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Abstract 

The accurate reconstruction of 3D building models is essential for urban planning and smart city applications. This study introduces 
an automated workflow integrating Unmanned Aerial Vehicle (UAV)-derived orthophotos and point clouds to enhance 
reconstruction accuracy. A deep learning-based tree segmentation model filters non-building objects, while the Cloth Simulation 
Filter (CSF) separates ground and non-ground points. Clustering techniques isolate building structures, followed by Mobile Line 
Segment Detector (LSD)-based roof edge detection and refinement. The extracted roof edges are then combined with height 
attributes to generate 3D bounding boxes. Experiments on UAV data from Suseo, South Korea, show that this approach reconstructs 
detailed and realistic 3D models, achieving high precision and recall measures. By integrating deep learning, clustering, and 
geometric analysis, this study provides a scalable and efficient solution for urban modeling. 

1. Introduction

The increasing complexity of urban environments calls for 
accurate 3D models to support urban planning, environmental 
monitoring, and disaster management. UAVs have emerged as a 
powerful tool for capturing high-resolution geospatial data, 
enabling efficient modeling of urban features (Zhang et al., 
2022). Orthophotos and point clouds derived from UAV 
imagery provide critical datasets for the abovementioned tasks 
(Gómez & Téllez, 2020). 

By integrating orthophotos and point clouds, this study 
leverages the strengths of both datasets. Orthophotos offer high-
resolution, georeferenced imagery that captures detailed surface 
features like rooftops and vegetation, aiding classification and 
segmentation. Meanwhile, point clouds provide 3D structural 
information, mitigating geometric distortions and enabling 
accurate height estimations. This complementary integration 
ensures a robust and detailed approach to urban reconstruction. 

This study proposes an integrated workflow for 3D building 
reconstruction using UAV-derived data. Deep learning is 
applied to orthophotos for tree segmentation, while the CSF 
algorithm is used to separate ground and non-ground points 
from the original point cloud (Zhao et al., 2016). Clustering 
techniques then filter low-elevation points, leaving key 
structures like buildings. By combining building-specific point 
clouds and orthophotos, roof edge lines are detected, refined 
through clustering, and extended into bounding boxes enriched 
with height attributes from point cloud data. These bounding 
boxes form the basis for generating 3D building models. 

This approach demonstrates the synergy of UAV-derived data, 
deep learning, and clustering methods, addressing challenges in 
urban modeling while contributing to advancements in 
geospatial analysis. 

2. Methodology

The workflow, shown in Figure 1, illustrates the methodology 
proposed for 3D building reconstruction in this study. As a pre-
processing step, point clouds and orthomosaic imagery are 
generated from UAV images using commercial 
photogrammetric software. Afterwards, as a first process of 
non-building object filtering step, ground filtering is applied to 
the point clouds to separate ground and non-ground points. 
Meanwhile, tree extraction step is carried out on the 
orthomosaic imagery. The filtered data enable the identification 
of building points and the extraction of 2D building boundaries. 
Afterwards, these datasets are integrated and used to detect roof 
edges and extract building candidates, forming the foundation 
for accurate 3D building reconstruction. The methodology 
highlights the integration of UAV-derived data, point cloud 
processing, and orthophoto analysis to achieve robust and 
reliable results. The detailed explanations of all the procedures 
in the proposed methodology are provided in the following 
subsections. 

Figure 1. Overview of the proposed methodology  
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2.1 Data Acquisition and Pre-processing 

 
UAV imagery is systematically captured over the designated 
study area to provide detailed visual data. This data acquisition 
phase involves taking a series of high-resolution aerial 
photographs from multiple angles to ensure comprehensive 
coverage. The images are then processed using advanced 
photogrammetric software, such as DJI TERRA or 
PIX4Dmapper (Figure 2). These software tools analyze the 
images and use techniques like Structure from Motion (SfM) 
and Multi-View Stereo (MVS) to reconstruct spatial 
information. 
 

