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Abstract: 
 
The visual access to urban green spaces through window views plays a key role in increasing well-being, particularly for those with 
limited mobility. This study verifies a window view simulation engine around the Green Window View Index (GWVI) that combines 
open source approaches with open geospatial data. Using a pretrained DeepLab V3+ model on Cityscapes data set for semantic 
segmentation, the study compares the accuracy of simulated window views to photorealistic semantic segmentations. A total of 40 
window views were examined, with 0.1 m and 2.0 m distance to the window. The validation metrics consist of overall accuracy 
(OAcc), mean accuracy (mAcc), mean intersection over union (mIoU), and individual IoU values for vegetation, sky, and buildings. 
The statistics show an mIoU of 0.53, with class-specific IoU values of 0.52 for vegetation, 0.64 for the sky, and 0.43 for buildings, 
an OAcc of 0.68, and an mAcc of 0.74. The approach has a low variance in visibility values, with a minor underestimating of 
vegetation (-6%), and an overestimation of sky (+5%) and buildings (+3%). These findings indicate that the simulation engine 
performs well, outlining its potential for analyzing window views in a variety of urban scenarios. Future large-scale crowdsourcing 
experiments are recommended to statistically support these findings. 
 
 

1. Introduction 

Window views are often the only way to access urban green 
spaces for vulnerable populations with a limited radius of 
movement (Pijpers and van Melik, 2020). In light of the spatial 
consequences of increasing climate disasters, such as heat 
waves, or pandemics, including Covid-19, this access 
alternative is becoming increasingly important for sustainable 
and resilient open space planning (Amerio et al., 2020; Basu et 
al., 2024; Haaland and Konijnendijk van den Bosch, 2015). The 
positive effects of green window views on urban dwellers 
regarding health, cognitive abilities, and social well-being have 
been demonstrated in numerous studies. In addition, empirical 
evidence has shown that these views can enhance life 
satisfaction and increase property values (Bolte et al., 2025; 
Meng and Wang, 2024). Existing methodologies for automated 
quantification and analysis of window views employ machine 
learning image segmentation techniques grounded in advanced 
photorealistic city information models (CIM) or big data 
(Swietek and Zumwald, 2023; Li et al., 2022; 2024; Peng et al., 
2025). These data bases facilitate a robust approach for 
evaluating window views; however, they are primarily available 
for urban areas characterized by high density and high-rise 
buildings (Li et al., 2022; 2024; Peng et al., 2025). 
 
In order to capture a range of urban morphologies with diverse 
densities and degrees of sealing, the approach of the Green 
Window View Index (Bolte et al., 2024a) uses official digital 
geospatial data, such as the official German cadastral 
information system (ALKIS), semantically segmented 3D city 
models CityGML, LiDAR point clouds, and Sentinel-2 
landcover data, which are continuously transmitted and 
harmonized by the public sector for national, regional, and 

municipal planning processes (BKG, 2024). The three-steps 
visibility analysis has been applied in several municipal case 
studies. The analysis of numerous million window views from 
various urban structure types provided conclusions for urban 
green space planning in residential environments (Bolte et al., 
2024b; 2025).  
 
The aim of this paper is to verify the reliability of the window 
view simulation engine to ensure the validity of the previous 
analyses. For this purpose, a comparison of simulated window 
views with semantically segmented photorealistic window 
views as ground truth is performed to address the following 
questions: 
 

1. How high is the overall accuracy of the simulated 
window views? 

2. How high is the mean accuracy of visible classes in 
the simulated window views? 

3. How high is the intersection over union of individual 
visible classes in the simulated window views? 

4. How high is the mean intersection over union of all 
visible classes in the simulated window views? 

5. How high is the visibility of individual visible classes 
in the simulated window views? 
 

First, the present article defines the validation workflow, 
including the window view simulation, the creation of the 
photorealistic ground truth data, and the definitions of the 
validation metrics. The results are subsequently presented 
regarding the quality of the intersection and visibility values. 
The validation results are then interpreted with existing CIM 
and machine learning methodologies and are critically 
discussed. Finally, a conclusion of the results is presented. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-219-2025 | © Author(s) 2025. CC BY 4.0 License.

 
219



 

2. Methodology 

The validation workflow is divided into three steps (refer to 
Figure 1). The first step involves simulating individual window 
views using the simulation engine. The second step involves 
creating semantically segmented photorealistic ground truth 
data and subsequently evaluating the window views using 
validation metrics.  

 
Figure 1. Validation workflow of window view simulation 

engine, the example window view shown on the right sight was 
taken at a distance of 0.1 m to the window. 

