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Abstract 

Extracting road information from Lidar point cloud data is crucial for autonomous vehicle navigation, urban planning, and infrastructure 
management applications. Lidar technology provides detailed 3D representations of environments, making it an effective tool for 
capturing road and terrain features. Traditional setups, where Lidar sensors are mounted on vehicles or drones, can be limited in complex 
environments like narrow streets or areas with dense vegetation. This research introduces a novel approach by mounting a Velodyne 
VLP-16 Lidar sensor on a bicycle, offering increased manoeuvrability in restricted areas and enabling data collection in places 
inaccessible to vehicles or drones. This bicycle-mounted setup is also cost-effective, providing high-resolution data without expensive 
equipment. The study presents a methodology that begins with ground point extraction, filtering out non-ground elements to isolate the 
road surface. Further, specialised algorithms were developed to accurately identify and extract road and sidewalk points from the filtered 
data, accommodating the varying elevations and textures typical of urban environments. The Lidar data was supplemented with RGB 
images collected simultaneously during data acquisition, providing additional context for validation. Comparison with ground truth data 
yielded an 85% to 90% accuracy rate, demonstrating the reliability of the approach in identifying road and sidewalk features. The results 
of this study have broad applications, particularly in urban planning and autonomous navigation systems. 

1. INTRODUCTION 

Lidar (Light Detection and Ranging) technology has become a 
cornerstone in spatial data collection, offering exceptional 
precision in creating high-resolution 3D models of various 
environments. Its applications span across fields such as urban 
planning, infrastructure management, autonomous vehicle 
navigation, and environmental monitoring. Accurately mapping 
and detecting road surfaces and sidewalks is critical for 
developing safe, efficient, and sustainable transportation 
systems. Recent advancements in Lidar technology have 
significantly enhanced the capacity to generate detailed 3D 
representations of both urban and non-urban environments. 
Traditionally, vehicle or drone-mounted Lidar systems have 
been the primary methods for large-scale data acquisition, 
especially in open terrains and metropolitan areas. However, 
these methods often encounter limitations in constrained or 
complex environments, such as narrow city streets or dense 
forests, where access is more challenging. 

Traditional vehicle-mounted LiDAR systems offer high 
accuracy and extensive coverage for urban road mapping but 
are often constrained by traffic regulations, limited accessibility 
in narrow streets, and high operational costs. Similarly, 
drone-based LiDAR provides excellent aerial perspectives for 
large-scale mapping but faces challenges such as short battery 
life, restricted flight zones, and high acquisition costs. 
Bicycle-mounted LiDAR presents a unique advantage by 
navigating narrow urban roads, pedestrian paths, and areas 
inaccessible to larger vehicles and drones. Unlike 
vehicle-mounted systems, which struggle in pedestrian-heavy 
zones and complex terrains, bicycles can collect detailed point 
clouds at lower altitudes with minimal obstructions. 
Additionally, this method is significantly more cost-effective 
due to its lower equipment and maintenance expenses than 
drones, which require frequent battery replacements and 
regulatory approvals. However, a key limitation of 
bicycle-mounted systems is their slower data acquisition rate 
compared to vehicle-based LiDAR. Unlike drones, which 
capture larger areas in a single flight, bicycles must traverse the 
entire study region, making data collection more time-intensive. 
Nevertheless, for applications requiring fine-grained urban road 
and sidewalk detection, this approach provides a compelling 
alternative with unique strengths in accessibility and 
affordability. 

2. LITERATURE REVIEW 

In recent years, Lidar technology has advanced beyond its 
traditional uses in topography and forestry, becoming a vital 
tool in urban planning, infrastructure monitoring, and 
environmental assessment. As noted by Shan and Toth (2018), 
Lidar’s capability to penetrate dense vegetation and provide 
highly accurate ground measurements has been transformative, 
especially in urban environments. This precision in capturing 
3D spatial data has revolutionised urban mapping, producing 
detailed models crucial for modern urban development. 
However, extracting road networks from Lidar data remains 
challenging in diverse environments. Urban areas often feature 
complex structures and dense vegetation that obscure road 
detection. Premebida et al. (2014) demonstrated the benefits of 
combining Lidar with RGB data to improve road detection in 
urban settings, but this approach still faces limitations in regions 
with dense canopy cover or narrow pathways. Haichi et al. 
(2022) highlighted the importance of advanced ground-filtering 
algorithms in effectively distinguishing ground from 
non-ground points, particularly in challenging terrains. 

