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Abstract

Detecting vegetation changes finds its application in several important areas, including city planning and urban science, climate
change and ecological research. Several sensors and approaches can be used to measure the 3D geometry of vegetation, including
aerial, mobile and terrestrial laser scanning, and photogrammetry. Other historical data sources, such as 2D shapefiles might also
be available, however, the use of multi-source data presents challenges for vegetation change detection. This study presents a
voxel-based approach to vegetation change detection from multi-source datasets, including laser scanning and 2D shape files from
different years. A novel Octree data structure is utilised in this work that supports different operations for efficient vegetation
change. We demonstrate the strengths of the approach with a case study to discuss the challenges and the future directions.

1. Introduction

Vegetation has inter-annual and seasonal variations and is a nat-
ural connection between soil, atmosphere and water. Vegetation
change, to some extent, can represent the change in urban land
use and reflect the trend of climate change (Sarkar and Kafatos,
2004). A good urban greening layout can not only improve air
quality but also improve the urban microclimate or the mental
health of residents. Additionally, vegetation resources have cer-
tain social and cultural values. For example, the protection and
rational utilisation of historical vegetation, and ancient and fam-
ous trees are of great significance to the inheritance of culture
and history (Stilla and Xu, 2023). Therefore, real-time mon-
itoring of vegetation changes helps to assess the rationality of
urban planning and the health of urban ecosystems. As a rapidly
developing technology, digital twins provide an opportunity to
dynamically display vegetation changes and summarise histor-
ical changes (Zhao et al., 2022). This can provide scientific
support for ecological protection research.

Vegetation has complex morphological and distributional char-
acteristics, resulting in occlusions, and limiting traditional pho-
togrammetry in dense forests. 2D image-based change detec-
tion is also prone to distortions in the process of recovering 3D
spatial information (Abellan et al., 2016). Several laser scan-
ning platforms are available, each having its advantages and
limitations. Airborne Laser Scanning (ALS) has a wider cov-
erage and provides additional information regarding the tree
structures and the terrain, however, the ALS projects are ex-
tremely costly, the point density might be very low and the ac-
curacy is inferior to other platforms (Homainejad et al., 2023).
Terrestrial Laser Scanners (TLS) provide extremely precise and
very high-density points of the trees, however, they are limited
by occlusions, very low coverage and high time requirements
for scanning. In contrast, a Mobile Laser Scanner (MLS), such
as the backpack mobile measurement system has the character-
istics of flexibility, portability, high accuracy and wide cover-
age, and the acquired point cloud data can accurately reflect the
3D structure of vegetation. The derived point clouds facilitate
the calculation of individual tree and forest parameters, such as

tree height, DBH, canopy cover, etc., to achieve refined forestry
management (Hirt et al., 2021), and can be used for change de-
tection tasks as well.

The modelled urban vegetation can be integrated with digital
twin platforms to construct high-fidelity 3D urban green space
models. This provides great convenience for the comparison of
historical data and newly collected data for the dynamic mon-
itoring of urban vegetation change. However, the unstructured
nature of point cloud data presents several limitations for the
comparison of data coming from multiple sources (platforms),
having significant variations in point density and precision. Con-
verting point clouds into voxels and then detecting their changes
has proven to be very effective in many studies. Voxel-based
representations are particularly beneficial for organising the spa-
tially dense, irregular data found in point clouds, facilitating
neighbourhood and value operations. A voxel represents a cu-
bic unit in 3D space, akin to a pixel in 2D imagery, which
can help with segmentation, classification, and further analysis
(Poux and Billen, 2019). The process of voxelisation involves
mapping point cloud data into a regularly spaced grid, where
each voxel encompasses points that share similar characteristics
or spatial proximity. Voxels have been used in many studies for
vegetation modelling either for volume estimation to support
preventive burning (Barton et al., 2020) and tree reconstruction
(Gorte and Winterhalder, 2004) or for investigating the effect of
trees on microclimate (Xu et al., 2021).