 
2.1 Simulating window views 

In order to generate simulated window views including visible 
vegetation, sky, and buildings, the initial step involves 
modeling the built-up and greened urban morphology, including 
the following elements: topography, property boundaries, 
buildings, as well as flat and tall vegetation. The official 
German cadastral information system (ALKIS), segmented 3D 
city models (CityGML) with level of detail (LoD) 2, LiDAR 
point clouds, and Sentinel-2 landcover data were applied in this 
process. Tall vegetation was derived by a classification and 
clustering process using Support-Vector-Machine (SVM) and 
K-Means, flat vegetation was modelled by using Normalized 
Difference Vegetation Index (NDVI). Q-GIS 3.34.3 and 

CloudCompare v2.13.beta were used for this process. (Bolte et 
al., 2024b; 2025)  
 
The present case study was limited to the street front of an 
institute building in the University of Bonn, Germany. The 
building was constructed between 1906 and 1907 and is 
characterized by features typical of the Neo-Renaissance style. 
However, the CityGML dataset with LoD 2 lacks sufficient 
information regarding window positioning and dimension. To 
address this limitation, we used an existing exterior surveying of 
the building, which was initially conducted for the purpose of 
window modernization. This approach allowed us to consider 
the position and dimensions of five single-sash box-type 
windows on the basement floor, six three-sash box-type 
windows on the first floor, and six double single-sash box-type 
windows on the second floor (refer to Figure 2). 
 

 
Figure 2. Street front of investigated building including 17 

considered box-type windows in the basement, first, and second 
floor. 

 
The window view simulation is based on OpenGL, is developed 
in C++ and included the following parameters for a distance of 
0.1 m to the window: a vertical field of view of 100°, an aspect 
ratio of 1.45, and a maximum view distance of 5,000 m (Bolte 
et al., 2024b; 2025). At a distance of 2.0 m to the window, 
parameters in Table 1 were implemented based on the exterior 
surveying of the building. 
 

Parameters Basement floor 1st floor 2nd floor 

Window size 1.4 m x 1.58 m  1.88 m x 
2.44 m 

1.84 m x 
2.44 m 

Vertical field 
of view 43.1° 62.8° 62.8° 

Aspect ratio 0.89 0.77 0.75 

Max. view 
distance 5,000 m 5,000 m 5,000 m 

Table 1. Simulation parameters at a window distance of 2.0 m. 
 

A total of 40 window views (17 views at 2.0 m distance to the 
window and 23 views at 0.1 m distance to the window were 
simulated. The labels in the window simulations were colored 
as follows: vegetation (green), sky (blue), buildings (dark grey), 
and streets (light grey). The simulation was carried out on a 64-
bit operating system, WLS Ubuntu 20.04.6 LTS WLS on 
Windows 11 Pro including a 12th generation Intel® Core™ i9-
12900K CPU/3.20 GHz, a NVIDIA RTX A4500 graphics card, 
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and a 128 GB SSD. The average running time was 0.05 s per 
window. (Bolte et al., 2024a) 
 
2.2 Segmenting photorealistic window views as ground 
truth 

Ground truth data was taken by using a camera equipped with 
an SLR lens, which was mounted on a tripod (refer to Figure 1 
for technical details). The camera was directed at the center of 
the windows, at a distance of 0.1 m and 2.0 m from the window 
surface. 
 
The images were semantically segmented using a pretrained 
DeepLab V3+ model on the Cityscapes dataset including the 
following technical details: backbone = resnet 101, batch size = 
16, FLOPs = N/A, train/val OS = 16/16. The mIoU was 0.762. 
Python ver. 3.11 including pytorch 0.3.4 was utilized for this 
process. Defined labels were based on Cityscapes and were 
summarized as described in Table 2 (Cordts et al., 2016; Chen 
et al., 2018; Fang, 2020). 
 

Considered labels Cityscapes labels Colors 

Streets Road, sideroad  Light grey 

Buildings Building, wall, fence Dark grey 

Objects Pole, traffic light, 
traffic sign Grey blue 

Vegetation Vegetation, terrain Green 

Sky Sky Blue 

Humans Person, rider Red 

Vehicles Car, truck, bus, train, 
motorcycle, bicycle Yellow 

Table 2. Defined labels for semantic segmentation process. 
 
As shown by Li et al. (2024) and Peng et al. (2025), the use of 
DeepLab V3+ based on outdoor Cityscapes datasets can result 
in segmentation inaccuracies of indoor window views. In 
particular, we observed incorrect segmentation of window 
frames, which would have resulted in the falsification of the 
validation of the entire window views. To address this issue, a 
mask was manually created for each window type to represent 
the corresponding window frame. These masks were then 
overlaid on the simulation and segmentation results, focusing 
the validation on the labeled window view content for views at 
a window distance of 2.0 m. GIMP 2.10.32 (Revision 1) was 
used in this process (refer to Figure 4, masked simulation and 
segmentation). 
 