Bicycle-mounted Lidar systems offer a novel solution for data 
collection, especially in environments where vehicle-mounted 
or drone-based systems may not be practical. These systems 
combine manoeuvrability with precision, making them ideal for 
capturing data in narrow streets, forest trails, and other complex 
terrains. Tokorodani (2019) demonstrated how a bicycle 
equipped with multilayer Lidar could generate high-resolution 
3D point clouds at a low cost. While this approach is 
cost-effective, the dynamic movement of the bicycle presents 
challenges related to data stability and quality. Zai et al. (2019) 
further refined these techniques by integrating sensors like RGB 
cameras and GPS to enhance accuracy and mitigate these 
challenges. 

Recent developments in Lidar-based road and sidewalk 
detection have led to significant improvements in urban 
infrastructure mapping, particularly for autonomous vehicles 
and urban planning. Huang et al. (2021) developed a real-time 
curb and lane detection system using Lidar point clouds, 
achieving high accuracy by leveraging geometric features, 
making it suitable for autonomous navigation. Similarly, 
Horváth et al. (2021) introduced a real-time system for 
efficiently segmenting road and sidewalk surfaces, improving 
vehicle navigation and safety. Ma et al. (2021) utilised 
PointNet++ with a two-step post-processing approach to extract 
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urban road footprints from airborne Lidar, providing a scalable 
solution for city-wide infrastructure monitoring. Ground 
filtering, essential in Lidar data processing, has also seen 
advancements, such as Zhang et al.’s (2016) Cloth Simulation 
Filter (CSF), which effectively distinguishes ground from 
non-ground points, and the experimental results yield an 
average total error of 4.58%, which is comparable with most of 
the state-of-the-art filtering algorithms. Hui et al. (2016) 
employed morphological and interpolation filters. Paigwar et al. 
(2021) introduced GndNet, a deep learning-based method for 
rapid ground classification, suitable for real-time applications 
like autonomous driving. These studies illustrate Lidar's 
growing role in precise, large-scale urban mapping. 

The increasing demand for flexible and adaptive Lidar data 
acquisition methods has led to the exploration of alternative 
systems. Bicycle-mounted Lidar offers a unique solution, 
combining the manoeuvrability of bicycles with the precision of 
Lidar technology to collect data in challenging environments 
such as narrow streets and forest trails. This paper aims to 
address the limitations of traditional Lidar data acquisition 
methods by introducing an innovative approach using a 
Velodyne VLP-16 Lidar sensor mounted on a bicycle. By 
leveraging the accessibility of bicycles in complex 
environments, this method offers a cost-effective and versatile 
alternative for Lidar data collection. The primary objective of 
this research is to accurately extract road and sidewalk features 
from Lidar data, with applications aimed at improving 
autonomous navigation, urban planning, and infrastructure 
management. 

3. EXPERIMENTAL SETUP AND DATA 
COLLECTION 

Figure 1 illustrates a specialised data collection setup mounted 
on a bicycle. This setup enables the capture of Lidar point cloud 
data and synchronised RGB video footage. This setup was 
designed to navigate the intricate road networks within the IIT 
Kanpur campus, providing a flexible and low-cost solution for 
urban road detection, especially in environments where 
conventional vehicle-based methods may be less practical. 

 

Figure 1. A specialised data collection setup mounted on a 
bicycle. 

 

Figure 2. The flow chart of the equipment setup showcases how 

the different components are integrated to enable seamless data 
collection during the study. 

The central component of this setup was the Velodyne VLP-16 
Lidar sensor. The VLP-16, a compact and lightweight Lidar 
unit, can produce high-resolution 3D point clouds with a 
360-degree horizontal field of view. The VLP-16 was directly 
connected to an APX-15 positioning and orientation system, 
which provided precise GNSS and inertial measurements. The 
APX-15 system integrates GNSS data with inertial 
measurements to deliver accurate position and orientation 
information, which is crucial for georeferencing the Lidar data. 
The integration of these two systems ensured that each point in 
the Lidar cloud was accurately tied to a real-world coordinate, 
even as the bicycle moved through the campus environment. 

