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ABSTRACT 

Unmanned aerial systems have shown considerable potential to improve bridge inspection procedures by enhancing safety, 

efficiency, and data quality. However, developing a comprehensive system that integrates safe flight planning, data acquisition, 

automated damage detection, and reporting while addressing practical challenges remains complex. In this paper, we present a 

UAS-based bridge inspection pipeline that has been validated through a real-world case study. The system generates safe and 

efficient flight routes, which were closely followed by the UAS, achieving an RMSE of 0.67 m and ensuring successful camera 

alignment and precise photogrammetric 3D models with a mean distance error of 3.2 cm compared to terrestrial laser scans. The 

damage detection system predicts potential damages, maps them onto the 3D model, computes various characteristics, and 

aggregates the predictions into a manageable set of damage candidates. A human-in-the-loop validation via a graphical user 

interface refines these results, producing a verified damage report in less than 4.25 hours, providing accurate, actionable data for 

effective bridge maintenance. Our experimental results indicate that the proposed approach is both practical and effective for 

comprehensive bridge inspections. This paper systematically evaluates the system, highlights key strengths and limitations, and 

provides critical insights for future improvements. 

1. Introduction

Regular inspections are crucial for ensuring the safety and 

longevity of bridge infrastructure. Over time, bridges face 

numerous challenges, including increased traffic loads, 

environmental exposure, and material degradation. Early 

detection of structural damages is essential to prevent 

catastrophic failures and to plan timely maintenance 

procedures. 

Traditional manual inspection methods involve visual 

assessments by inspectors using equipment like scaffolding, 

under-bridge inspection vehicles, or rope access techniques. 

These methods present several challenges. They are time-

consuming and labour-intensive, often requiring lane closures 

or traffic disruptions, which can lead to traffic impairment and 

increased safety risks for inspectors (Ichi und Dorafshan 2024). 

Accessibility to certain parts of the bridge, such as underdeck 

areas or high elevations, can be limited, potentially causing 

some damages to go unnoticed. Additionally, manual 

inspections are subjective and may lack consistency in damage 

detection and reporting. 

To address these limitations, the use of Unmanned Aerial 

Systems (UAS) has been proposed to capture high-resolution 

images and videos of bridge structures, including hard-to-reach 

areas, without the need for extensive equipment setups or 

traffic disruptions. They enhance safety by keeping inspectors 

off the structure and reduce inspection times while providing 

comprehensive data for analysis (Rachmawati und Kim 2022). 

Despite these benefits, current UAS-based inspection methods 

face challenges that restrict their widespread adoption. A major 

issue is the lack of integration across different stages of the 

inspection process, from flight planning over data analysis to 

damage assessment. Furthermore, automated damage detection 

models exhibit parameter-dependent performance, making 

their reliability inconsistent during inference, particularly in 

real-world conditions. Moreover, a practical alternative must 

accommodate for various bridge damage classes, analogue to 

conventional inspections. This study presents an integrated 

UAS-based bridge inspection pipeline that combines: 

• Semi-automated data acquisition

• Comprehensive suggestion of damage candidates using

deep learning object detection

• Damage mapping and spatial filtering

• Human-in-the-loop data assessment for final damage

classification and reporting

Figure 1: Visualization of the UAS-based bridge inspection framework. A) Generation of semi-automated flight paths, b) 

Ray-casting of damage detection bounding boxes onto the model and spatial filtering, c) Human-in-the-loop damage 

assessment in a graphical user interface. 

a)  b) c)
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While various studies have proposed components of UAS-

based inspection, e.g., most prominently machine learning 

architectures for damage detection (Guo et al. 2024), few have 

demonstrated a cohesive system that can handle all stages from 

data acquisition to damage assessment in one integrated 

pipeline, for instance Lin et al. (2021). The workflow proposed 

in this paper is designed to overcome the fragmented nature of 

existing methods, offering a unified approach for obtaining, 

processing, and analysing bridge inspection data. 

