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Abstract 

 

Rapid luminaire detection enables effective remote monitoring and management, thereby facilitating intelligent tunnel lighting 

maintenance. Despite its powerful object detection capabilities, deep learning methodologies encounter challenges in tunnel 

luminaire detection due to the complex environment and unfavorable lighting conditions. To overcome these issues, this paper 

proposes an improved tunnel luminaire detection solution by enhancing the Mask R-CNN using brightness balancing. Leveraging 

tunnel gray-scale images and the Mask R-CNN object detection framework, a feature fusion network based on ResNet-FPN, trained 

via transfer learning, which enhances performance in detecting object luminaires. Furthermore, considering the differences in 

luminaire brightness and their backgrounds, an object brightness enhancement method based on Kapur’s Entropy Method is 

introduced to effectively reducing missed detections and false positives, thereby improving the detection rate of luminaires. To 

evaluate the performance of the proposed approach, real datasets of tunnel environment are used. Experimental results revealed that 

the proposed approach achieved precision, recall, an F1-score and AP50 of 94.9%, 82.3%, 0.881 and 0.776, respectively, which 

improved of 4.3%, 4.4%, 0.044, and 0.151, respectively, compared to the original model, thus, could be applied to the 3D model 

construction and intelligent management of tunnels. 

 

 

1. INTRODUCTION 

 

Tunnel lighting is crucial for ensuring safety and efficiency in 

modern urban transportation systems, directly impacting traffic 

flow and daily convenience (Hou et al. 2018). Traditional tunnel 

lighting systems, which often rely on manual inspection, face 

challenges such as low management efficiency, significant 

energy waste, and high maintenance costs. To address these 

issues, researchers have proposed intelligent management and 

automated control solutions for tunnel lighting, with luminaire 

object detection and localization technology being crucial to 

achieving intelligent tunnel lighting management. 

 

Current research on extracting objects for tunnel luminaires 

remains relatively scarce. Early studies can be categorized into 

two main approaches: point cloud-based methods and 

image-based methods. Point cloud-based methods rely on light 

detection and ranging (LiDAR) technology to obtain 

three-dimensional point cloud data, filtering the data based on 

height and color intensity features to locate tunnel luminaires 

(Puente et al. 2014). Image-based methods use traditional image 

processing techniques to process data from vehicle-mounted 

cameras, thereby identifying tunnel luminaires (Lu et al. 2015; 

Xin et al. 2021). While LiDAR technology is known for its 

high-precision three-dimensional data capture capabilities, it is 

limited by high costs, complex data processing requirements, 

and susceptibility to interference in complex environments. In 

contrast, image-based methods offer cost-effectiveness, ease of 

data acquisition, and effortless system integration despite their 

dependency on image quality and sensitivity to lighting 

conditions. With the rapid development of deep learning 

technologies, especially the widespread application of 

Convolutional Neural Networks (CNNs), image-based 

processing methods have demonstrated excellent performance 

in feature extraction and object detection, partially overcoming 

the limitations of traditional methods (Yang et al. 2021). In 

tunnel luminaire detection, deep-learning methods like 

YOLOv5 (Dai et al. 2022) and segmentation models 

DeepLab/U-Net (Alidoost et al. 2023) have been applied. 

However, challenges persist due to the need for well-annotated 

datasets and complex tunnel lighting conditions that affect 

detection success rates. 

 

The detection of tunnel luminaires has seen advancements, but 

improving accuracy in low-light tunnel environments remains 

challenging due to low illumination and noise in the images 

(Yang et al. 2020). Low-light image enhancement methods are 

mainly divided into traditional algorithms and deep learning 

algorithms. Traditional algorithms, such as histogram 

enhancement and Retinex methods, adjust pixel distribution or 

decompose images into illumination and reflection components 

to enhance brightness and contrast (Pizer et al. 1987; Jobson et al. 