To complement the Lidar data, an RGB camera was mounted 
alongside the VLP-16 sensor. The camera was configured to 
capture high-definition video footage, providing visual context 
that could be used to enhance the interpretation of the Lidar 
data. This setup ensured that each frame of video footage could 
be precisely matched with the corresponding Lidar data points. 
The camera settings, including exposure and focus, were 
adjusted using a mobile application, allowing for real-time 
optimization of image quality as the lighting conditions varied 
during the data collection process. The entire data collection 
process was managed by a portable processor, which was 
mounted on the bicycle alongside the other equipment. The 
portable processor handled the continuous data streams from the 
Lidar sensor, the APX-15 system, and the RGB camera. This 
processor ensured that all incoming data were synchronised and 
correctly stored, maintaining the integrity of the dataset. Before 
initiating the data collection, the portable processor was 
connected to the internet to log into a Network Time Protocol 
(NTP) server. This step was critical for synchronising the 
system clock with global time standards, ensuring that all data 
points were accurately time-stamped. This synchronisation was 
essential for post-processing, where precise timing is required to 
align the different data streams. Once the time synchronisation 
was completed, the internet connection was disabled, and the 
bicycle-mounted system began recording data. 

Figure 3 illustrates the route traversed by the bicycle within IIT 
Kanpur. The journey commenced from a marked red point on 
one side of the road, with the rider heading in the left direction 
and eventually returning to the starting point. The VLP-16 
LiDAR sensor continuously captured 3D point cloud data 
throughout the journey, while an RGB camera recorded video 
footage. All collected data were stored on a connected storage 
drive, resulting in a comprehensive dataset that integrated 
spatial, visual, and positional information. 

 

Figure 3. Route traversed by the bicycle within the IIT Kanpur 
campus.  
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The data collection process lasted approximately 25 minutes, 
covering a 5 km stretch of the IIT Kanpur campus. The VLP-16 
Lidar sensor captured around 12,780 frames during this ride, 
covering various road types and conditions to ensure a diverse 
and comprehensive dataset. The high frame rate of the VLP-16 
allowed for detailed 3D point cloud generation, capturing subtle 
variations in the road surface and surrounding environment. 
Simultaneously, the RGB camera recorded video, providing 
complementary visual data that enriched the dataset and enabled 
more robust analysis and feature extraction in subsequent 
processing stages. 

 

Figure 4. RGB image illustrating sidewalk on one side (image 
taken by the camera onboard the bicycle). 

 

Figure 5. RGB image illustrating sidewalk on both sides (image 
taken by the camera onboard the bicycle). 

Figure 4. and Figure 5. illustrate the RGB images of two 
different road types captured during data collection. In the first 
case, shown in Figure 4, a sidewalk is on one side of the road, 
specifically on the left. The RGB image captured during the 
video validates the key features analysed in this study: the 
sidewalk on the left is marked with a green line, the road in the 
centre is black, and the roadside area on the right is indicated in 
yellow. Blue markings represent areas where changes in angle 
were detected, helping to differentiate these key elements within 
the scene. In the second case, as shown in Figure 5, sidewalks 
are on both sides of the road, marked in green. 

 

(a) RGB image of a frame taken by the camera onboard the 
bicycle. 

 

(b) Front view of the VLP16 data frame with visible car 
features, barriers, and building features. 

       

       (c) Zoomed-in Top view           (d) Zoomed-in side view 

Figure 6. A detailed analysis of a single frame from the 
collected data. Panel (a) shows the RGB image captured by the 
camera, providing the visual context of the environment. Panel 
(b) presents a front view of the LiDAR data frame, highlighting 
features such as a car, barriers, and a building. Panel (c) offers a 
top view of the LiDAR point cloud, illustrating the spatial 
distribution and structure of the environment. Panel (d) provides 
a side zoomed-in view, allowing for a closer examination of 
specific elements within the point cloud, enhancing the 
understanding of the data's depth and detail. 