 

This pipeline addresses multiple challenges commonly 

encountered in UAS-based inspections. Flight path generation 

is optimized to support automated flight routes in GNSS-

denied areas, while ensuring sufficient image overlap for 

subsequent photogrammetric reconstruction. Automated 

damage detection uses a trained deep learning model that is 

carefully validated to manage domain shifts between 

conventional inspection photographs and UAS-captured 

images. Additionally, by embedding spatial information into 

the damage predictions, inspectors gain immediate contextual 

understanding. The end-to-end approach is validated and 

thoroughly evaluated on a representative multi-span concrete 

bridge under realistic operational conditions.  

 

The remainder of this paper is organized as follows: Section 2 

reviews relevant literature on UAS-based inspections, 

section 3 details our proposed methodology and section 4 

presents the case study. Section 5 presents the results of the 

study, including metrics for flight accuracy, photogrammetric 

model precision, and damage detection performance. Section 6 

provides a discussion of the implications and limitations of the 

findings, and section 7 concludes with a summary of 

contributions and directions for future research. 

 

2. Related work 

The field of UAS-based bridge inspection has seen significant 

advancements in recent years, spanning multiple domains 

including flight path planning, photogrammetric reconstruction 

and automated damage detection frameworks. 

 

The first critical component for realizing UAS assisted bridge 

inspections concerns the generation of safe, efficient and 

reliable UAS flight paths. Wang et al. (2022a) developed flight 

planning strategies optimized for efficient data acquisition and 

optimal image results during photogrammetric processing. 

However, the practical execution of such flight routes remains 

challenging, as this involves navigating in GNSS-denied 

environments, such under the deck. Various solutions have 

been proposed to address this issue, including visual odometry 

(Lu et al. 2024), SLAM, fiducial markers (Wang et al. 2023a), 

or the use of ultrasonic receivers (Kang und Cha 2018). Despite 

these advancements, the accuracy of UAS flight execution, 

particularly in these GNSS-denied environments, is rarely 

reported, leaving a gap in understanding how accurately these 

flights can be performed in such conditions. 

 

Photogrammetric reconstruction using UAS imagery enables 

the creation of detailed 3D models of bridge structures, relying 

on Structure-from-Motion (SfM) algorithms to process 

overlapping images captured from various viewpoints. 

However, achieving accurate and comprehensive 3D 

reconstructions presents several challenges. Tang et al. (2024) 

evaluated the accuracy of a UAS-based photogrammetric 

model for a railroad bridge, using 20 manually placed Check 

Points (CPs), and reported a root mean square error (RMSE) of 

1-2 cm. Similarly, Chen et al. (2019) reported a deviation of 

0.2 - 3.2 cm when analysing UAS-derived 3D models to 

Terrestrial Laser Scans (TLS) in a cloud-to-cloud (C2C) 

comparison. Despite these results, reliance on Ground Control 

Points (GCPs) for georeferencing remains a significant 

limitation, as this process is time-consuming and labour-

intensive, particularly for large or complex bridges (Tang et al. 

2024). This effort can be drastically reduced by replacing the 

GCPs with the Real-Time Kinematic (RTK) positioning data 

from the UAS for georeferencing (Štroner et al. 2021). 

However, this approach has yet to be explored in bridge 

applications. Additionally, misalignment issues often occur 

during SfM processing, especially in underdeck areas, due to 

insufficient image overlap and inconsistent viewpoints (Wang 

et al. 2023b). Ensuring sufficient overlap between flight routes 

is critical for mitigating these issues. 
 