1997). However, these methods rely on manually designed 

constraints, limiting their adaptability and generalization. Deep 

learning algorithms have shown significant progress in recent 

years, with supervised, unsupervised, and zero-shot learning 

strategies. Supervised learning methods, such as Retinex-Net, 

require paired low-light/normal-light images for training and 

offer good enhancement effects but face difficulties in obtaining 

paired data (Wei et al. 2018). Unsupervised learning methods, 

like Zero-DCE, do not need paired images but encounter 

challenges in training stability and loss function convergence 

(Guo et al. 2020). Zero-shot learning strategies, which optimize 

using only a single low-light image, have strong generalization 

capabilities but suffer from insufficient information and reliance 

on prior knowledge, resulting in lower quantitative performance 
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(Li et al. 2022). Overall, existing methods still face challenges in 

reducing paired dataset dependence, improving model 

generalization, and ensuring training stability. 

 

To overcome the aforementioned challenges, this paper 

proposes a low-cost, lightweight tunnel luminaire detection 

scheme based on Mask R-CNN, achieving high detection 

accuracy across multiple lighting sections. Addressing the 

brightness difference between tunnel luminaires and the 

background in dark environments, we propose an object 

brightness enhancement data augmentation method. Building on 

traditional algorithms, object brightness enhancement (OBE) 

selectively adjusts the pixels of the object, making the object 

features more prominent and easier for the model to learn. This 

scheme is more feasible and efficient in practical applications, 

providing a new effective approach for the safety management 

of tunnel lighting (Qin et al. 2025). 

 

2. METHODS 

 

2.1 Proposed Tunnel Luminaire Detection Scheme Overview 

 

The model’s input data comprises a set of preprocessed and 

annotated gray-scale tunnel images. As shown in Figure 1, 

before training the model, the data must undergo object 

brightness enhancement. This is because increasing the 

difference in brightness between the tunnel luminaires and the 

background enables the Mask R-CNN to capture luminary 

features effectively. Therefore, we employed four methods to 

segment the pixels within the bounding box (bbox) into the 

foreground and background. In addition, we selectively 

enhanced the foreground’s brightness to improve the luminary 

contrast details. 

 

Although our study only requires the bounding boxes of tunnel 

luminaires, Mask R - CNN has a more comprehensive feature 

extraction and processing pipeline and significant advantages in 

accuracy over object - detection - only networks like YOLO. In 

contrast, YOLO prioritizes speed in object detection, which may 

reduce its accuracy in complex scenarios. 

 

During tunnel luminaire detection using the Mask R-CNN 

method, the first step involves preprocessing and inputting the 

images into the backbone network to extract features, such as 

edges and textures. Then, these features are used by the Region 

Proposal Network (RPN) to generate Regions of Interest (ROI). 

The ROIAlign layer pools the ROIs into fixed-sized feature 

maps for subsequent processing. As a result, the model achieves 

accurate luminaire detection and segmentation through N-class 

classifiers, bounding box regression, and mask generation steps 

(He et al. 2017).  

 

To improve the small object detection performance, we used 

ResNet50-FPN as the backbone network, which enhances the 

recognition ability of small-sized objects like tunnel luminaires 

through multi-scale feature extraction. Furthermore, considering 

the limited number of samples in the object domain, we 

employed transfer learning techniques to initialize the weights 

using a pre-trained model on the COCO dataset (Lin et al. 2014), 

effectively avoiding overfitting issues and reducing the reliance 

on a large amount of training data. 

 

 
Figure 1. Overview of the proposed tunnel luminaire detection 

scheme (Framework excerpted from Figure X in Qin et al. 2025, 

redrawn in this paper) 

2.2 Object Brightness Enhancement (OBE) 

 

We observed that in tunnel image datasets, some luminaires (i.e., 

turned-on lights) exhibit significantly higher brightness than 

their surroundings, making these high-brightness lights easier to 

learn and detect in Figure 2. Therefore, to improve the detection 

accuracy of the Mask R-CNN model, we introduced the object 

brightness (OBE) method in addition to the standard data 

augmentation techniques. This enhancement method increases 

the brightness contrast between object areas and backgrounds, 

improving the model’s luminaire feature learning process. 

