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Abstract 

Perceptual analysis is the current benchmark standard used by speech-language pathologists in diagnosing speech sound disorders 

(SSDs). Yet, related research indicates access to objective measures could improve the assessment process. Recent technological 

advances have contributed to developing AI-based methods to provide clinicians access to objective measures for speech-motor control 

by calculating inter-landmark distances of anatomically relevant facial landmarks. However, landmarks placed by AI-based methods 

extract the landmarks’ coordinates without associated uncertainties. Consequently, inter-landmark distances extracted as objective 

measurements also lack uncertainty information, potentially compromising their suitability for assessment purposes. In contrast, 

photogrammetry can predict facial inter-landmark distances and their uncertainties through intersection and variance propagation. In 

this paper, we use a combination of the markerless BlazeFace algorithm and photogrammetry to examine how different weightings of 

the image observations, introduced for the photogrammetric intersection, impact the assessment of whether the calculated inter-

landmark distances significantly change during the production of spoken words. We selected 16 inter-landmark distances to assess jaw 

movement. We analysed the movements of five children saying 10 words. Overall, four different weightings and two different camera 

setups were tested. Setup 1 used 2 cameras, and setup 2 used 3 cameras. The weightings based on comparing the BlazeFace landmarks 

to a reference were too large when applied to setup 1. They did not allow the reliable determination of inter-landmark distance changes 

as predicted by current literature depending on the camera setup used. Smaller weights were able to be statistically tested for jaw 

movements correctly. For setup 2, all weights could detect inter-landmark distances reliably.  

 

 

1. Introduction 

Speech sound disorders (SSDs) are a prevalent communication 

difficulty in young children, affecting speech intelligibility, with 

potentially lifelong consequences. Clinical assessment is 

required to establish a diagnosis and facilitate timely access to 

targeted intervention (Daniel & McLeod, 2017). Related research 

indicates access to objective measures could support the 

assessment process (Murray et al., 2021). However, speech-

language pathologists currently have limited access to objective 

measures of speech-motor control (Rebernik et al., 2021). This 

paper focuses on objective measures of jaw movement and 

control assessed using the inter-landmark distances of 

anatomically relevant facial landmarks. 

Recent technological advances have contributed to the 

development of Machine Learning (ML) methods that provide 

clinicians with access to objective measures. The workflow to 

attain a set of anatomical facial landmarks can be manual 

(physical markers placed on the face) (Deli et al., 2010), semi-

automatic (digitisation) (Aynechi et al., 2011), or automated 

(prediction by an algorithm) (Bandini et al., 2017; Berends et al., 

2024). Markerless approaches allow for greater practical 

implementation in clinical practice, and these are the focus of this 

paper.  

To date, several markerless tracking systems for speech have 

been reported in the literature. For example, Bandini et al. (2017) 

used a video-based system to quantify jaw movements by 

measuring Euclidean distances from the nose tip to landmarks on 

the right and left jawline. The overall accuracy of jaw tracking 

was approximately 2 mm, which was considered acceptable. 

However, accuracy decreased during faster movements, 

highlighting a limitation of the workflow. Mogren et al., (2022) 

compared movement patterns of the lips and jaw in lateral, 

vertical and anteroposterior directions, determining their range of 

motion using the SmartEye Pro tracking system but no 

information related to the geometric accuracy of the detected 

motion was reported. The SMAAT (Speech Movement and 

Acoustic Analysis Tracking, www.smaat.org) assessment tool 

provides clinically relevant objective measures of jaw and lip 

movements to assist speech-language pathologists in assessing 

speech motor control (Palmer et al., 2024). The SMAAT 

workflow utilises the convolutional neural network (CNN) based 

BlazeFace algorithm (Bazarevskyet et al., 2019) to detect the 3D 

coordinates of a 478-point facial mesh from single 2D images of 

human faces. The BlazeFace algorithm was trained using 2D 

images together with their associated 3D facial models to learn 

how to fit the facial mesh onto a face detected within a single 2D 

image, thus enabling it to estimate the 3D spatial coordinates of 

each point including depth.  

The accuracy of marker placement using these methods can be 

evaluated against an independent reference. For instance, 

Aynechi et al. (2011) compared traditional anthropometric 

measurements (calliper measurement) with the 3dMD 

stereophotogrammetric camera system. Differences were 

observed in measurements involving ears and soft tissue 

landmarks without distinct edges. The accuracy of the 3dMD-

derived distances was reported to be < 2mm. Palmer et al. (2020) 

performed a similar comparison, using 3D facial images captured 

by both the 3dMD and the VectraH1 stereophotogrammetric 

camera systems. The measurements were again compared to 

traditional anthropometric measurements (acquired using calliper 

and measuring tape) performed by clinicians and non-experts. 

Most reported differences were in the sub-mm range, however, 

the results showed that measuring bias can be introduced 

depending on the method of measurement used. Hence, reported 
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accuracies, such as in Aynechi et al. (2011) could be argued as a 

systematic error in performing the measurements but not a clear 

indicator of the accuracy of the photogrammetric method 

compared to traditional anthropometric measurements (such as 

calliper measurements).  Another limitation of this analysis is that 

only still images (single frames) can be analysed. 