Automated damage detection is essential for managing the 

large image and video data obtained by UAS-assisted bridge 

inspections. Deep learning models, such as Faster Region-

Convolutional Neural Networks (Faster R-CNN), Single Shot 

Detector (SSD), and You Only Look Once (YOLO) variants, 

have been widely applied to bridge inspection tasks and have 

demonstrated high accuracy in controlled environments (Mittal 

et al. 2020; Liang et al. 2023). The CODEBRIM dataset 

includes common concrete damage classes such as exposed 

reinforcement bars, cracks, corrosion stains, efflorescence, and 

spalling, and has been used to train classification models with 

reported accuracies ranging from 0.8 to 0.9 for each damage 

class (Mundt et al. 2019). Similarly, Wang et al. (2022b) 

trained an object detection model to identify cracks and 

exposed bars with a mean average precision (mAP) of 0.832. 

However, these controlled settings often do not reflect the 

complexity of real-world bridge inspection imagery. In 

contrast, real-world UAS bridge inspection imagery typically 

contains smaller damages and highly variable backgrounds, 

such as trees, varying lighting conditions, and other 

environmental factors, all of which complicate the detection 

process. Sliding Window modules have been proposed to 

improve model performance, addressing the small object 

problem  (Akyon et al. 2022). The discrepancy between 

training data real-world UAS inspection imagery is commonly 

referred to as the "domain gap," which typically leads to 

decreased performance when applying the same model (Fang 

et al. 2025). A thorough evaluation of the domain gap in bridge 

damage detection remains unaddressed.  

 

Additionally, detection alone is insufficient for providing 

actionable insights to bridge managers. The ability to 

accurately map detected damages to a 3D model of the bridge 

is crucial for effective maintenance planning. In one of the most 

comprehensive studies to date, Lin et al. (2021) demonstrate 

that incorporating a damage mapping step significantly 

increases model performance, improving both the accuracy and 

usability of detection results. Despite advances in damage 

detection, further evaluation is needed to determine how 

integrating damage mapping and spatial filtering can improve 

performance and usability within a comprehensive bridge 

inspection framework. 

 

Lastly, damage assessment and reporting require efficient 

methods to interpret and interact with the data. Several studies 

have advanced interactive tools for damage assessment to 

bridge this gap. For example, Tang et al. (2024) demonstrated 

how detailed, textured photogrammetric models can be used to 

identify missing bolts and corrosion in steel bridges.  Similarly, 

Seo et al. (2018) used the photogrammetric model and 

compared the results to a conventional inspection report, 

finding that the UAS approach showed comparable overall 

quality and even identified additional previously missed 

damages. However, this process was carried out manually, 

pointing to a limitation of current methods that require further 
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automation. In contrast, Lin et al. (2021) presented an 

interactive web-based viewer for bridge inspection that allows 

inspectors to verify automated damage detections using both 

2D and 3D data. The system includes advanced features such 

as measurement tools and overlay views of different inspection 

epochs, allowing inspectors to observe damage progression 

over time to assess severity. These advancements highlight the 

need to evaluate and refine interactive damage assessment tools 

to determine the optimal toolset for large-scale bridge 

inspections. 

 

3. Methodology 

In this study, we propose a comprehensive methodology for 

UAS-based bridge inspection that begins with flight path 

generation, data acquisition, photogrammetric reconstruction, 

a complex damage detection and mapping system and final 

human-in-the-loop data assessment. 

 

The UAS flight routes are generated based on the known 3D 

trajectory of the bridge and the height of the starting point. 

First, an overview flight is conducted to capture the bridge from 

both sides. The underdeck inspection flight path includes 

vertical maneuvers at the start and endpoints of each underdeck 

route, aligning these positions with those captured in the 

overview flight. This alignment ensures that images from both 

the underdeck pass, and the overview flight can be accurately 

matched for reliable 3D model construction. Because GNSS 

signals are often obstructed underneath the bridge, the UAS 

relies on its inertial measurement unit (IMU) and 360° obstacle 

avoidance system to maintain stable flight in these areas. Upon 

exiting the underdeck, the UAS reestablishes its RTK-GNSS 

connection and readjusts its trajectory accordingly. To verify 

the accuracy of this approach, the camera positions obtained in 

the subsequent image alignment step are compared against the 

planned path. 