In this paper, we present a voxel-based approach to compare
scans of urban trees from different years coming from other
sources (aerial and mobile laser scanning and 2D footprints of
the trees in the form of shapefiles) and estimate changes in
vegetation cover. We voxelise the point clouds from two or
multiple years with a specific voxel resolution, which is de-
termined by the point density of the scans, and organise them
in an octree-data structure designed for processing large data-
sets. We use existing vegetation footprints to roughly identify
the voxels that belong to the vegetation cover extension. We
perform morphological and overlay operations to estimate ve-
getation changes. Depending on the area to be processed and
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the voxel resolution, the voxel models can become very large
and can affect the performance time and lead to memory over-
load. The approach presented in this paper relies on a novel
octree data structure, organised in SQLite as presented in Gorte
et al. (2024). The octree structure supports several operations
for voxel processing, which are to be employed for vegeta-
tion change detection. The paper elaborates on the approach,
presents the results of the experiments merging multi-source
data, and outlines directions for future improvements.

Section 2 introduces the point cloud and voxel-based vegetation
change detection approaches. Section 3 presents the method,
and we present experiments and results in Section 4. This is
followed by discussions and conclusions.

2. Background

2.1 Point Clouds for vegetation change detection

The capability of LiDAR to provide high-resolution, 3D spa-
tial data allows for detailed analysis of vegetation structures.
Recent studies have explored various applications of LiDAR
in monitoring urban trees and analysing forest dynamics over
time. Tompalski et al. (2021) provided a comprehensive review
of methods for estimating changes in forest attributes using air-
borne 3D point cloud data. They highlighted the potential of
bi-temporal and multi-temporal point clouds for detailed ana-
lysis of forest structure changes that offer valuable insights for
both analysis and future projections. LiDAR-based matrices
and multi-temporal ALS point clouds have also been utilised
for continuous forest mapping by performing change detection
using vegetation height and canopy cover (Szostak, 2020). Ad-
ditionally, automated tree segmentation and change detection
in large urban areas have been performed using ALS data for
robust quantification of tree heights and value variations us-
ing dynamic scaling to extensive regions (Fekete and Cserep,
2021). Holopainen et al. (2013) compare ALS, MLS and TLS
data for tree mapping in an urban setting and analyse several
well-established approaches for tree detection and localisation,
however, they did not perform any change detection or utilise
voxel-based approaches.

2.2 Voxel-based vegetation change detection

Several approaches have been proposed in the literature that
utilise voxels for vegetation change detection. Liu et al. (2016)
perform change detection using Apache Spark-based cloud com-
puting and voxels, where they use MLS data from two different
sensors, however, their study involved testing the algorithm on
simulated and building data only. Gehrung et al. (2018) pro-
posed a voxel-based metadata structure for change detection in
large-scale urban areas using MLS data. Their method employs
a plane-filtered raycasting algorithm to eliminate discretisation
artefacts near planar structures, significantly improving the ac-
curacy of volumetric representations. Wu et al. (2018) compare
MLS and ALS data for mapping individual trees by utilising
voxels for segmenting tree parts into single trees. Further, they
mapped the vitality of the trees using infrared imaging. How-
ever, they did not perform any change detection.

Zieba-Kulawik et al. (2021) calculate urban indices such as
Vegetation 3D density index and Vegetation Volume to build-
ing volume modelling urban space, and use voxel-based point
cloud processing using only ALS data. Hirt et al. (2021) use
MLS data from two different systems in tracking changes in

urban tree structures, where they introduced an object-based
change detection approach using occupancy grids to compare
point cloud data across multiple time epochs. By segmenting
tree objects and analysing geometric variations, the research
demonstrated the ability to monitor tree growth, health, and po-
tential hazards affecting urban infrastructure. Fang et al. (2023)
proposed a semantic-supported change detection method using
ALS point clouds, achieving high-precision segmentation and
detection by integrating an improved PointNet++ framework
with voxel-based comparison. Their approach effectively filters
out non-target changes, enhancing detection accuracy.

Li et al. (2024) proposed a voxel-based method for modelling
3D forest scenes by integrating terrestrial and airborne LiDAR
data. The authors combine high-density, fine-scale details from
TLS data with the broad coverage of ALS data to generate de-
tailed forest models over large areas. This method faces chal-
lenges such as computational cost and species classification ac-
curacy, which require further optimisation and data integration.
D’hont et al. (2024) use MLS, TLS and ALS data for estimat-
ing several parameters of trees, such as DBH, tree height, crown
area, etc., and analysed how each sensor contributed to the er-
rors in estimating the parameters. They used voxelisation for
preprocessing the data and comparing it with ground truth, how-
ever, they did not specifically perform any change detection.