Many ML-based methods provide the extracted landmarks’ 

coordinates only without their associated uncertainties. 

Consequently, the inter-landmark distance measurements that are 

derived from these landmarks, such as might be used in the 

assessment of jaw movement, can suffer from large error bounds 

degrading their utility for assessment purposes. 

Photogrammetry uses the image observation of facial landmarks 

from multiple stationary cameras to predict their 3D coordinates 

and uncertainties through intersection and variance propagation. 

Consequently, the uncertainties of the image observations can be 

propagated to the 3D intersected facial landmarks and, hence, to 

any derived inter-landmark distances. Statistical methods can 

then be applied to evaluate how significantly the inter-landmark 

distances change. This approach builds on the advantage of 

markerless facial landmark detection with photogrammetry and 

least squares adjustment (LSA) to estimate placement 

uncertainties. 

In this paper, we used a combination of the markerless BlazeFace 

algorithm and photogrammetry. BlazeFace was used to infer the 

positions of eight clinically relevant facial landmarks used for 

tracking jaw movement in video frames and generate the image 

observations of these landmarks. Five landmarks were located on 

the jaw (Bandini et al., 2017; Mogren et al., 2022), three 

landmarks were located on the upper facial region (Palmer et al., 

2024). Photogrammetric intersection was used to derive head-

centred 3D coordinates of these eight facial landmarks. Next, 

sixteen clinically relevant inter-landmark distances across ten 

words were calculated, and their uncertainty propagated from the 

results of the photogrammetric intersection. The selected inter-

landmark distances were not independent and follow similar 

approaches in other related studies, such as Bandini et al. (2017), 

Mogren et al. (2022) and Palmer et al. (2024). Chi-square tests at 

the 5% significance level were used to detect significant changes 

in the inter-landmark distances per word per participant. 

In this paper we show how different weightings applied to the 

image observations and network designs used for the 

photogrammetric intersection influence the significance of 

change in the calculated inter-landmark distances. We first 

assumed that the landmarks less susceptible to soft tissue 

deformation and skin tissue artifacts would remain stable. 

Secondly, based on established literature, we assumed the upper 

facial region would not be directly associated with the speech 

tasks (Sarhan et al., 2023), and therefore also likely to remain 

stable across all conditions (for each word, for each participant 

and each weighting).  

The paper is organised as follows. Background to this work is 

provided in Section 2. Section 3 outlines the theories and 

methodologies used. Section 4 reports on the experiments 

performed. Section 5 details the results, and finally, Section 6 

concludes the paper.   

 

 

2. Background 

In surveying, it is well established that any observation contains 

errors. Systematic errors are usually modelled and corrected for, 

and gross errors are usually eliminated. Only random errors can 

be adjusted in the LSA. Random errors are characterised by their 

probability density function, usually assumed to be Gaussian. 

Their behaviour is quantified by the mean, assumed to be zero, 

and the variance 𝜎2. The covariance matrix 𝐂𝒍 contains the 

variance 𝜎2. If all observations have the same precision, 𝜎2, then 

𝐂𝒍is a scalar matrix  

𝐂𝒍= 𝜎2 ∙ 𝐈 .      (1) 

A cofactor is related to variance and co-variance by the variance 

factor σ0
2  with 𝑞𝑖𝑖 =

𝜎𝑖
2

𝜎0
2 leading to the co-factor matrix using 

𝐐𝒍 =
1

𝜎0
2 ∙ 𝐂𝒍      (2) 

and consequently the weight matrix 𝐏 which is the inverse of the 

co-factor matrix with 

𝐏 = 𝐐𝒍
−𝟏 = 

1

𝜎2
𝐂𝒍

−𝟏.    (3) 

The cofactor matrix of the parameters 𝐐𝒙 is a by-product of the 

parameter calculations using LSA and is defined as  

𝐐𝒙  =  (𝐀𝑻𝐏𝐀)−1.     (4) 

The challenge is that the variance factor σ0
2 and the best 

approximation of the observation variances 𝜎2, are not known a 

priori and their magnitudes are often only vaguely understood. 

Furthermore, the design matrix 𝐀 which depends on the network 

design also impacts 𝐐𝒙. In summary, the three possibilities for 

influencing 𝐐𝒙 are: 

1. The variance factor σ0
2 can be controlled by the selection of 

the instruments and the repetition number of multiple 

observations. 

2. The matrix 𝐀 depends on the network's geometry, i.e., the 

relative position of the images connecting to the object 

points to the observations. 

3. The weight matrix 𝐏 contains the a priori weightings, 

which are functions of the type of the observables and the 

relative precision.  
 

The 𝐐𝒙 matrix impacts statistical testing for detecting significant 

changes between points over multiple epochs. This is also true 

for LSA applied in Photogrammetry.  

 

2.1 Variance Factor 

The variance factor σ0
2 is often seen only as a suitable scalar value 

for the weight matrix and is a global measure of the variance of 

image coordinate measurements. In photogrammetry, the 

variance of the image observation of manual point picking is well 

established and can be seen as prior knowledge, such as applied 

in (Fraser, 1984). Other methods are manual assessment of the 

variance of image coordinate measurements (e.g. used in Barone 

et al., 2020) or knowledge of the precision of the method used, 

such as image matching (e.g. used in Fraser, 2000).  