 

     (a)            (b) 

Figure 7. Sample dataset displaying (a) RGB images on the left 
and (b) the corresponding LiDAR point clouds on the right. A 
comparison between the LiDAR and RGB views highlights the 
identification of key features, including the ground surface, 
trees, and sidewalls. 

 

      (a)             (b) 

Figure 8. (a) RGB images on the left and (b) the corresponding 
LiDAR point clouds on the right, illustrating the transition from 
road to footpath as highlighted in the LiDAR point cloud. 

4. METHODOLOGY 

The workflow of this study is depicted in Figure 9. Road surface 
points are extracted from the raw LiDAR data using the Cloth 
Simulation Filtering (CSF) algorithm, with careful tuning and 
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manipulation of its parameters. For road and sidewalk detection, 
Principal Component Analysis (PCA) is applied at various 
stages, utilising the point cloud's x, y, and z coordinates. A 
threshold selection method is then employed to accurately 
identify the transition point between the road and the sidewalk. 

 

Figure 9. The workflow of road and sidewalk detection 
algorithm. 

4.1 Ground Filtering Method 

The Cloth Simulation Filter (CSF) is a ground filtering method 
used in LiDAR data processing. It is a simulation-based 
technique that employs a physics-based cloth simulation to 
classify LiDAR points as either ground or non-ground. The 
overview of the CSF algorithm is illustrated in Figure 10 as 
explained by Zhang et al. (2016). The Cloth Simulation Filter 
(CSF) method begins by inverting the original point cloud data, 
effectively turning the terrain upside down. Following this 
inversion, a virtual cloth is simulated as it "drops" onto the 
inverted surface from above. As the cloth descends, its nodes 
interact with the corresponding Lidar points. These interactions 
are influenced by factors such as the cloth's rigidity, resolution, 
and the time step of the simulation. As the cloth conforms to the 
contours of the inverted surface, it gradually settles into a shape 
that mirrors the underlying terrain. The final configuration of 
the cloth is then used as a reference to classify the original Lidar 
points. Points that lie on or near the surface of the cloth are 
categorised as ground points, while those that do not are 
classified as non-ground points. This method effectively 
distinguishes between terrain and above-ground objects, such as 
buildings or vegetation, enabling accurate ground surface 
extraction even in complex environments. The process is 
iterative, with multiple passes often required to refine the cloth's 
shape and achieve optimal classification accuracy. 

 

Figure 10. Overview of the CSF algorithm (Zhang et al. 2016). 

CSF has gained popularity for its adaptability to different 
terrains and its effectiveness in classifying ground points in 
various environmental conditions. In this section, we will delve 
into the details of the CSF method, explaining how it works and 
the key parameters involved. 

Cloth Resolution (CR) represents the horizontal distance 
between two neighbouring particles in the cloth grid, controlling 
the level of detail and accuracy in ground surface modelling. 
Mathematically, it can be expressed as 

                                                                   (1) 

where N is the total number of grid points and di is the distance 
between neighbouring particles. 

Time Step (Δt) controls the displacement of particles from 
gravity during each iteration, influencing how the cloth interacts 
with the inverted terrain surface. The iterative process to 
minimise the cloth's energy over time can be modelled as 

                                          (2) 

where X(t) is the position of a cloth particle at time (t), V(t) is 
the velocity of the cloth particle at time (t) and Δt is the time 
step (Δt). 

Rigidness (R) controls the resistance of the cloth to 
deformation, affecting its ability to conform to the terrain 
surface—higher rigidness results in less deformation. There is 
no direct formula, but it impacts the elasticity and flexibility of 
the cloth during the simulation. It is an integer that varies from 
1 to 3; 1 stands for very soft (to fit rugged terrain), 2 stands for 
medium, and 3 stands for hard cloth (for flat terrain). The steep 
slope fit factor (ST) is an optional parameter indicating whether 
post-processing is required to handle steep slopes. If activated, 
it ensures that the cloth accurately fits steep terrains. There is no 
direct formula, but it is a binary setting that triggers additional 
processing steps if set. When steep slopes exist, set this 
parameter to TRUE to reduce errors during post-processing. 