 

 
Figure 2. Detection superiority of turned-on lights over the 

turned-off ones. 

 

We aim to highlight the luminaires within the bboxes while 

minimizing the overall impact on image contrast. Thus, in 

practice, pixels within the bbox region exceeding a specified 

threshold were selectively enhanced. Moreover, the brightness 

enhancement strategy was optimized using iterative adjustments 

to the threshold and enhancement magnitude based on training 

observations. These results were contrasted with scenarios 

where no brightness enhancement was applied to assess the 
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effectiveness of this approach. In addition, the enhancement 

range was set from 1.1 to 1.3 times the original brightness, 

balancing image quality and processing efficiency. To determine 

the threshold, we employed four distinct strategies to different 

image characteristics and application scenarios: 

 

(1) Fixed Threshold Method 

It sets a simple fixed threshold of 128 for gray-level value 

segmentation of the image. 

 

(2) Gray-level Median Method 

This method computes the gray-level histogram within the bbox 

and selects the median as the threshold to accommodate varying 

gray-level distribution characteristics across different regions. 

 

(3) Kapur’s Entropy Method 

This is an approach that utilizes the maximum entropy principle 

to determine an optimal threshold, ensuring maximal 

information retention after segmentation (Kapur et al. 1985). 

 

(4) Otsu’s Method 

This is an automatic and unsupervised method for computing 

the optimal image threshold, maximizing inter-class variance to 

achieve adaptive image binarization (Otsu 1979). 

 

In the experimental section, we extensively compared the 

methods’ performances on tunnel image datasets to validate 

their effectiveness and applicability (Qin et al. 2025). 

 

3. EXPERIMENTAL SETTINGS 

 

3.1 Experimental Data 

 

3.1.1 Image Collection: In this study, gray-scale images of a 

specific tunnel were obtained using the highway-tunnel fast 

detection system. This system is equipped with various sensors, 

cameras, and laser scanners to collect high-precision tunnel 

images, three-dimensional spatial information, and road data. 

The original images were preprocessed to simplify the image 

information, eliminate color interference, and highlight the 

tunnel’s internal structure and features. Additionally, as 

gray-scale images only contain brightness information, the 

significant differences in brightness between the luminaires and 

the surrounding environment facilitated more accurate 

positioning of the luminaires and provided clearer and more 

reliable features for the subsequent luminary detection 

algorithm. 

 

3.1.2 Dataset Construction: As shown in Figure 3, the single 

image resolution collected in this study was 8143×1921, with 

each image corresponding to a 50m tunnel segment. A total of 

18 images were gathered. To balance training efficiency and 

accuracy, the image size was reduced by a factor of five while 

retaining the mileage information. These processed images 

formed the foundational dataset for this experiment. In addition, 

labeling software was utilized to roughly annotate the 

luminaires. Then, the tunnel images were categorized into three 

classes based on various illumination levels: bright, dim, and 

darker. For each category, one image was randomly selected for 

training, two for the validation, and the remaining images 

constituted the test set with a ratio of 3:6:9. The training set 

contained 120 effectively annotated bbox samples, the 

validation set comprised 214 samples, and the test included 247 

samples. Considering that the collected data output type was 

orthophoto images, various operations including affine 

transformation, image inversion, mirroring, Gaussian blur, and 

image brightness and contrast adjustments were employed to 

preserve the object position features and simulate different 

lighting conditions in the tunnel environment. This 

augmentation expanded the training set to 600 images. The final 

division and category statistics for the experimental data are 

presented in Table 1. 

 

 
Figure 3. Data collection, augmentation, and annotation results; 

(a) An example tunnel image; (b) Detailed display of tunnel 

luminaires; (c) Mirroring; (d) Global brightness adjustment; (e) 

Affine transformation; (f) Enhanced object brightness; (g) 

Tunnel luminaire annotation results. 