 

After data acquisition, Agisoft Metashape v2.0 is used to 

process all collected images and generate a 3D model of the 

bridge. Underdeck images are aligned through common visual 

features only, as their RTK data are discarded due to signal 

obstruction, whereas the georeferenced overview flight images 

retain their RTK coordinates for precise georeferencing. 

Combining these datasets enables successful and accurate 

camera alignment. The final mesh is simplified to 200,000 

vertices, balancing detail with computational efficiency and 

textured using ten 8192×8192 texture maps. Photogrammetric 

accuracy is assessed via a C2C comparison against TLS data, 

offering an objective measure of the model’s accuracy. The 

model is manually segmented into components such as the road 

surface, installations (e.g., streetlights, traffic signs), ground 

surface, and underdeck sections. Additionally, the camera 

positions and undistorted images are exported from the 3D 

model to facilitate subsequent damage detection. 

Because damage detection in real-world environments can be 

challenging due to variations in illumination, scale, and 

structural configuration s, detecting exposed reinforcement 

bars is prioritized in this work. These damages are typically 

easier to identify than fine cracks, making them well-suited for 

developing and testing an automated detection pipeline. A 

YOLOv8 (Jocher et al. 2023) object detection model  was thus 

trained on a curated dataset of 2,000 documentation images 

from conventional bridge inspections (0.4 MP to 48 MP 

resolution), each manually annotated for exposed rebars. 

Various metrics, including bounding box frequencies and sizes, 

guided the selection of 600 images for validation to ensure the 

validation images represent the training dataset. Transfer 

learning was applied using the weights from pretraining on the 

COCO dataset and Table 1 summarizes the hyperparameters 

used during training. 

 

To further analyse the performance of the trained model and to 

quantify potential domain gaps, additional experiments were 

conducted on external sets of images. A subset of 43 images 

was specifically curated from the CODEBRIM dataset 

regarding exposed bars, excluding cases with excessively large 

or centrally located damages. A subset of 18 UAS-based 

inspection images was also annotated to refine inference 

parameters for complex under-bridge scenes. By comparing the 

results from these small but diverse datasets, we evaluate the 

capabilities of the model in various scenarios (Figure 3).  

 

Following object detection, each bounding box prediction is 

projected onto the 3D model via a raytracing procedure. This 

process captures both geometric attributes (e.g., 3D location, 

approximate damage area, confidence) and semantic data (e.g., 

damaged bridge component). The projected points on the mesh 

are used to calculate damage areas and to create 3D bounding 

boxes, while averaged measurements (e.g., damage center 

location, surface normal) are derived from multiple images that 

capture the same damage from different viewpoints. These 

aggregated data structures, combined with essential image 

information (e.g., file names, path, intrinsic matrix), are stored 

in a Resource Description Framework (RDF) g raph to 

maintain consistency and allow complex querying (Figure 4). 

Table 1: Training hyperparameters 

Parameter Value Description 

epochs 400 Maximum number of training epochs 

batch Auto 
Batch size automatically adjusted based on GPU memory availability  

(trained on NVIDIA GeForce RTX4070 Ti) 

imgsz 1024 Image size (width and height); images are resized/padded to 1024×1024 for training 

optimizer Auto Automatically selects between SGD and Adam based on dataset characteristics 

momentum 0.937 Momentum value for the optimizer to stabilize and accelerate training 

weight_decay 0.0005 Weight decay (L2 regularization) used to mitigate overfitting 

iou 0.7 Intersection-over-Union threshold for non-maximum suppression 

auto_augment randaugment Automatic data augmentation policy to improve model robustness 

 

 

Figure 2: Flight path generation. The underdeck inspection 

flight (pink) passes underneath the bridge and connects to 

the overview flight containing RTK-GNSS data. 
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In the final damage assessment step, the RDF graphs provide 

the basis the human-in-the-loop evaluation. Detected damages 

are visualized in a user interface where each damage node is 

visualized through multiple images including bounding boxes 

at the same time, offering a comprehensive understanding 

(Figure 1c). Additionally, the interface shows further 

information about the damage candidate in a text box which 

permits manual edits, such as adding notes or updating the 

review status. By coupling quantitative model outputs with 

expert oversight, the approach ensures robust data validation 

and reliable final assessments suitable for practical bridge 

maintenance applications. 