The Classification Threshold (CT) defines the distance used to 
differentiate ground points from non-ground points. It 
represents the scalar distance from the simulated cloth surface, 
with values ranging from 0 to 1. Through experimentation, the 
value between 0.1 and 1 was adjusted to obtain optimal 
classification results. The equation is as follows: 

              (3) 

where d is the distance from a LiDAR point to the cloth and CT 
is the classification threshold. 

The iteration process involves repeating the simulation multiple 
times to model the cloth's behavior until convergence is 
achieved. The default iteration count is set to 500. The equation 
governing this iterative process is as follows:  

                                                               (4) 

where Xi  represents the state of the cloth at iteration i and ΔX is 
the change in the cloth's position during each iteration. 

The filtering equation is used to classify points from a point 
cloud P as ground points based on their proximity to a simulated 
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cloth surface in the Cloth Simulation Filter (CSF) method. The 
overall equation is 

      (5) 

where p ∈ P  represents an individual point in the point cloud 
P, X(t) represents the position of the simulated cloth at time t. 
The cloth's position changes over time as it drapes over the 
inverted point cloud to simulate ground detection, 
min(∣p−X(t)∣): The minimum distance between the point p and 
the cloth X(t) over all possible positions of the cloth, CT 
(Classification Threshold) is a threshold value used to determine 
whether a point p is classified as a ground point. 

In the CSF methodology, the LiDAR dataset consists of a point 
cloud containing XYZ coordinates, where each point represents 
a snapshot of the environment, including roads, sidewalks, and 
other urban infrastructure. By applying the Cloth Simulation 
Filtering (CSF) to this raw dataset, the method identifies points 
that are classified as ground by measuring the minimum 
distance between each point p and the simulated cloth X(t). If 
the distance is less than or equal to the classification threshold 
(CT), the point is labelled as a ground point. This process filters 
the point cloud, removing all above-ground features such as 
buildings and trees, and leaving behind only the ground-level 
information, as illustrated in Figure 11. This filtered data 
provides a clean representation of the ground surface, crucial for 
road and sidewalk extraction in the further process. 

 
     (a)              (b)  

Figure 11. (a)  A raw data frame with environmental 
information, (b) Only ground point cloud after CSF.  

4.2 Road and Sidewalk Split Algorithm 

This study introduces a comprehensive methodology for 
extracting road and sidewalk features from LiDAR point cloud 
data by combining Principal Component Analysis (PCA) and 
angle-based thresholding. PCA is used for dimensionality 
reduction and calculating normal vectors, providing insights 
into the orientation of surfaces. Angle-based thresholding is 
then applied to detect transitions between surfaces, such as 
roads and sidewalks. This approach allows for precise 
segmentation and classification of roadways and adjacent 
structures, offering a detailed understanding of urban 
infrastructure. The method is highly applicable to autonomous 
navigation, urban planning, and infrastructure monitoring, 
where accurate road and sidewalk extraction is crucial. 

The input data consists of point cloud datasets containing only 
ground-level information after applying the Cloth Simulation 
Filtering (CSF), which removes all above-ground environmental 
details. Each file captures the 3D spatial coordinates collected 
by a LiDAR sensor, with every point comprising three 
components: x, y, and z. 

Let the point cloud data from each file be represented as: 

                   (6) 

where D is the set of n points, and pi  is a point in 3D space with 
coordinates xi, yi, zi .  

Principal component analysis (PCA) is applied to the point 
cloud data to determine the orientation of the road surface 
relative to the data collection direction. PCA is employed to 
reduce the dimensionality of the data while preserving the most 
significant variance. The covariance matrix Σ of the dataset is 
calculated: 

                                  (7) 

where pi  is the individual points and μ is the mean of the points.  

 

Figure 12. Presents a 2D plot of the LiDAR point cloud, 
illustrating the dataset divided into two segments—blue on the 
left and red on the right. The split occurs along a designated 
axis aligned with the road's primary direction.  