2.3 Validation metrics 

The validation was finally conducted by assessing the overall 
accuracy (OAcc), mean accuracy (mAcc), mean intersection 
over union (mIoU), and individual intersection over union 
(IoU) values to visible vegetation, sky, and building. 
Furthermore, the proportion of visible vegetation, sky, and 
building within the window view for 0.1 m and 2.0 m distance 
to the window was quantified and compared based on the 
conducted simulation and the photorealistic image segmentation 
results (refer to Table 3, Bolte et al., 2024a; Li et al., 2022; 
2024). 
 

 
Table 3. Metrics considered for validation process. 

 
3. Results 

3.1 Visual comparison of window view simulation and 
photorealistic semantic window view segmentation 

While a preliminary visual assessment indicates a promising 
simulation outcome, a more detailed examination uncovers 
discrepancies that explain the results of the metric validation 
(refer to subsections 3.2 and 3.3).  
 
Primarily, the segmentation results show a more detailed 
representation and differentiation of the labels. For instance, the 
segmented window views differentiate vehicles, objects, and 
humans, in addition to vegetation, buildings, streets, and the 
sky. However, these labels are segmented incorrectly in certain 
areas (refer to Figure 3, basement floor, segmentation and 
Figure 4, basement floor, masked segmentation). Furthermore, 
additional segmentation errors are visible in the label “sky” 
(refer to Figure 3, second floor, segmentation and Figure 4, first 
and second floor, masked segmentation, respectively).  

 
Figure 3. Exemplary comparison of window view simulation to 

photorealistic semantic segmentation of Deeplab V3+ 
pretrained on Cityscapes at a window distance of 0.1 m. 

 
In comparison, the simulation results demonstrate a reduction in 
the visual complexity of building structures, such as walls or 
fences, due to the generalizations inherent in the modeling of 
urban morphology (refer to subsection 2.1). Additionally, an 
incomplete rendering of vegetation structures, such as shrubs 
and vegetated tree grates or phenological characteristics, such as 
foliage on the street can be identified (refer to Figure 3, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-219-2025 | © Author(s) 2025. CC BY 4.0 License.

 
221



 

basement, first, and second floor, simulation, respectively as 
well as Figure 4, first and second floor, masked simulation, 
respectively). The simulation of tree crowns demonstrates a 
high degree of accuracy; however, disparities can be identified 
due to the exclusion of vegetation growth periods from the 
simulation process (refer to subsection 2.1 and Figure 3, 
basement floor, simulation, tree in the middle and first floor, 
simulation, right tree). 

 
Figure 4. Exemplary comparison of masked window view 

simulation to masked photorealistic semantic segmentation of 
Deeplab V3+ pretrained on Cityscapes at a window distance of 

2.0 m. 
 
3.2 Intersection quality of window view simulation 

As the visual comparison suggests, the metric values show a 
wide variety of overlap results depending on the height and 
position of the windows. (refer to Table 4 and 5).  
 

Table 4. Overall validation metrics and per-class IoU for 
window views at a window distance of 0.1 m. 

 

Table 5. Overall validation metrics and per-class IoU for 
window views at a window distance of 2.0 m. 

 
The IoU for vegetation is 0.52. Sky reaches an IoU of 0.64 and 
the IoU of buildings is 0.43. The mIoU value is 0.53 and the 
mAcc reaches 0.74, indicating good class accuracy. The OAcc 
reaches a value of 0.68  
 
3.3 Visibility values of window view simulation 

The deviations of the visible labels based on the window view 
simulation and the semantic segmentation are low on average. 
However, they vary depending on the height and position of the 
windows (refer to Table 6 and 7).  
 

Floors WVI-Diffveg WVI-Diffsky WVI-Diffbuil 
Basement 
floor -0.05 0.05 0.08 

First 
floor -0.07 0.09 0.05 

Second 
floor -0.18 0.07 0.08 

Table 6. Per-class visibility validation for window views at a 
window distance of 0.1 m. 

 
Floors WVI-Diffveg WVI-Diffsky WVI-Diffbuil 
Basement 
floor 0.06 0.08 -0.01 

First 
floor 0.01 0.01 -0.08 

Second 
floor 0.02 -0.01 -0.01 

Table 7. Per-class visibility validation for window views at a 
window distance of 2.0 m. 

 
On average, there is an underestimation of vegetation (-6%), 
while the sky (+5%) and the building (+3%) are overestimated. 
 