The challenge is that the BlazeFace (Bazarevskyet et al., 2019) 

algorithm which is used to extract the image observations in our 

research is deterministic. This means that the same input will 

always result in the same output. Hence, selecting the variance 

factor by repeating multiple observations (i.e., reusing the same 

input) is inappropriate.  

 

2.2 Network Design 

Several papers have been published analysing the network design 

of close-range photogrammetry approaches, including Fraser 

(1984). The network design aspect of our research was 
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investigated by Boyle et al., 2024. For this publication, two 

network designs have been applied. The first design was 

investigated by Boyle et al., 2024, and the second design is a 

slight adaptation of the first to account for constraints during data 

capture. Details are provided in section 3.  

 

2.3 Weight matrix 

In their work on the network design considerations for non-

topographic photogrammetry, Fraser (1984) states that the 

solution to the weight problem (estimation of the observation 

variances) is not straightforward. In their paper, equal weighting 

in the form of a scalar matrix is used. In subsequent papers, the 

variance of image observation is based on the precisions 

achievable through image-matching approaches of 0.3 – 0.5 

pixels (Fraser, 2000). In other work, the variance is estimated by 

manually assessing the confidence region (Barone et al., 2020).  

 

2.4 Conclusion  

None of the above mentioned methods can be used when using 

an ML-based approach to extract clinically significant landmarks 

in single images due to the lack of uncertainty measures provided 

by the ML-based method. Instead, studies focus on the accuracy 

of the 3D facial landmarks compared to a reference, such as 

images captured with the Vectra H1 camera (Palmer et al., 2020). 

In contrast to previous studies, we use this information not for the 

accuracy assessment of a single frame image in object space but 

to project the 3D Vectra coordinates of facial landmarks back into 

the image plane. It enables us to derive variances of the image 

space observations introduced as uncertainty measurements for 

the 2D BlazeFace facial landmarks into a photogrammetric 

intersection. A range of these predicted uncertainty measures are 

used to assess their impact on the uncertainties of inter-landmark 

distances during speech production to assist with the analysis of 

speech sound disorders. 

 

 

3. Methodology 

Using the BlazeFace algorithm, observations of facial landmarks 

were detected from 2D image frames of video. The frames were 

extracted from time-synchronised cameras with known interior 

orientation parameters (IOPs) and exterior orientation parameters 

(EOPs). Through photogrammetric intersection, 3D coordinates 

with uncertainties were derived. Finally, inter-landmark 

distances were derived, propagating the errors from the 

photogrammetric intersection to these distances. Different 

weightings of the 2D image observations were applied and their 

impact on the uncertainties of the 3D facial landmark coordinates 

and the derived inter-landmark distance uncertainties were 

analysed. Statistical testing of distances of the first frame 

compared to all following frames was performed to determine 

which inter-landmark distances do not significantly change and 

hence can be labelled as “stable”. The impact of the weightings 

contributing to the decision of stable/significant changing inter-

landmark distances for speech production was then analysed.  

 

3.1 Camera calibration and extraction of image 

observations for each camera frame 

Each camera j was subjected to an individual calibration 

adjustment using a general photogrammetry process applying the 

Brown camera model (Brown, 1971) solving for principal 

distance (𝑐) and the principal point offset (𝑥𝑝 and 𝑦𝑝) and 

distortions (∆𝑥, ∆𝑦). The calibration was performed using a 

hand-held 3D frame that was moved through three arcs, held 

approximately square, tilted at ±30º, and rotated 90º to the left 

and right to ensure the best possible geometry could be 

implemented.  

Using BlazeFace, the facial landmarks’ locations (xi, yi) were 

detected within each image frame. In this paper, BlazeFace was 

operated in single face-tracking mode, and a 15-frame (quarter-

second) buffer was added to the onset time to allow BlazeFace to 

settle on the detected face. This buffer was removed for further 

processing. The BlazeFace landmark coordinates were 

standardised to the width of the input image frame. Hence, they 

could be easily converted into an image coordinate system with 

its origin in the center of the image. The IOP corrections were 

applied before the image coordinates (xij, yij) are further 

processed. 

The EOPs of a camera (j), which include the perspective centre 

location (XC
j, YC

j, ZC
j) and rotation (𝜔𝑗 , 𝜑𝑗, 𝜅𝑗) were calculated 

using a resection of pre-established Ground Control Points 

(GCPs) (Boyle et al., 2014). 