 

4. Case study 

We demonstrate the feasibility of the proposed pipeline 

through a real-world inspection of the Merendreebrug, a three-

span concrete bridge near Ghent, Belgium (Figure 5). 

Measuring approximately 130 m in total length with a 60 m 

main span, the structure features seven I-girders under a 20 m-

wide roadway. Multiple traffic participants, including cars on 

the deck and ships navigating underneath, introduce additional 

operational complexity, in addition to the car and bicycle traffic 

at the abutments. This environment underscores the need for 

careful flight planning to ensure safety, maintain compliance 

with EU regulations, and capture comprehensive imagery of 

critical underdeck areas. In this specific case study, no special 

flight permit was required, as the operation was conducted 

under the Open category’s A2 subcategory, in accordance with 

Commission Implementing Regulation (EU) 2019/947. The 

UAS maintained a minimum horizontal distance of 5 meters 

from uninvolved persons by operating in low-speed mode. 

However, the deployment of UAS-based inspection pipelines 

in other locations may require compliance with regional 

aviation and infrastructure safety regulations. Additionally, the 

chosen bridge involves previously documented issues, such as 

exposed bars, spalling, corrosion stains, delamination, and 

corroded drainage pipes, highlighting the importance of 

capturing high-resolution imagery across difficult-to-reach 

underdeck areas.  

 

A DJI Mavic 3 Enterprise UAS equipped with a 4/3″ CMOS 

camera, RTK-GNSS module, and omnidirectional obstacle 

avoidance was selected to perform the inspection flights. The 

underdeck flight route included 7 passes beneath the deck at 

approximately 1 m/s with a clearance of approx. 5 m to the 

structure and 2 m above the water surface. When ship traffic 

appeared, the flight was paused, and the UAS was maneuvered 

upward until the waterway was clear. To ensure flight safety, 

the pilot should be positioned in a location that provides a clear 

line of sight to monitor approaching traffic and assess potential 

hazards. Underneath the main span, the loss of GNSS signal 

caused notable flight instabilities especially in altitude, which 

reduced once the UAS exited the underdeck area and 

reestablished RTK connectivity.  

 

The camera was controlled manually to allow for maximum 

control and to capture the faces of the I-girders at slight lateral 

angles, with a maximum pitch of 30° upward (Figure 7). Under 

sunny conditions, the overview flight was configured with 

automatic exposure at a target shutter speed of approximately 

1/1000 s at a flight speed of 3 m/s. By contrast, a manual setting 

of 1/640 s, ISO 800, and f/4 was used during the underdeck 

route to achieve bright and sharp imagery at 1 m/s; although 

parts of the exterior became overexposed, these areas were 

sufficiently covered by the overview flight. To maximize 

overlap and coverage consistency, images were recorded at 

0.7-second intervals. In addition, handheld images were 

collected around the abutments where vehicular and pedestrian 

activity prohibited close-in flight operations; the operator 

walked a path analogous to the underdeck trajectory, using 

similar camera settings to maintain consistent exposure and 

data quality. Table 2 summarizes the total flight time and 

number of images acquired for each route.  

 

 

Figure 4: Content of final RDF graph. Various data 

types are linked and stored in one file. 
Figure 5: Field work at the Merendreebrug. The image 

illustrates the complexity of the I-girder cross-section. 

Figure 3: Domain gap example images. The quality of the typical training images (left) and the UAS inspection images 

(right) differs drastically. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-189-2025 | © Author(s) 2025. CC BY 4.0 License.