Each side of the point cloud (positive and negative) is further 
segmented into smaller patches, based on the transformed x-axis 
coordinates. The segmentation is performed with a pre-defined 
segment size Δs, creating a sequence of non-overlapping 
patches: 

                                 (9) 
These segments enable localised analysis of the point cloud data 
to account for variations in road surfaces and adjacent features. 
This granularity is necessary for detailed surface analysis and 
subsequent normal calculation. For each segment, PCA is 
applied again to calculate the normal vectors. The covariance 
matrix of the points in each segment is recalculated, and the 
normal vector n is determined by solving for the eigenvector 
corresponding to the smallest eigenvalue: 

                                                  (10) 

where λmin  represents the smallest eigenvalue, and n is the 
normal vector. This normal vector describes the orientation of 
the surface in 3D space, which is crucial for identifying road 
versus non-road surfaces. 

The normal vectors for each segment are compared to determine 
changes in surface orientation. The angle θ between two 
adjacent normal vectors n1  and n2  is calculated using the dot 
product formula: 

                                       (11) 

where n1 ⋅ n2  is the dot product of the normals, and ∥n1∥and 
∥n2∥ are the magnitudes of the vectors. A significant angle 
difference between adjacent normals typically indicates a 
transition between surfaces (e.g., road to sidewalk). 

An angle threshold detects transitions between road surfaces 
and other adjacent areas (such as sidewalks). If the calculated 
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angle θ between two segments exceeds the specified threshold 
θthreshold , a surface transition is identified: 

(12) 

This thresholding approach enables the classification of point 
cloud segments based on surface characteristics. 

Based on the identified transitions, the point cloud data is 
classified into distinct segments representing roads, sidewalks, 
and other features. The segments on either side of the identified 
transition points are labeled and saved accordingly. 

7.  RESULT AND DISCUSSION 

The results of this study demonstrate the effective use of a 
low-cost, bicycle-mounted LiDAR system in accurately 
identifying and classifying road and sidewalk features in an 
urban setting. The analysis covered approximately 5 kilometers 
of campus roads in one direction, with 1 kilometer featuring a 
sidewalk on only one side, while the remaining sections had 
sidewalks on both sides, mimicking a typical urban environment 
suitable for modeling future city planning. A total of 12,780 
frames were captured along this stretch, providing substantial 
data for analysis. The RGB images, LiDAR point clouds, and 
filtered ground points from Figures 9 and 10 illustrate the 
success of the proposed algorithm in distinguishing and 
segmenting key features within these varied urban road layouts, 
offering promising results for urban infrastructure mapping. 

 

(a) 

 

(b) 

 

(c) 

Figure 13. Illustrates the Sidewalk only on the Left.  

 

(a) 

 

(b) 

 

(c) 

Figure 14. Shows the example frames with Sidewalks on both 
ends.  

Figure 13 and Figure 14 illustrate the effectiveness of the 
proposed algorithm in segmenting road and sidewalk features. 
In each figure, (a) shows the RGB images, (b) displays the 
corresponding complete raw LiDAR point cloud, and (c) 
highlights the processed ground point cloud with road points in 
blue, sidewalk points in red, and remaining data in green. The 
segmentation results align well with the visual information from 
the RGB images, providing a qualitative validation of the 
algorithm's accuracy. 

From the results, the confusion matrix for the near-side (left) 
detection is explained in Table 1: 

 Predicted 
Road 

Predicted 
Sidewalk Precision Recall 

Actual 
Road 5775 (TP) 268 (FN) 

0.857 0.956 
Actual 

Sidewalk 962 (FP) 5775 (TN) 

Table 1: For the detection of road and sidewalk features on the 
near side (left) of the road, the results show that 5,775 frames 
are correctly identified as road (true positives), and 5,775 
frames are accurately classified as sidewalk (true negatives). 
However, in 962 frames, the point clouds are incorrectly 
classified as road (false positives), and in 268 frames, the point 
clouds are misclassified as sidewalk (false negatives). 