 

3.2 Photogrammetric intersection 

The intersection process calculates the 3D coordinates (Xi, Yi, Zi) 

for each facial landmark i from the 2D image (xi, yi) observations 

obtained using BlazeFace; this can be done by applying the 

collinearity equations, assuming that the calculated IOPs and 

EOPs of each camera j are known: 

𝑓𝑥𝑖𝑗 = 𝑥𝑖𝑗 + �̂�𝑥𝑖𝑗
= 𝑥𝑝𝑗

− 𝑐𝑗
Uij

Wij
+ ∆𝑥𝑖𝑗,   (5) 

𝑓𝑦𝑖𝑗 = 𝑦𝑖𝑗 + �̂�𝑦𝑥𝑖𝑗
= 𝑦𝑝𝑗

− 𝑐𝑗
Vij

Wij
+ ∆𝑦𝑖𝑗  (6) 

where �̂�𝑥, �̂�𝑦 are the image point residuals. Furthermore, (U,V,W) 

was formulated as 

(
𝑈
𝑉
𝑊

) = 𝐌((
𝑋
𝑌
𝑍
)

𝑖

− (
𝑋𝑐

𝑌𝐶

𝑍𝐶

)

𝑗

𝐶

)   (7) 

where M is the matrix used for the rotation from object space to 

image space that can be parameterised as 

𝐌 = 𝐑3(𝜅𝑗)𝐑2(𝜑𝑗)𝐑1(𝜔𝑗).    (8) 

The parametric (or Gauss–Markov) adjustment model was used 

for the intersection. The linearised collinearity equations for all 

image points in a block can be grouped into the standard 

parametric model  

𝐯 =  𝐀 ∙   ∆𝐱 –  𝐥.     (9) 

With 𝐀 being the design matrix of partial derivatives taken with 

respect to the object space point coordinates,  𝐥 being the vector 

of image point observations, ∆𝐱 being the vector of corrections 

for the unknowns 𝐱 (3D object space coordinates) and 𝐯 being 

the residuals. 𝐀 is formulated as 

𝐀 = [

𝜕𝑓𝑥𝑖𝑗

𝜕𝑋𝑖

𝜕𝑓𝑥𝑖𝑗

𝜕𝑌𝑖

𝜕𝑓𝑥𝑖𝑗

𝜕𝑍𝑖

𝜕𝑓𝑦𝑖𝑗

𝜕𝑋𝑖

𝜕𝑓𝑦𝑖𝑗

𝜕𝑌𝑖

𝜕𝑓𝑦𝑖𝑗

𝜕𝑍𝑖

].   (10) 

The associated weight matrix for this group of observations was 

denoted as 𝐏. The parameter correction δ and the corresponding 

covariance matrix 𝐂𝒙 were obtained as 

𝛿 =  −(𝐀𝑻𝐏𝐀)−𝟏𝐀𝑻𝐏𝑤 =  −𝐐𝒙𝐀
𝑻𝐏𝑤  (11) 

𝐂𝒙  =  σ0
2 𝐐𝒙      (12) 
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where Qx is the cofactor matrix of the parameters and 𝑤 is the 

misclose. 

3.3 Weighting of image observations 

Equation 9 shows the impact of 𝐏 on 𝐐𝒙 if 𝐀 is fixed because the 

same network design is used. The most practical solution of 

assuming 𝐏 in the form of 𝜎2𝐈 is only used in the initial solution 

to find an approximation for 𝐱. Otherwise, it cannot be used, as 

BlazeFace does not extract all image points with the same 

accuracy. 

The image coordinates of facial landmarks of a single frame 

showing a neutral face using the BlazeFace method were 

compared to a reference to find an appropriate weight. The 

reference was based on measurements captured with the Vectra 

H2 camera, and these images were also captured of a neutral face. 

The Vectra H2 object space coordinates of the facial landmarks 

were transformed into the same coordinate system as x using a 

3D rigid body with the scale factor fixed to 1. Using the 

collinearity equations, the image coordinates of all points and for 

all camera stations of the Vectra H2 camera 𝑥𝑣𝑒𝑐𝑡𝑟𝑎 were 

calculated. Consequently, it was possible to calculate the 

difference in image coordinates from both solutions for all points 

using 

∆𝑥𝑉𝑒𝑐𝑡𝑟𝑎𝑖𝑗
= 𝑥𝑖𝑉𝑒𝑐𝑡𝑟𝑎 − 𝑥𝑖𝑗 ,      

∆𝑦𝑉𝑒𝑐𝑡𝑟𝑎𝑖𝑗
= 𝑦𝑖𝑉𝑒𝑐𝑡𝑟𝑎 − 𝑦𝑖𝑗 .     (13) 

This method was applied to all participants, all landmarks, and 

all cameras, allowing the variance of the observations to be 

estimated from the set of image coordinate differences.  

Based on the derived variance, the covariance matrix 𝐂𝒍 and the 

variance factor 𝜎0
2 can be calculated with 𝐏 using 

𝐂𝒍  =  𝜎0
2 𝐏−𝟏      (14) 

allowing us to determine the 𝐐𝒙  needed for the statistical testing 

of inter-landmark distances between frames. The same 𝐏 will be 

applied to all processed frames, including those showing a non-

neutral face, under the assumption that the variance does not 

change between frames.  