3. Methods

As mentioned above, an octree data structure is pivotal. Voxels
create a regular grid that is used to map the point clouds. Fine-
resolution voxels are advantageous when high accuracy is re-
quired, but the size of the voxel space can grow exponentially
when large areas are considered. As a result, the performance
can be affected and the computer memory might become insuf-
ficient. Therefore, the storage and processing of the octree has
to be on the disk.

Instead of creating one large octree, we subdivide the entire area
of interest into cells each containing 64x64x64 voxels, where
each cell is an independent octree. The octree is designed to
maintain volumetric objects but can accommodate any unstruc-
tured data. A geo-reference is maintained, which relates ‘real
world’ coordinates (X, Y, Z) (in metres) to integer grid coordin-
ates (x, y, z). For example, (X, Y, Z) = (X0, Y0, Z0) + R ∗ (x,
y, z), where R is the voxel resolution. The range of (x, y, z)
is between (0, 0, 0) and (xmax, ymax, zmax), which defines the
size of the particular voxel layer.

The octree mechanism allows to maintain a multi-resolution
voxel pyramid. The voxel pyramid has seven levels with res-
olutions: 0.2m, 0.4m, 0.8m, 1.6m, etc. The finest resolution
is at the bottom of the octree, i.e. level 0. The resolution gets
coarser as the level goes up. Each voxel has one value, which
is converted to a key via a Key-formula, which is then linked to
the voxel value (V): (x, y, z, L) ←→ key (K) → value (V). The
values are stored in SQLite database.

The octree is storage optimised by applying a dedicated func-
tion which compresses repetitive voxel values of lower levels.
In the case of unclassified point clouds, only two 1-voxels con-
tain one or more laser points, and the 0-th voxel is ‘empty’. The
compression works as follows: Assuming at level L1 only two
(out of eight) voxels are explicitly stored with values 1, and the
other six are assumed to be 0. The values 1 and 0 are the val-
ues for the corresponding cells at level L2. This means that if a
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voxel (x, y, z, L) is present in the octree database, so is its value,
otherwise, we have to go up the levels until we find a cell that
contains (x, y, z) and take the value from there. More details for
cases, when more than two values are available in the points,
can be found in Gorte et al. (2024).

Several generic functions are provided to analyse the data in
the data structure. For this paper, OTover, OThist and OTras are
of primary interest. Additionally, the processing of point cloud
data invokes several 2D raster operations as well.

OTover (octree Xin, octree Yin, octree out, function O (x,y),
function A(a)). The operation OTover takes two input voxel
layers and produces an output by applying a function with two
parameters. For example, if we have two voxel layers repres-
enting vegetation point clouds obtained in time T1 and time T2

(where T1 ¡ T2), the operator allows us to integrate them and
compute 1) overlapping voxels, 2) the voxels that exist in layer
T1 but not in T2 and 3) the voxel that exists in T2 but not in T1.
The result can give indications for change detection in the case
of volumetric objects as follows: 1) noting has been changed, 2)
some (parts of) objects might have been removed and 3) some
(parts of) objects might have been added.

OTras (octree in, 3D raster out, boundB, resL, dataT). OTras
operator performs an octree-to-raster conversion and thus pre-
pares the data for visualisation or manipulation in the computer
memory. Furthermore, OTras handles parameters, which al-
low one to specify a bounding box (BoundB), a resolution level
(ResL), and an output data type (byte, short, int) (dataT).

OTfilter is a generic algorithm to perform 3D neighbourhood
operations on voxel datasets. The operator has several paramet-
ers such as an array of coefficients, which is used as a kernel in
convolution operators, or as a structuring element for mathem-
atical morphology use.

OTprofile collects the vertical profile at each (x, y) position
of a voxel and passes it as an array of voxel values to a user-
specified profile-analysis function. For example, to encode the
lowest voxels of trees into DTM.

OThist (octree in, hist out, resL) produces the histograms of a
voxel data set at a specified resolution level. For example, the
histogram of the number of points within voxels.