 
192



Parallel to the aerial data collection, a TLS survey was 

performed using a Leica P30 scanner at 22 setups, taking about 

4.5 hours on site. 

 

5. Results  

This section presents the results of the experiments regarding 

the flight path accuracy, geometric accuracy of the resulting 

photogrammetric point cloud and the performance of the 

automated damage detection and mapping system. 

 

The comparison of the camera positions against the planned 

flight route (Figure 6) shows for the overview flight a mean 

deviation of 0.16 m horizontally (XY) and 0.05 m vertically 

(Z), corresponding to an overall mean deviation (XYZ) of 

about 0.17 m and an RMSE of 0.21 m, which is higher than the 

expected 0.03 m accuracy of the RTK module. In contrast, the 

underdeck flight showed mean deviations of roughly 0.38 m in 

XY and 0.25 m in Z, resulting in a 0.51 m mean XYZ deviation 

and an overall RMSE of 0.67 m. Maximum deviations in the 

underdeck route extended beyond 2.1 m horizontally and 1.6 m 

vertically, particularly when RTK signals were lost beneath the 

bridge and toward the end of the flight route. Moreover, the 

manually entered starting point altitude for flight route 

generation may have introduced a baseline offset in the vertical 

dimension. 

 

The photogrammetric reconstruction was performed using 

medium-quality settings for image alignment and dense point 

cloud generation. Table 3 summarizes the principal processing 

steps, with the creation of depth maps requiring 10.5 hours of 

the total 28.6 hours. To focus on the main structure, regions not 

captured in the TLS survey, such as road surface as well as the 

ground area, were removed manually. Subsequently, the SfM 

model was coarsely aligned to the TLS dataset using known 

global coordinates from a set of Leica targets. This was 

followed by an iterative fine-alignment process, during which 

corresponding points in both datasets were identified and 

matched within cross section sub-clouds. Once aligned, the 

photogrammetric cloud was compared to the TLS reference, 

yielding a mean deviation of approx. 3.2 cm. Only a few 

localized regions, particularly smaller compartments in the 

underdeck, exceeded 6 cm. Figure 9 illustrates the distribution 

of these deviations, indicating that most points remain well 

below this threshold. 

 

The trained YOLO models were initially evaluated on the 

CODEBRIM validation subset to identify the best-performing 

configuration under optimal conditions. A series of Bayesian 

hyperparameter sweeps determined that a model setup 

(YOLOv8n at 1000 px input size) achieved an F1-score of 0.70 

at a confidence threshold of 0.11 (Figure 10). Building on these 

findings, the selected model was then applied to 18 

 

Figure 7: Perspective of inspection images. To 

improve coverage, the camera angle (pink) was 

directed in an angle from the flight direction (green).  

Figure 6: Accuracy of executed flight routes. The color 

code shows deviations from the planned flight route. 

Table 4: Fine-tuned inference parameters on UAS 

inspection images 

Model Parameters Recall 

Yolov8n_1000px 

 

Image Size: 

3000  

0.422 

Yolov8n_1000px 

+ SAHI 

slice_width = 1000 

slice_height = 480  

 

0.375 

 

Table 2: UAS data acquisition 

Flight route Images Flight time 

Overview 346 13 

Underdeck 1282 19 

Abutment 1 1247 12* 

Abutment 2 1263 14* 

*handheld   

 

Figure 8: Inference on inspection images.  

Processing step Setting Time[h] 

Camera alignment Medium 6 

Depth map 

generation 

Medium,  

Aggressive filtering 
5 

Dense point cloud 

120 M points 

including depth 

maps  

10.5 

Meshing 

Medium, 13 M 

faces, 

based on depth maps 

1 

Simplify model 200 000 faces  0.1 

Texture 10 x 8192 x 8192  6 

 = 28.6 

Table 3: Photogrammetric processing 
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representative images from the UAS inspection flight to fine-

tune parameters for optimizing Recall at a confidence threshold 

of 0.1. Several image input sizes were tested between 224 and 

4000 px, including variants aided by the SAHI module. The 

best results from this experiment are summarized in Table 4. 