 

Dataset 

Before Augmentation After Augmentation 

Number 

of 

images 

Number 

of 

luminaires 

Number of 

images 

Number 

of 

luminaires 

Training 3 120 600 24000 

Validation 6 214 
6(not 

augmented) 
214 

Test 9 247 
9(not 

augmented) 
247 

Total 18 581 615 24461 

Table 1. Experimental data set division (Data excerpted from 

Table 1 in Qin et al. 2025) 

 

 

3.2 Experimental Environment and Parameters 

 

The hardware environment for these experiments included a 

12th Gen Intel Core i9-12900K 3.20 GHz processor and an 

NVIDIA RTX 4060Ti GPU with 8GB of memory. The software 

environment consisted of Windows 10, PyTorch 2.1 deep 

learning framework, CUDA 12.1, cuDNN 8.8.1, and Python 3.8. 

In terms of model training parameter settings, the stochastic 

gradient descent (SGD) algorithm was used as the optimizer for 

network model training, with a momentum of 0.9, an initial 

learning rate of 0.001, a batch size of 8, and 400 training epochs. 

For the pre-trained ResNet-50 weights from PyTorch, only the 

last three residual blocks were set to receive gradient updates, 

while the parameters of other layers remained unchanged, 

which helps in reducing training time and the risk of overfitting. 

 

3.3 Other example 

 

This study uses precision, recall, F1-score, average precision 

(AP) and mean average precision (mAP) as accuracy evaluation 

metrics.  

 

Intersection over Union (IoU) is a measure of the overlap 

between the predicted bounding box and the actual bounding 

box, which significantly affects all evaluation metrics discussed 

in this article. By default, this article assumes an IoU threshold 
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of 0.5. The formula for calculating IoU is: 

 

IoU =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
× 100% (1) 

 
where the Area of Overlap is the region where the predicted box 

and the actual box intersect, and the Area of Union is the total 

area covered by both the predicted box and the actual box, 

excluding the overlapping region.  

 

Precision reflects the proportion of correctly detected objects 

within the detected objects of that category. Recall reflects the 

proportion of correctly predicted objects among the actual 

objects of that category, and the F1-score is used to 

comprehensively evaluate both precision and recall. The 

calculation formulas are as follows: 

 

Precision(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (2) 

 

Recall(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (3) 

 

F1 − score = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
(4) 

 

where TP represents the number of correctly detected objects, FP 

denotes the number of incorrectly detected objects, and FN 

represents the number of missed correct objects. 

 

In this study, since the detection only includes the category of 

tunnel lighting fixtures, AP and mAP are equivalent. Their 

calculation formulas are as follows, where classes represent the 

total number of categories in the detection task: 

 

mAP =
1

classes
∑  

classes

𝑖=1

∫  
1

0

𝑃(𝑅)d(𝑅) (5) 

 

AP = ∫  
1

0

𝑃(𝑅)d(𝑅) = mAP (6) 

 

Therefore, we choose to evaluate the model's performance at 

different levels of overlap by calculating AP at a specific IoU 

threshold： 

 

(1) AP50 

Refers to AP evaluated at an IoU threshold of 0.5. A prediction 

is considered accurate if the IoU between the predicted and 

ground-truth bounding boxes is ≥ 0.5. This metric evaluates the 

model's localization accuracy under a moderate overlap 

criterion. 

 

(2) AP75 

Denotes the AP at a stricter IoU threshold of 0.75. Here, 

predictions must achieve an IoU ≥ 0.75 with the ground truth to 

be deemed correct. This threshold assesses the model's precision 

in scenarios requiring a high degree of spatial alignment. 