 

3.4 Inter-landmark distances and statistical testing 

Inter-landmark distances 𝐷𝑘𝑙 were calculated from the object 

space coordinates between the landmarks k and l as: 

𝐷𝑘𝑙 =  √∆𝑋𝑘𝑙
2 + ∆𝑌𝑘𝑙

2 + ∆𝑍𝑘𝑙
2  .   (15) 

Its standard deviations was calculated through variance 

propagation using: 

𝐀 = [
𝜕𝐷𝑘𝑙

𝜕𝑋𝑘
  

𝜕𝐷𝑘𝑙

𝜕𝑌𝑘
  

𝜕𝐷𝑘𝑙

𝜕𝑍𝑘
  

𝜕𝐷𝑘𝑙

𝜕𝑋𝑙
  

𝜕𝐷𝑘𝑙

𝜕𝑌𝑙
 
𝜕𝐷𝑘𝑙

𝜕𝑍𝑙
 ],    (16) 

𝜎𝐷𝑘𝑙
2  =  

(

 
 
 
 

𝐀

[
 
 
 
 
 
 
𝑞𝑥𝑥𝑘

𝑞𝑥𝑦𝑘
𝑞𝑥𝑧𝑘

𝑞𝑦𝑦𝑘
𝑞𝑦𝑧𝑘

⋮ 𝑞𝑧𝑧𝑘

0      0     0
0      0     0
0      0     0

𝑞𝑥𝑥𝑙
𝑞𝑥𝑦𝑙

𝑞𝑥𝑧𝑙

𝑞𝑦𝑦𝑙
𝑞𝑦𝑧𝑙

… 𝑞𝑧𝑧𝑙 ]
 
 
 
 
 
 

𝐀𝑻

)

 
 
 
 

 (17) 

The inter-landmark distances 𝐷𝑘𝑙 and their standard deviations 

were calculated per frame 𝐹𝑖 over the duration of a word. The 

first frame, 𝐹1 for each word, showed the participant with a 

neutral expression and was used as the reference frame. To test 

for movement during speech production, the changes in the 

distances between the same two points k and l between frames 

and the first frame were calculated using  

∆𝐷𝑘𝑙𝐹𝑖
= 𝐷𝑘𝑙𝐹1 − 𝐷𝑘𝑙𝐹𝑖 ,    (18) 

and its variance with 

𝜎𝐷𝑘𝑙
2 =  𝜎𝐷𝑘𝑙𝐹1

2 + 𝜎𝐷𝑘𝑙𝐹𝑖
2 .    (19) 

Per distance differences from the reference frame to all following 

frames, a statistical test with a degree of freedom of m = 1, was 

calculated and compared against a chi-square upper-tail 

statistical threshold with a significance level of 5%. 

Pr{𝐶 < 𝜒𝑚,1−𝛼
2 } = 1 − 𝛼    (20) 

where 𝐶 = ∆𝐷𝑘𝑙𝐹𝑖

𝑇 ∙ 𝜎𝐷𝑘𝑙
−2 ∙

∆𝐷𝑘𝑙𝐹𝑖

𝑚
   (21) 

If the test statistic 𝜒𝑚,1−𝛼
2  exceeds the threshold, the distance was 

assumed unstable, meaning it had changed significantly during 

word production. In this case, the distance was allocated the value 

of 𝑓 = 1. 

𝑓 = {
1
0
        

𝑖𝑓 𝐶 > 𝜒𝑚,1−𝛼
2

𝑖𝑓𝐶 ≤ 𝜒𝑚,1−𝛼
2     (22) 

The sum of 𝑓 was calculated upon the statistical testing of 

distances for a particular word. This sum must be zero for inter-

landmark distances that did not change for the duration of a word.  

 

 

4. Experiment 

4.1 Camera specifications 

The data capture system utilised two to three stationary 

Blackmagic (BM) Pocket Cinema 4K cameras, each fitted with 

an Olympus Digital 45mm (f1.8) lens. The camera’s full 4/3” 

sensor resulted in a narrow field-of-view setup. This 

configuration ensures that the head occupies nearly the full view 

from a secure distance. Secure so that no participant can 

manipulate the camera. The BM cameras are capable of recording 

4096×2160 resolution at 60 frames per second (FPS); however, 

for data capture, the resolution is set to 1920×1080 (HD) and 60 

FPS, resulting in an actual principal distance of approximately 

120 mm. The highest resolution is unnecessary as the BlazeFace 

algorithm down-samples images to 256×256 pixels internally 

before processing. 

 

4.2 Camera setup 

The data capture setup consisted of three tripod-mounted BM 

cameras placed approximately 3.0m from the participant. This 

distance varied depending on the physical limitations of the 

environment during the data capture for each participant. The 

primary camera was placed in front of the participant, creating an 

artificial centreline. For the remainder of the paper, this camera 

is named BMC. The other cameras were positioned on either side 

of BMC to capture the face's left and right sides (BML and BMR 

respectively). Two different camera setups were used. The 

cameras were located either approximately 30º or 45º to each 

side, achieving a horizontal convergence angle of approximately 

60º or 90º (Figure 1). The elevation angles were dictated by the 

specific participant's seated height position but were 

approximately 5º above the horizontal plane.  
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Figure 1: Visualisation of the camera setup 1 and setup 2. 