Figure 8 illustrates that optimizing for high Recall resulted in 

a substantial number of False Positives (FP).  

 

From the 1,282 underdeck images, the detection model 

produced a total of 16,822 bounding box predictions. After 

projecting onto the 3D model, 2,194 did not intersect with the 

mesh. Additionally, 1,972 predictions were mapped onto the 

road surface, 1,594 onto the ground, and 252 onto various 

installations. Excluding these irrelevant associations resulted in 

a set of damage candidates on the underdeck and girder regions. 

The remaining detections were consolidated by their centre 

point location within a 0.3 m radius, to 1,813 combined damage 

candidate nodes.  

 

In the final assessment step, the damage candidate nodes were 

loaded into the graphical user interface, where they could be 

quickly labelled as “included” or “excluded” by updating each 

node’s revision status attribute through a key-binding shortcut. 

The final confirmation step took approximately 4.0 hours and 

reduced the set to 66 nodes. In a subsequent pass, the viewer 

was configured to display only these included nodes, allowing 

inspectors to refine their classification and add notes where 

relevant. This second step required an additional 0.25 hours and 

produced 24 exposed bars, 16 corrosion spots, 9 likely cases of 

concrete delamination, 8 cases of spalling without visible 

reinforcement, 5 cracks and 4 instances of drainage damage 

(two flagged as ‘uncertain’ for further investigation) as 

illustrated in Figure 11. By consolidating the damage 

candidates and validating each damage node, the pipeline 

produced a concise, actionable list of critical defects that can 

inform subsequent maintenance decisions. 

 

6. Discussion 

In the following discussion, we discuss our key findings and 

reflect on their implications and limitations. 

 

The flight route analysis indicates that the results may suffer 

from a constant offset due to an inaccurately selected starting 

point height during route generation. This systematic error 

suggests that the UAS followed the generated route more 

precisely than the data implies. To address the maximum 

observed deviations, a minimum safety clearance of 2 m from 

the bridge is recommended for the underdeck flights. 

Moreover, while the overall RMSE of 0.67 m for the underdeck 

flight may seem high, it compares reasonably with recent 

findings. For example, Wang et al. (2023a) achieve an RMSE 

of 0.3 - 0.4 m using fiducial markers for stereo visual-inertial 

localization, which requires customized UAS and the setup of 

fiducial markers. Although the flight inaccuracy did not 

compromise subsequent tasks in this study, scenarios that 

demand higher positional accuracy, such as attaining a lower 

GSD for detecting fine concrete cracks, may require more 

precise flight maneuvers. 

 

The C2C comparison between the SfM dense point cloud and 

the TLS reference yielded a mean distance of 3.2 cm, consistent 

with centimetre-level accuracies reported in the literature 

(Mohammadi et al. 2021; Abdel-Maksoud 2024). However, the 

limited literature and varying measurement methods indicate a 

need for further research. Due to a safety distance to the pillars, 

the flight routes resulted in a lack of coverage in the first 

compartment between the cross-bracings. It is advisable to 

 

Figure 10: Sweep in Weights and Biases. Evaluating multiple model variations on the CODEBRIM subset using 

various input parameters during inference (Weights & Biases, 2022). 

Figure 9: SfM-to-TLS comparison. The mean distance of the photogrammetric point cloud to the TLS is 3.2 cm. The 

histogram shows that only few areas, especially close to the cross-bracings show a higher deviation than 6 cm. 
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acquire additional handheld images in these regions to address 

potential coverage gaps. Finally, replacing the approximate 

camera calibration with a fully calibrated model could further 

enhance geometric accuracy while reducing computational 

costs. 