 

(3) AP50:95 

Computed by averaging the APs obtained at ten IoU thresholds, 

ranging from 0.5 to 0.95 in 0.05 increments. This composite 

metric offers a robust evaluation of the model's performance 

across a wide range of IoU standards, serving as a benchmark 

for comparative analysis of object detection algorithms. 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To comprehensively evaluate the effectiveness of the OBE 

model in tunnel luminaire object detection, this study designed 

one control group and four experimental groups: (1) The control 

group used the Mask R-CNN model with standard data 

augmentation techniques; (2) Each experimental group applied 

a unique OBE method, with four distinct methods tested in total. 

Each experimental group was run on the same tunnel luminaire 

dataset and performance was compared using the established 

evaluation metrics. The experimental results reveal the 

advantages and disadvantages of single versus combined 

strategies in improving detection accuracy, robustness, and 

practicality, thus providing empirical evidence for the potential 

application of deep learning models in similar visual detection 

tasks. 

 

4.1 Effectiveness Analysis of OBE 

 

Table 2 compares the effects of four unique OBE methods on 

the test set. Each method was applied in a separate experimental 

group. The results show that all methods improved some 

metrics. Specifically, Kapur-1.1 achieved the best Recall, 

F1-score, AP50:95, and AP50. Additionally, Table 3 ranks the 

F1-score and AP50 within the brightness range (best = 1, worst 

= 3) and calculates the sum and mean to observe the overall 

performance of different brightness levels in all experimental 

groups. The results show that when the brightness level is 1.3, 

the average ranking is the lowest and the overall performance is 

the worst, proving that the increase in the target brightness level 

does not necessarily lead to better results. 

  

Algorithm Level Precision Recall F1 AP50:95 AP50 AP75 

None 0 0.906 0.779 0.837 0.196 0.625 0.062 

Fixed 

1.1 0.974 0.686 0.805 0.256 0.763 0.062 

1.2 0.955 0.779 0.858 0.210 0.740 0.038 

1.3 0.947 0.731 0.825 0.189 0.651 0.030 

Median 

1.1 0.944 0.683 0.792 0.224 0.716 0.043 

1.2 0.952 0.804 0.872 0.207 0.678 0.058 

1.3 0.959 0.786 0.864 0.202 0.718 0.031 

Kapur 

1.1 0.949 0.823 0.881 0.234 0.776 0.029 

1.2 0.950 0.779 0.856 0.189 0.674 0.030 

1.3 0.948 0.660 0.778 0.163 0.565 0.027 

Otsu 

1.1 0.948 0.737 0.829 0.232 0.747 0.063 

1.2 0.983 0.709 0.824 0.216 0.754 0.036 

1.3 0.971 0.680 0.800 0.194 0.686 0.035 

Table 2. Performance comparison of OBE on Mask R-CNN (Data excerpted from Table 4 in Qin et al. 2025) 
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Level Algorithm F1 AP50 Mean 

1.1 

Fixed 3 1 

1.75 
Median 3 2 

Kapur 1 1 

Otsu 1 2 

1.2 

Fixed 1 2 

1.75 
Median 1 3 

Kapur 2 2 

Otsu 2 1 

1.3 

Fixed 2 3 

2.375 
Median 2 1 

Kapur 3 2 

Otsu 3 3 

Table 3. Ranking of F1-Score and AP50 for all experiments 

across brightness levels (Partial data excerpted from Table 7 in 

Qin et al. 2025) 

 

The possible reasons why the enhancement of the target 

brightness level fails to bring better improvement effects are as 

follows: (1) Aggressive brightness enhancement leads to the 

model overfitting specific training data features (e.g., enhanced 

brightness differences) while ignoring other important ones. (2) 

If the model is trained only on data where brightness differences 

are significantly increased, it may not be adequately generalized 

to various brightness conditions encountered in actual 

applications. 

 

4.2 Ablation Study of the New Detection Scheme 

 

As shown in Table 2, using Kapur-1.1 yielded the highest 

detection accuracy. To evaluate the contribution of OBE in the 

new scheme, an ablation experiment was conducted, with the 

results presented in Table 4. By incorporating OBE, we 

significantly improved all metrics except for AP75. Notably, the 

F1-score and AP50 reached 0.881 and 0.776, respectively, 

representing improvements of 0.044 and 0.151 over the original 

result. Figure 4 intuitively shows the significant improvements 

of Kapur-1.1 on the detection effect of Mask R-CNN. Overall, 

this scheme delivered more accurate outcomes, thereby 

validating the effectiveness of our model improvement strategy. 