4. Discussion 

4.1 Interpretation of validation outcomes 

In their study, Li et al. (2024) compared the performance of a 
CIM window view (CIM-WV) with Cityscapes dataset based on 
a 7-class semantic segmentation using DeepLab V3+ (backbone 

Floors OAcc mAcc mIoU IoUveg IoUsky IoUbuil 
Basement 
floor 0.64 0.69 0.45 0.47 0.52 0.36 

First 

floor 0.67 0.74 0.47 0.47 0.52 0.42 

Second 
floor 0.77 0.82 0.62 0.58 0.70 0.59 

Floors OAcc mAcc mIoU IoUveg IoUsky IoUbuil 
Basement 
floor 0.53 0.67 0.28 0.32 0.18 0.32 

First 

floor 0.57 0.63 0.53 0.50 0.87 0.23 

Second 
floor 0.78 0.78 0.64 0.63 0.83 0.46 
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= Xception, OS = 16, trained on ImageNet) (Li et al., 2024). In 
this study, the model trained on CIM-WV achieved an OAcc of 
97.60%, an mAcc of 91.48%, and an mIoU of 76.78%. The per-
class IoU values were also high, with an IoU of 85.23% for 
vegetation, 98.67% for sky, and 97.49% for buildings. In 
contrast, the model trained on Cityscapes achieved 
comparatively low overall metrics with OAcc of 59.18%, mAcc 
of 50.98%, and mIoU of 34.14%. The IoU of vegetation 
reached 40.90% (compared to 52% in our validation) and the 
IoU of sky was 94.25% (64%). Buildings reached an IoU of 
53.43% (43%). Factors that contributed to the observed 
discrepancies included the use of different viewpoints of the 
datasets, namely the window and street perspectives, which led 
to inaccuracies in the segmentation process. (Li et al., 2024) 
 
A recent study by Peng et al. (2025) examined 11 classes in 
approximately 10,000 window views of an online platform that 
offers virtual 3D indoor apartment tours. SegNeXt was used, 
which achieves better results than DeepLab V3+ when trained 
on Cityscapes datasets. By including data augmentation, the 
model achieved an mAcc of 86.33% and an mIoU of 78.71%. 
Results based on raw data achieved an mAcc of 68.72% and an 
mIoU of 59.17%. (Peng et al., 2025) 
 
Due to the limited number of studies that have analyzed and 
evaluated automatic window view techniques using semantic 
segmentation a comprehensive comparison with our results is 
not possible. It should also be noted that our results are based 
on a pretrained segmentation model. Therefore, a clear 
comparison with existing methods is limited. However, the 
validation process yielded encouraging results, indicating the 
potential of the simulation engine to generate window views for 
various window sizes and distances to the window. 
 
4.2 Limitations 

The present validation serves to verify and demonstrate the 
feasibility of a window view simulation engine combining open 
source approaches with open geospatial data. Despite promising 
results, it is evident that the spatial and temporal resolution of 
the open datasets leads to a limited level of detail in the 
simulated window views. This results in a lack of detail in the 
built and unbuilt urban morphology (walls, street signs, 
vehicles) and limited representation of phenological features, 
small 3D green structures, and vegetation growth rates (Bolte et 
al., 2019). To address these limitations, it is recommended to 
use vegetation models that are robust for modeling urban 
vegetation structures (Münzinger et al., 2022). In addition, more 
detailed 3D modeling of built-up urban morphology and street 
canyons based on airborne, terrestrial or mobile laser scanning 
surveys should be considered. However, these are 
comparatively time-consuming, labor-intensive, and expensive 
for large-scale, city-wide analyses. (Yu et al., 2024) 
 
Due to the limited accessibility of indoor areas for documenting 
window views, this validation was conducted on a limited 
number of 40 windows. Consequently, the findings are not 
universally applicable to buildings with a different purposes or 
urban density values. It is recommended that a large-scale study 
be performed using crowdsourcing methods, including the use 
of mobile phone applications or questionnaires, to obtain a 
significant number of classified window views for ground truth 
(Bolte et al., 2023; 2025). 
 

5. Conclusion 

A window view simulation engine around the GWVI that 
incorporates open source techniques and open geospatial data 
was validated, resulting in an mIoU of 0.53 and an OAcc of 
0.68, indicating a promising degree of accuracy. The simulation 
effectively captures the urban morphology, yet it overestimates 
the sky and buildings while underestimating vegetation. The 
simulation engine demonstrates considerable potential for 
extensive urban green space evaluations. Future investigations 
should employ crowdsourcing techniques and higher-resolution 
datasets to enhance validation. 
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