 

4.3 Data capture 

For this work, data from five children with a mean age of 3 years 

5 months (±4 months) were used. Each child was seated on a 

chair, as shown in Figure 2, with a target field in the background 

used for resecting the cameras. The children were asked to name 

pictures from the Motor Speech Hierarchy Probe-Word list 

(Namasivayam et al., 2021), with the words cast onto a screen 

directly in the child’s line of sight. The ten words associated with 

stage III mandibular control of the Motor Speech Hierarchy 

Probe-Word list inform the dataset of this paper (Table 1).  

 
Figure 2: Target field for the resection of the cameras. 

 

 1 2 3 4 5 

Baa 58 48 42 44 39 

Bob 66 38 36 29 34 

Eye 50 60 41 43 37 

Ham 55 45 24 30 30 

Map 46 52 43 27 30 

Pam 68 68 38 42 51 

Papa 60 48 39 39 45 

Pie 70 65 34 45 42 

Pup 42 42 31 33 34 

Um 47 53 23 34 24 

Sum 562 519 351 366 366 

Table 1: Frames per word and participants (row 1) processed. 

 

Several pre-processing steps were performed. These included (a) 

time-synchronising recordings from different stationary video 

cameras, (b) determining the onset and offset time points for each 

word, and (c) extracting the frames from the video sequences for 

each word. Table 1 details the number of processed frames per 

word. In total, 2164 frames were processed. 

 

4.4 Landmark locations and inter-landmark distances 

BlazeFace Mesh ID points were matched with clinically relevant 

landmarks (BlazeFaceMeshID, 2025). Two additional landmarks 

(GNR and GNL) were added by using BlazeFace points to best 

estimate their positions. An overview of the landmarks is 

provided in Table 2 and visualised in Figure 3.  

 

BlazeFace 

Mesh IDs 
Clinical Landmarks Abb. 

10 Metopion M 

9 Glabella G 

168 Sellion S 

199 Pogonion P 

150 Mid-Mandibular Border (right) MMBR 

379 Mid-Mandibular Border (left) MMBL 

176 Medial Gnathion (right) GNR 

400 Medial Gnathion (left) GNL 

Table 2: Clinically relevant distances used in this research. 

 

The inter-landmark distances are listed in Table 3. Based on our 

previous assumptions regarding skin tissue deformation and 

limited association with movement during speech tasks, we 

expected seven of 16 distances to remain stable (Trotman and 

Faraway, 1998), whilst five would change due to the vertical 

movement associated with the speech task. Four inter-landmark 

distances were expected to vary due to changes associated with 

the development of motor speech control in young children 

(Green et al., 2000) and are highlighted with (*) in Table 3. 

 

 
Figure 3: Placement of the clinically relevant landmarks. 

 
# Clinical Landmarks Distance 𝑑𝑘𝑙 Stable 

1 M G M.G Y 

2 M S M.S Y 

3 G S G.S Y 

4 MMBR MMBL MMBR.L Y 

5 GNR GNL GNR.L Y 

6 P GNR P.GNR Y 

7 P GNL P.GNL Y 

8 M MMBR M.MMBR N* 

9 M GNR M.GNR N* 

10 M MMBL M.MMBL N* 

11 M GNL M.GNL N* 

12 S MMBR S.MMBR N 

13 S GNR S.GNR N 

14 S MMBL S.MMBL N 

15 S GNL S.GNL N 

16 S P S.P N 

Table 3: Inter-landmark distances and if they are assumed to be 

stable (Y) or not (N). Distances indicated with (*) can display a 

small amount of movement in children. 
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5. Results 

5.1 IOPs and EOPs 

The IOPs associated with principal distance (𝑐) and the principal 

point offset (𝑥𝑝 and 𝑦𝑝) were successfully estimated. Due to each 

camera’s very narrow field of view (principal distance of 

approximately 120 mm), the lens distortion (∆𝑥, ∆𝑦) at the 

extremities of the image were negligible (Boyle et al., 2014).  

The self-calibration of each camera was successful. The number 

of images and GCPs varied between the datasets. The estimated 

3D accuracy RMS values of each calibration are presented in 

Table 4. 

The EOPs were calculated using the resection method with one 

image per camera position. The GCPs used for the resection 

varied based on their visibility (the participants occluded some). 

The RMS values of the resection are presented in Table 5.   

 

Participant BMR BMC BML 

1 0.2951 0.0833 - 

2 0.0507 0.1046 - 

3 0.0862 0.0813 - 

4 0.1160 0.1279 - 

5 0.1579 0.1461 0.1256 

Table 4: RMS of object point coordinates (mm) of self-

calibration. 

 

Participant BMR BMC BML 

1 0.41 0.72 - 

2 0.39 0.83 - 

3 1.56 1.21 - 

4 0.72 0.79 - 

5 0.68 0.53 0.84 

Table 5: RMS of image coordinate residuals (pixels) for 

resection. 

 

5.2 Weighting of image observations 

The distances between the image coordinate from BlazeFace and 

the reprojected image coordinates of the Vectra H2 camera were 

calculated using equation 13. All differences (for all participants, 

words, and x and y coordinates) are presented in Figure 4; 

statistics are presented in Table 6. The mean has a small negative 

bias, and the standard deviation is 0.141 mm, which is equivalent 

to approximately 11.72 pixels. 

 
Figure 4: Image coordinate differences between BlazeFace and 

Vectra H2. 