4. Experiments and Results

4.1 Dataset

Mobile LiDAR backpack, 2024: The data collection system
utilised in this study is a backpack-based mobile mapping plat-
form. This system, designed and built by our laboratory at
PolyU, incorporates two Hesai XT LiDAR sensors, each cap-
able of achieving an accuracy of up to 3 cm. The configura-
tion consists of a 32-channel LiDAR mounted horizontally and
a 16-channel LiDAR positioned at an oblique angle, a high-
resolution panoramic camera, and a precise GNSS module. It
is worth noting that the horizontal LiDAR field of view ex-
periences partial obstruction due to the presence of two struc-
tural support columns. Positioned directly above the horizontal
LiDAR is a high-performance 3DM-GX5-25 IMU, which of-
fers pitch and roll errors of 0.25 degrees and a yaw error of
0.8 degrees, ensuring a reliable baseline for motion estimation.
The IMU operates at an output frequency of up to 500 Hz. With

Figure 1. Top: 3D point cloud of Carlton Gardens captured by
the backpack mobile mapping system. Middle: Aerial LiDAR

data. Bottom: Canopy footprints derived from shapefile.

integrated SLAM and GNSS navigation technology, it can ob-
tain georeferenced high-resolution panoramic images and high-
precision 3D point cloud data even with high accuracy.

A dataset was captured using the backpack mobile mapping
system in Carlton Garden, a historic public park located in Mel-
bourne, Australia. This UNESCO World Heritage-listed site
features diverse vegetation, including large trees, manicured
lawns, and ornamental flower beds, making it an ideal location
for testing vegetation change detection methods. The garden’s
complex structure, with varying canopy densities and different
plant species, provides a challenging yet valuable environment
for evaluating the effectiveness of MLS-based change detec-
tion. The processed point cloud data, visualised in Figure 1
(top), showcases the detailed 3D representation of the garden,
enabling voxel-based vegetation analysis.

City of Melbourne Aerial LiDAR. 20161: This data covering
1 Data download available at: https://www.land.vic.

gov.au/maps-and-spatial/imagery/elevation-data/

major-lidar-projects/greater-melbourne-lidar-2017-18

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-23-2025 | © Author(s) 2025. CC BY 4.0 License.

 
25



Figure 2. Aerial point cloud with spurious points floating above and below the scene

Figure 3. After removal of spurious points

the Carlton Gardens was collected from Department of Trans-
port and Planning (DTP), Victoria. This data was collected dur-
ing 2017-2018. The dataset covers all of Melbourne’s urban
and peri-urban regions, representing the most accurate and con-
sistent depiction of Melbourne’s ground surface, tree cover, and
built environment. For quality assurance, the project utilised the
QA4LiDAR software developed by FrontierSI, for automated
quality checks to ensure consistency throughout the 13,000 km2

extent. The data is a classified and geo-referenced point cloud
having a density is 8/m2 (first return). Figure 1 (middle) shows
the visualisation of the aerial LiDAR data.

Tree Canopies 2016 (Urban Forest)2: This data was collected
from the public website of Data Victoria. This dataset contains
tree canopy polygons that represent actual tree canopy extents
(footprints) on both private and public property across Mel-
bourne City. The mapping was done using aerial photos and
LiDAR in the year 2016. The frequency of new data collec-
tion is approximately every year. Figure 1 (bottom) shows the
location of the tree canopies.

Based on the available aerial and mobile point cloud data, as
well as vegetation footprints, a workflow was established to
transform the data into a database of voxel layers.

4.2 Geo-referencing, voxelisation and cleaning

The voxel layers in the database share a common geo-reference
w.r.t. the EPSG:7855 CRS. The aerial point clouds were already
given in EPSG:7855, but the mobile point cloud used its local
coordinate system and therefore had to be geo-referenced first.
This was done using CloudCompare software, by selecting tie
points in the mobile and the aerial datasets and applying an af-
fine transformation. Next, a rectangular window was chosen
from the aerial point cloud that precisely covers the mobile
points (although these do not fill the entire rectangle).