 

The modest improvement in F1-score (+0.1) of the selected 

YOLOv8n model over its closest variants on the CODEBRIM 

validation subset may appear marginal under controlled 

conditions. However, its superior generalization became 

evident when applied to high-resolution UAS inspection 

images, where other models exhibited significant drops in 

Recall. This underscores the need to optimize not only the 

training hyperparameters but also to align inference parameters 

to overcome the domain gap problem for bridge defects 

detection. Using a low confidence threshold resulted in a large 

number of FPs, but also enabled the detection of damages the 

model was not explicitly trained on. The subsequent 

aggregation step drastically reduced the candidate nodes for 

review, though further filtering based on factors such as the 

number of viewpoints or implausible estimated damage areas 

could further reduce manual effort. Moreover, the RDF 

structure permits targeted searches for damages in specific 

image regions. Selecting image with optimal viewing angles 

and using known working distances to optimize inference 

parameters during a second prediction step could further 

enhance prediction results. Similarly, an additional 

classification stage on the bounding box predictions appears 

promising for future work. Such a classifier could differentiate 

between damage classes and reduce FPs by identifying healthy 

bridge areas, a particularly valuable feature given that concrete 

joints, dirt, and spider webs were frequently misclassified as 

exposed bars in this study. 

 

The results of the damage assessment step demonstrate the 

value of combining automated detection with targeted human 

supervision. Although the automated pipeline efficiently 

scanned thousands of images and generated numerous 

candidate damage nodes, human review proved effective for 

filtering FPs and refining the detections. This approach aligns 

with the EU AI Act's1 emphasis on maintaining human 

responsibility in critical decision-making processes. Notably, 

the entire review process required only 4.25 hours, indicating 

that an initial broad-scale automated screening followed by 

focused manual validation can be both efficient and sufficiently 

rigorous for practical bridge maintenance. However, the 

current study did not compare the results of the system to the 

latest conventional inspection report yet, which is an important 

 
1 European Commission. (2021, April 21). Proposal for a Regulation 

of the European Parliament and of the Council laying down 

extension for future investigations. This study also revealed 

opportunities to enhance the user interface. Future iterations 

should consider integrating a high-resolution 3D model to help 

identify damages that are difficult for the detection model to 

generalize, e.g. large spalling. Allowing users to add new 

annotations during the review process and enabling manual 

combination of damage nodes regardless their 3D location 

could further enhance the workflow and improve the final 

damage inventory. 

   

7. Conclusion 

This study presents an integrated UAS‐based bridge inspection 

pipeline that combines flight path planning, semi-automated 

flight execution, photogrammetric reconstruction, automated 

damage detection, and human- in-the-loop assessment. 

Demonstrated on the Merendreebrug near Ghent, Belgium, the 

system achieved a photogrammetric accuracy within 3.2 cm 

relative to TLS data and an RMSE of 0.67 m in flight path 

tracking under challenging underdeck conditions. Although 

optimizing for recall in damage detection led to a high rate of 

false positive predictions, subsequent spatial grouping and 

expert review enabled the rapid identification of critical defects 

within 4.25 hours. These results suggest that UAS-based 

methods can enhance the efficiency, safety, and quality of 

bridge inspections. 

 

While these findings are promising, they derive from a single 

case study and indicate the need for further testing across 

diverse bridge types and environments. Future work should 

focus on refining flight planning and hyperparameter settings, 

incorporating secondary classification techniques to further 

reduce false positive predictions, and exploring adaptive 

strategies to improve detection accuracy. Overall, this study 

contributes to ongoing efforts in civil engineering to leverage 

technology-driven approaches for infrastructure monitoring, 

highlighting the importance of integrating automated processes 

with expert oversight to achieve robust, actionable outcomes. 
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harmonised rules on Artificial Intelligence (Artificial Intelligence Act) 

and amending certain Union legislative acts 

Figure 11: Final damage assessment results. The images are cropped out directly from the bounding box predictions 

and illustrate various relevant bridge damage classes. 
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