The confusion matrix for the far-side (left) detection is 
explained in Table 2: 

 Predicted 
Road 

Predicted 
Sidewalk Precision Recall 

Actual 
Road 5492 (TP) 556 (FN) 

0.816 0.908 
Actual 

Sidewalk 1240 (FP) 5492 (TN) 

Table 2: The algorithm yields comparable results for the 
detection on the right side. 5,492 frames are correctly identified 
as roads (true positives), and 5,492 frames are accurately 
classified as sidewalks (true negatives). However, 1,240 frames 
are incorrectly classified as roads (false positives), and 556 
frames are misclassified as sidewalks (false negatives). 
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    (a) 

 

    (b) 

Figure 15. (a) and (b) Illustrates the example result of False 
Positive and False Negative respectively. False positives, where 
sidewalk points were misclassified as roads, were primarily due 
to the smooth transition between road and sidewalk surfaces. 
Conversely, false negatives, where road points were incorrectly 
classified as sidewalks, were often caused by objects like cone 
dividers or passing pedestrians. These elements introduced 
additional point clouds that were not entirely filtered out by the 
CSF (Cloth Simulation Filtering) algorithm, leading to incorrect 
classifications. These factors significantly impacted the 
precision and recall rates, elaborated through the confusion 
matrix analysis above. 

These results highlight the robustness of the proposed algorithm 
in accurately identifying and segmenting road and sidewalk 
features using a lightweight, portable data collection system. 
Integrating LiDAR and RGB imagery enhances the system's 
capability to interpret and classify spatial data. RGB imagery 
provides valuable visual validation alongside the precise 3D 
measurements from the LiDAR point clouds. Despite certain 
challenges, such as smooth transitions between road and 
sidewalk or the presence of temporary obstacles like cone 
dividers and pedestrians, the algorithm’s ability to handle these 
environments demonstrates its practical value. The 
methodology effectively reorients the coordinate system on the 
fly. It determines road boundaries and sidewalks using passive 
data collection, underscoring its potential for applications in 
autonomous vehicle navigation, urban planning, and smart city 
infrastructure development.  

5. CONCLUSION AND FUTURE WORK 

This research successfully demonstrates the potential of a 
low-cost, bicycle-mounted Lidar system for accurately detecting 
and classifying road and sidewalk features in urban 
environments. Combining Lidar point clouds with RGB 
imagery offers a practical and adaptable solution to urban 
mapping, overcoming the limitations of traditional vehicle- or 
drone-mounted sensors in constrained or densely vegetated 
areas. The Velodyne VLP-16 sensor, mounted on a bicycle, 
provides a cost-effective method to capture high-resolution 3D 
data. The developed algorithm, tested over a 5-kilometer stretch 
of campus roads, accurately segmented roads and sidewalks, 
achieving more than 90% accuracy on the left side and around 
85% on the right side, when validated with RGB imagery. This 
highlights its effectiveness for various urban applications, from 
autonomous navigation to infrastructure management. 

While the system performed with high accuracy, challenges 
such as false positives and false negatives were encountered. 
These issues were primarily due to smooth transitions between 
road and sidewalk surfaces and obstacles like pedestrians and 
traffic cones, which introduced noise that the CSF algorithm 
could not fully eliminate. Despite these challenges, the 
algorithm maintained strong precision and recall, showcasing its 
robustness for urban infrastructure mapping. Although the RGB 

imagery was used solely for validating the Lidar-based 
predictions, the integration of multimodal sensing proved 
essential in enhancing classification accuracy. Future work 
could explore sensor fusion strategies for road asset 
identification, moving beyond validation to improve detection 
capabilities in applications like autonomous vehicle navigation, 
smart city planning, and urban infrastructure management. 

Future work will focus on refining the ground filtering and 
segmentation algorithms to enhance road and sidewalk 
boundary detection. Additionally, we plan to extend data 
collection to narrow roads and other challenging urban settings 
to evaluate the system’s adaptability in constrained 
environments. Another key aspect for future research is a more 
in-depth discussion of the applicability and limitations of the 
developed algorithms, particularly their generalizability across 
diverse urban landscapes. Furthermore, a comprehensive 
cost-effectiveness analysis will be conducted, addressing not 
only the initial setup expenses but also the long-term 
operational and maintenance costs associated with a 
bicycle-mounted LiDAR system. Expanding the system for 
city-wide deployments could enable continuous, real-time road 
and sidewalk data collection, supporting dynamic traffic 
management, pedestrian safety, and efficient urban 
planning—positioning it as a valuable tool for next-generation 
urban infrastructure solutions. 
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