After this, the 2 point clouds are voxelised by applying the fol-
lowing steps:

• Subtract the minimum window coordinate (left-front-lowest
corner of the voxel space) from all coordinates

2 Data download available from https://discover.data.vic.gov.

au/dataset/tree-canopies-2016-urban-forest

• Divide by the voxel resolution - we used 0.2 m (i.e. the
high-resolution in the octree database)

• Truncate to integers

• Remove duplicates (alternatively: count how many times
each truncated coordinate occurs, if an occupancy grid were
desired)

• Submit the results to be stored in the voxel database system

The voxelised point clouds allow for tackling the unexplained
”noise” in the aerial dataset: spurious points floating above
and below the scene (Figure 2). Those points can now be re-
moved quite effectively: we removed each point that has no
other points present within a certain distance (we chose 4 voxels
= 0.8 m), see the cleaned output in Figure 3. This could be im-
plemented as a local (neighbourhood) operator, or (as was done
here) by using nearest neighbour software like FLANN3. Below
we use the ”cleaned” point cloud.

4.3 Footprints

The vegetation footprints were given in a shapefile in a geo-
graphic (latitude-longitude) coordinate system. Using OGR and
GDAL software (www.gdal.org), the coordinates were conver-
ted to EPSG:7855, and a window was selected covering the area
of the study. This produces a new shapefile, where all objects
(i.e. footprints) that intersect the window are entirely present.
The result may be larger than the specified extent. It can be
cut to size in the subsequent 2D rasterisation step, such that the
(x, y)-extent exactly fits the point clouds, and has the same 0.2
m resolution. The rasterised footprints were dilated by three
pixels (0.6 m) in ± x and y directions, to account for the pos-
sibility of trees widening during the period between footprint
and point cloud production. After storing the pixels (as voxels
with z=0) in the database, the footprints are elevated multiple
times to cover the entire height of the voxel space.

4.4 Height shifts and correction

Combining aerial (grey) and mobile (blue) point clouds in a
single image (Figure 4) demonstrates the effect of the differ-
ent viewing directions of both sensors, emphasising the top vs.
3 Available at: https://github.com/flann-lib/flann
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Figure 4. Visualising aerial (grey) and mobile (blue) points from a different viewpoint for top and bottom point analysis.

Figure 5. Spatial distribution of height differences between
ground points in aerial and mobile point clouds

the side and bottom of objects, respectively. Furthermore, it ap-
pears from the ground voxels that the blue cloud is shifted down
w.r.t. the grey one. This will become an issue when trying to
assess tree growth between data acquisitions. At first, this shift
looks like a tie point selection issue while georeferencing the
mobile point cloud. However, we have the impression that the
mobile point cloud is slightly deformed w.r.t. the aerial one – it
is not just shifted and/or tilted (which could be explained by the
affine transformation). We do not observe any horizontal shifts,
only vertical ones, and these are slowly varying over the scene.
This leads us to the following correction procedure:

• Identify ground voxels in both datasets: the height of the
lowest voxel at each (x, y) position (using OTfilter). The
result is two raster images.

• Apply local-minimum filtering in a sufficiently large neigh-
bourhood to ensure that we get only ground heights (in-

stead of variable things like bushes). We used 127x127
neighbourhoods.

• Subtract the two results, mask according to the footprint
area, and remove outliers.

The resulting difference image shows how much the mobile
voxels have to be shifted vertically at each (x, y), to coincide
(at ground level) with the aerial point cloud (Figure 5). The im-
age still shows ”irregularities”, but at those places, there are no
trees (for example, at a building we have no ground points, and
roof points only in the aerial data). The ”regular” grey values,
which are used as height shifts, range from -10 to 10 (± 2m).

5. Change detection

Now we overlay the voxel layers (using OTover) into Figure 6
(left), showing the aerial data in grey and the mobile data in
blue, both selected according to the (dilated) footprints. Only
the mobile point cloud voxels are shown in Figure 6 (right) for
reference, which is from a later date. It can be seen that three
trees, which were marked in Figure 6 (left) have disappeared.
Trees with blue tops in Figure 6 (left) became higher, however,
for trees that are still with grey tops, we cannot be sure. Either
they did not grow, or there were no reflections from the top of
those trees in the mobile point cloud because the laser beams
reflected in the interior of the trees. Figure 7 shows the aer-
ial (green), mobile (brown), and combined voxel sets above a
single footprint of polygon. They demonstrate the effects of ac-
quisition geometry. Whether the tree became higher between
the ”green” and ”brown” acquisition remains doubtful. The
situation at another footprint polygon, which spans a group of
trees, is shown in Figure 8. The same observations as above ap-
ply. One tree was removed between the two acquisition dates.

