for feature fusion and prevents the network from focusing
solely on appearance disparities.

Figure 6 displays several visualized results. Compared with U-
Net trained solely on optical images, the version using com-
bined optical and SAR inputs (U-Net-RGBNS) performs worse
in distinguishing features such as water areas and farmland.
This performance drop is attributed to the naı̈ve fusion of multi-
modal inputs—stacking them directly can lead the model to
overly attend to visual differences between modalities, caus-
ing interference in feature learning. In contrast, more advanced
fusion frameworks that explicitly handle modality differences
are able to reduce this interference and improve classification
accuracy.

4. Conclusion

This paper provides a thorough investigation into land-use clas-
sification. Key contributions include: (1) the proposal of a

Figure 6. Some visualization of detailed results on the
WHU-OPT-SAR dataset.

novel network for fusing optical and SAR images for land-
use classification, featuring the spatial-aware circular module
that explores cross-modal correlations with a global receptive
field, (2) a reevaluation of land-use classification challenges,
particularly recognizing that different modalities should share
a common semantic representation, which led to the design
of a semantic distribution alignment loss function for match-
ing semantic distributions and revealing complementary cues
between modalities, and (3) experimental results demonstrat-
ing the significant advantages of our method. However, our
approach does not consider the association of different land ob-
jects. For instance, combinations like city and road appear more
frequently than city and farmland. This association information
could be leveraged to further optimize the model
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