 

Model 
Preci

sion 

Recal

l 
F1 

AP50

:95 
AP50 AP75 

Mask 

R-CNN 
0.906 0.779 0.837 0.196 0.625 0.062 

+OBE(Ka

pur-1.1) 
0.949 0.823 0.881 0.234 0.776 0.029 

Differenc

e 
0.043 0.044 0.044 0.038 0.151 

-0.03

3 

Table 4. Comparison of ablation experimental results 

 

 
Figure 4. Improvement effects of OBE on Mask R-CNN; (a) 

Reducing False Positives; (b) Reducing Missed Detections. 

 

5. CONCLUSIONS AND DISCUSSION 

 

Given the complexities of tunnel environments, including 

numerous luminaires, low illumination, and the challenges 

involved in small-object detection, this study proposes a tunnel 

luminaire detection scheme based on Mask R-CNN. The 

research utilizes gray-scale tunnel images as the dataset, 

employing the Mask R-CNN framework enhanced by transfer 

learning with a ResNet-FPN feature fusion network to improve 

small luminary detection. Various strategies were employed to 

enhance the contrast in brightness between tunnel luminaires 

and the background, enabling Mask R-CNN to better learn the 

specific object features. The results demonstrated that the 

proposed method achieved a precision of 94.9%, a recall rate of 

82.3%, an F1-score of 0.881 and an AP50 of 0.776 on the test 

set, improving these metrics by 4.3%, 4.4%, 0.044, and 0.151, 

respectively, compared to the original model. This scheme 

effectively improves the detection performance of tunnel 

luminaires, achieving accurate annotation and efficient 

positioning. 

 

The primary conclusions of this study include: 

 

(1) For the task of detecting tunnel luminaires under low 

illumination conditions and numerous small objects, the 

objective detection approach based on Mask R-CNN and 

transfer learning achieves excellent results. 

 

(2) Using OBE improves the accuracy of Mask R-CNN without 

increasing its complexity. This approach allows for the 

prediction of extensive data from limited datasets, meeting 

engineering requirements. 

 

We have also found that OBE, in the simple dark environment 

of a tunnel, can improve accuracy without the complexity of 

other low-light image enhancement methods. It does not require 

pre-training or computation of the entire image, thus reducing 

the cost of pre-processing. 

 

While our approach has been specifically tailored for tunnel 

luminaire detection, the underlying principles and 

methodologies employed could potentially be adapted to other 

object detection tasks in similarly challenging environments: 
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The techniques used for brightness balancing may find utility in 

environments with suboptimal lighting conditions, such as 

underwater detection and cave mapping. In such situations, 

OBE could enhance the visibility of marine life or geological 

features, which are often subject to low light and varying clarity. 

 

Building on these potential applications, future research could 

explore the following directions: 

 

(1) Broader Environmental Applications: We aim to test and 

refine our model's adaptability to various challenging 

environments, leveraging OBE where appropriate.  This will 

involve assessing the model's performance and making 

necessary adjustments to accommodate different lighting 

conditions, object densities, and environmental complexities. 

 

(2) Expanding and diversifying the training dataset to include 

various tunnel environments and luminaire configurations, 

thereby enhancing the model’s generalizability and adaptability. 

 

(3) Exploring the integration of other sensor data types, such as 

LIDAR point cloud data, with image data to provide more 

comprehensive environmental information, thereby improving 

detection accuracy and robustness. 

 

By embracing these future directions, we anticipate that our 

research will not only advance the field of tunnel luminaire 

detection but also contribute to the broader application of 

intelligent object detection in diverse and challenging 

environments (Qin et al. 2025). 
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