A similar small negative bias in the individual means of the x and 

y coordinates is seen in Figure 5. The standard deviation for the 

x image coordinate is 0.096mm (approximately 7.96 pixels), 

about half that of the y image coordinate’s standard deviation of 

0.176mm (approximately 14.59 pixels). 

 

Differences Mean [mm] 𝜎  [mm] 𝜎  [pixel] 

All (x and y) -0.013 0.141 11.72 

x coordinates -0.006 0.096 7.96 

y coordinates  -0.021 0.176 14.59 

Table 6: Mean values and standard deviations of the differences 

between BlazeFace and Vectra in image space. 

 

Overall, the standard deviations are relatively large compared to 

the photogrammetric value of around 0.4 pixels, which is usually 

applied. There are several reasons for this. The placement of 

some reference landmarks in the Vectra images is very difficult 

using images only i.e., landmark localisation cannot be inferred 

through palpation of the bony extrusions under softer tissues. In 

addition, some landmarks are intrinsically less precisely defined. 

For instance, Farkas and Schendel (1995) define the placement 

of Metopion as “the most anterior (or most convex) midline point 

on the frontal bone. If the forehead region is relatively flat, place 

this landmark vertically at the midpoint between the superior 

facial border and glabella.” (p. 112).  

 
Figure 5: Image coordinate differences of x and y observations 

between BlazeFace and VectraH2. 

 

We processed the data using a standard deviation of 3 and 5 

pixels. It is assumed that a standard deviation of 3 pixels can be 

achieved for a clinician for well-defined landmarks in video 

sequences and 5 pixels for trained non-experts. A summary of all 

weights processed for the statistical testing of the inter-landmark 

distances is presented in Table 7.  

 

 𝜎𝑥 𝜎𝑦 

W1 0.141 mm / 11.72 pixels 

W2 0.096 mm / 7.96 pixels 0.176 mm / 14.59 pixels 

W3 5 pixels (0.060 mm) 

W4 3 pixels (0.036 mm) 

Table 7: Weighting to be used for the statistical testing of inter-

landmark distances. 

 

5.3 Statistical tests of inter-landmark distances 

As shown in Figure 1, two camera setups were used. As the 

design of the network impacts 𝐀 and consequently 𝐐𝒙, the results 

for the two different camera setups are presented separately.  

The results for Participants 1-4 (setup 1) are presented in Table 

8, and the results for Participant 5 (setup 2) are in Table 9. The 
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percentages indicate the number of frames where the calculated 

inter-landmark distances changed significantly from the first 

frame denoted by an f-value of 1 (equation 22). A value of “0” 

indicates that none of the inter-landmark distances changed from 

the first frame. The highlighted cells indicate where the results 

do not fit the state-of-the-art prediction. 

The results outlined in Table 8 and Table 9 show a general 

agreement that all weights confirm our expectation based on the 

current literature of stable inter-landmark distances. Of the seven 

stable distances (rows 1-7) only the distance ‘MMBR.L’ in 

weight 4 showed a significant change in 1.1% of all frames for 

setup 1 (Table 8). In Table 8, the five unstable distances also 

indicated four incorrect predictions (rows 8-16): S.GNL, 

S.MMBR, and S.MMBL using weighting 1 and S.MMBL for 

weighting 2. This trend is not visible in the second setup Table 

9). While the percentage of those landmarks is generally lower, 

all weightings agree with the expert assessment. 

Notably, the percentage of significant distance changes linked to 

GNR and GNL is always larger than those of MMBR and 

MMBL. This is true for both setups. This is expected due to the 

positioning of the respective landmarks such that the GNR and 

GNL experience more relative movement than the MMBR and 

MMBL due to the pivot point of the jaw and placement along the 

jaw and chin.  

Distance 𝐷𝑘𝑙  Expert W1 W2 W3 W4 

M.G 0 0 0 0 0 

M.S 0 0 0 0 0 

G.S 0 0 0 0 0 

MMBR.L 0 0 0 0 1.1 

GNR.L 0 0 0 0 0 

P.GNR 0 0 0 0 0 

P.GNL 0 0 0 0 0 

M.MMBR Change* 6.0 14.5 32.6 48.0 

M.GNR Change* 12.1 21.3 40.8 56.5 

M.MMBL Change* 2.5 7.3 24.6 43.7 

M.GNL Change* 7.8 16.0 36.2 52.0 

S.MMBR Change 0 1.6 18.2 35.8 

S.GNR Change 1.3 6.5 29.1 45.2 

S.MMBL Change 0 0 8.5 29.4 

S.GNL Change 0 2.8 22.8 39.8 

S.P Change 0.7 5.0 29.5 43.5 

Table 8: Percentage of frames of the statistical differences of 

inter-landmark differences for network setup 1 and weights W1 

to W4. “0” stands for stable, so no statistical differences are 

detected. All highlighted cells contain results that disagree with 

the expert opinion. 