5.1 Automatic analysis

Part of the goal of this study was to explore possibilities for
automatic analysis of the available data. Consideration was
given to the estimation of tree crown volumes, as well as, change
detection. Another interesting subject is tree classification (to
distinguish between tree and non-tree parts of point clouds), but
currently, this is considered a “deep learning” application, out-
side our current scope.
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Figure 6. Left: Combined aerial (grey) and mobile (blue) point clouds. Marked trees are only present in the aerial dataset. Right:
Showing only mobile-scanner points of the same scene.

Figure 7. A single tree as seen by the aerial scanner (green) and the mobile scanner (brown), as well as combined.

Figure 8. Multiple trees as seen by the aerial scanner (green) and the mobile scanner (brown), as well as combined.
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Figure 9. The visualisation of point density of the mobile laser scanning.

When looking at the green (aerial scanner) and brown (mobile
scanner) point clouds in the previous subsection, it is difficult
to imagine algorithms (or automated workflows) that yield the
same outcome in both cases (green and brown), assuming that
the scene did not change between the two acquisitions. And
it is even more difficult to imagine that small changes, which
might be due to growth or damage, would be reliably detected.
While current results indicate a slight incompatibility between
the aerial and mobile scanners for a reliable change detection
approach, further quantitative investigations are required to be
performed, which will be a part of future work. Volume estima-
tion might be useful to assess the “amount of green” in an urban
precinct, about fulfilment of (for example) climate change mit-
igation goals. Change detection would support the management
and maintenance of urban vegetation by monitoring tree growth
and detecting damage.

The detection of tree growth needs further investigation. Point
clouds obtained by different sensors create ambiguities and com-
plicate the comparison. As discussed above, the tops of the trees
are under-represented in the backpack data set, and the aerial
point clouds are missing points under the canopy. Furthermore,
the walking path and speed with the backpack need to be care-
fully planned concerning the objects (trees) to be monitored.
The current point cloud contains very high-density points on
the paths (i.e. more than 260 per voxel, given in red in Figure
9), while many trees between the paths have much fewer.

A promising approach seems the combination of the two point
clouds (aerial and terrestrial) to obtain more accurate crown
volume estimates than would be achieved by analysing either
point cloud separately. That the datasets were not acquired sim-
ultaneously may be forgiven, as long as the obtained estimates
are anywhere in between the “true” values at the two acquisi-
tion moments. It is also assumed that drastic changes, such as
the complete removal of a tree, would be reliably detected. Yet,
preliminary experiments show that estimating those volumes is
not straightforward. We have dilated the point clouds such that
they form a closed hull around a tree crown, which can then be
flood-filled, and after that “eroded back” to the original shape.
However, large holes require more dilation and too much of

the shape is lost during the process. In the multiple-tree scene,
some holes are larger than the distance between the trees, caus-
ing the trees to “merge”. We currently expect “Reality Mesh”
software to be the way forward with future experimentations.

6. Conclusions

In this paper, we process point clouds of trees from two dif-
ferent epochs and detect the changes. The experiments clearly
illustrate that using the voxel approach is superior to using the
original points clouds. The data sets become significantly smal-
ler (especially the mobile data set having 163 million points and
only 9 million voxels)) and easy to process and visualise. Pre-
processing and cleaning are also beneficial due to gridded data.

We have used a data structure and operators, which have been
primarily created for volumetric objects. Although the point
clouds have been successfully imported, analysed and visual-
ised, more considerations have to be taken into account. For
example, the aggregation function to build the octree is cur-
rently using majority criteria. This might not always be ap-
propriate for point clouds especially when the lower resolution
octree nodes are to be used. However, such a uniform octree
data structure allows the integration of data with various voxel
layers such as buildings, streets, and underground structures for
integrated analysis.

Scans from different epochs but collected with the same scan-
ner can give a better estimation of the changes, but they might
still be insufficient to compute tree volumes. The experiments
have illustrated that a combination of aerial and terrestrial point
clouds might be the best option, given they are collected at the
same time (e.g. using a mobile backpack and a drone). Then the
volume of the trees can be computed as all voxels that contain
tree points. Two volumes from two different years will provide
a precise estimation of the changes in the tree canopy.
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