 

Next, it can be observed for setup 1 (Table 8) that distances linked 

to the right facial landmark have a higher percentage of change 

than to the left facial landmarks. For instance, the percentage of 

changed distances for all weighting for M.GNR is approximately 

5% larger than M.GNL. This could be due to the camera setup 

used. This camera setup contains the front and right cameras 

(BMC and BMR), which together mostly capture the right part of 

the face. Hence, the predicted coordinates for the right face side 

could be better, and more significant movement could be 

detected. The results of camera setup 2 (Table 9) can confirm this 

assumption. Including a third camera also capturing the left part 

of the face could remove the bias of larger percentage changes.  

There is an overall trend that the percentage of changed distances 

increases from weight 1 to 4 for both setups. For instance, for 

setup 1 (Table 8) the percentages increase for M.GNR from 

12.1% to 21.3%, to 40.8% and to 56.5%. And the percentages 

increase for M.GNL from 7.8%, to 16.0%, 36.2%, and 52.0%. 

The reason is that the standard deviations used become more 

strict from weight 1 (𝜎𝑥 = 𝜎𝑦 =11.72 pixels), to weight 2 (𝜎𝑥 = 

7.96 pixels, 𝜎𝑦 = 14.59 pixels), to weight 3 (𝜎𝑥 = 𝜎𝑦 = 5 pixels) 

and to weight 4 (𝜎𝑥 = 𝜎𝑦 =3 pixels). Consequently, a smaller 

standard deviation will lead to the detection of a greater number 

of significant distance changes. For instance, focusing on the 

percentage changes for S.P in Table 8, the percentage of changed 

distances for weighting 1 is only 0.7 % and for weighting 2 only 

5.0%. It increases to 29.5% and 43.5% for weighting 3 and 4. 

Regarding weighting 2, 5% of changes correspond to 87 frames 

from 1758 frames overall. This is equivalent to an average of 

approximately 2 frames per person per word, and a word cannot 

be said in 2 frames. Hence, we must assume that there are no 

significant inter-landmark changes, which is conflicting with the 

expert assumption. When applying a 5% threshold to all 

percentage changes in Table 8, most results for weighting 1 and 

2 disagree with the expert assumption.  

For setup 2 (Table 9), the lowest values are 7.4% and 10.7% 

associated with weighting 1 for S.MMBR and S.MMBL, 

respectively, exceeding the threshold of 5%. Introducing the third 

camera meant that all tested weights could reliably detect inter-

landmark distance. 

Distance 𝐷𝑘𝑙  Expert W1 W2 W3 W4 

M.G 0 0 0 0 0 

M.S 0 0 0 0 0 

G.S 0 0 0 0 0 

MMBR.L 0 0 0 0 0 

GNR.L 0 0 0 0 0 

P.GNR 0 0 0 0 0 

P.GNL 0 0 0 0 0 

M.MMBR Change* 40.8 48.5 81.3 90.2 

M.GNR Change* 47.9 56.4 86.5 93.6 

M.MMBL Change* 37.4 48.2 81.0 90.5 

M.GNL Change* 48.8 56.4 86.2 93.6 

S.MMBR Change 7.4 21.8 60.7 82.2 

S.GNR Change 23.9 38.3 69.0 89.0 

S.MMBL Change 10.7 22.1 63.5 82.8 

S.GNL Change 22.1 35.6 70.2 87.4 

S.P Change 19.9 36.5 66.6 87.1 

Table 9: Percentage of frames of the statistical differences of 

inter-landmark differences for network setup 2 and weights W1 

to W4. “0” stands for stable, so no statistical differences are 

detected. 

 

6. Conclusion  

This paper aimed to investigate the effects of image coordinate 

weighting and network design when statistically testing 16 facial 

inter-landmark distances associated with jaw movement and 

control. A total of ten individual words were tested across five 

children, all processed by the BlazeFace algorithm to extract 2D 

image coordinates. The 3D coordinates were determined by 

photogrammetry intersection and the inter-landmark distances, 

and their variances were consequently calculated using variance 

propagation. Chi-square tests at a significance level of 5% were 

used to detect significant changes in the inter-landmark distances 

per word per participant.  

Overall, four different weightings and two camera setups were 

tested. Camera setup 1 included 2 cameras and setup 2 included 

3. Weightings 1 and 2 were based on comparing the 3D object 

space coordinates derived from BlazeFace to a reference created 

using the stereo-photogrammetric camera Vectra H2. Both 

weightings were too pessimistic for camera setup 1 and did not 

allow for the reliable determination of inter-landmark distance 

changes. In contrast, for setup 2 where a third camera was 

introduced, all inter-landmark distance changes were reliably 

detected irrespective of the weightings used. In contrast to this, 
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the two camera setup required a more precise setting of the 

weights to detect the distance changes. 

Weightings 3 and 4 were based on an expert's ability to manually 

place landmarks in the images. Both are suitable for the detection 

of inter-landmark distances. The strictest weight (weight 4) 

created the most promising values for both camera setups. 

For further analysis of jaw movement, it is important to examine 

not only how an inter-landmark distance changes but also when 

these changes occur. Future research will analyse this temporal 

aspect rather than solely determining the percentage of frames 

that have changed. Further, to enable meaningful comparison 

between participants, time must be normalised. This comparison 

will further quantify whether weight 3 or weight 4 is more 

appropriate.  
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