  
 

Figure 2. UAV images and softwares for generating 
orthophotos and pointclouds 

 
The photogrammetric processing generates two primary 
outputs: orthophotos and point clouds. Orthophotos are 
geometrically accurate 2D images that maintain a uniform scale 
and eliminate distortions caused by terrain and camera tilt. 
These high-resolution images are valuable for tasks requiring 
accurate spatial measurements and detailed mapping. On the 
other hand, point clouds represent the 3D structure of the 
environment by mapping millions of points in space, capturing 
the precise geometry of buildings, vegetation, and other surface 
features. These outputs provide a robust foundation for various 
applications, such as urban planning, environmental monitoring, 
and 3D modeling. 
 

2.2 Non-building Object Filtering 

 
The overview of the object filtering process applied to non-
ground point clouds for isolating building structures is shown in 
Figure 3. The workflow combines data from point clouds and 
orthomosaic imagery to ensure accurate separation of buildings 
from other objects. 
 

 
 

Figure 3. Overview of object filtering in non-ground point 
clouds 

 
Initially, the CSF algorithm is used to filter the ground and non-
ground points from the raw point cloud data. Simultaneously, 
an enhanced U-Net model processes the orthomosaic to extract 
tree regions. These tree regions are then used to remove 
corresponding points in the non-ground point cloud. Following 
this step, a filtering process based on elevation thresholds is 
applied to the remaining points in the non-ground point cloud, 
effectively isolating building structures. 
 
More specifically, CSF algorithm is utilized to separate the 
original point cloud into ground and non-ground points. The 
non-ground points include features such as buildings, trees, 
vehicles, people, and other non-ground objects. The CSF 
algorithm simulates a cloth over the point cloud, identifying 
ground points by detecting the lowest elevations. The filtering 
parameters are adjusted to accommodate varying terrain 
conditions, ensuring an accurate separation of buildings from 
non-ground elements. 
 
At this stage, one should note that the U-Net model utilized in 
this research has been modified to improve tree segmentation 
from orthophoto images as follows: 1) Layer Normalization is 
added after each convolution. 2) SeparableConv2D replaces 
standard convolutions to reduce computational complexity. 3) 
The Dice coefficient is used to address class imbalance. 4) 1x1 
convolutions during up sampling improve efficiency without 
loss of spatial detail (Figure 4). The example of tree 
segmentaiton result using the enhanced U-Net model is shown 
in Figure 5. 

 
 

Figure 4 . Enhanced U-Net model framework 
 

 
 

Figure 5. Tree segmentation result using U-Net model 
 
Even though the CSF and tree segmentation algorithms are 
applied to separate building point clouds from the original point 
data, we still have some outliers from vehicles, people, and 
other non-ground objects. Hence, the height-based filter should 
be carried out to eliminate such outliers except for buildings. 
Relative height information of the building structures is derived 
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from the neighboring ground points. Based on this height 
information, height-based filter is applied. 
 

2.3 Building Candidate Extraction 

 
This step focuses on identifying the locations of building 
candidates based on the outcomes of subsection 2.2. Using 
orthophoto-based geospatial information and point clustering 
techniques, distinct building candidates are identified as 
separate ones. These building candidates include both X, Y, Z 
point and imagery information. Hence, textural and structural 
information of building candidates can be utilized for building 
reconstruction in this research.  
 
Since the outcomes of subsection 2.2 contain multiple buildings 
without clear separation, a clustering technique is applied to 
identify individual structures. In this step, Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) is 
employed due to its ability to handle varying building sizes and 
densities without requiring prior knowledge of the number of 
clusters (Figure 6). 
 

 
 

Figure 6. Building candidates clustering result 
 
As long as the UAV-derived orthophoto and point cloud share 
the same coordinate system, each point within a building cluster 
can be mapped to its corresponding location in the orthophoto. 
This allows the extraction of precise building images directly 
from the orthophoto. 
The transformation from 3D point cloud coordinates (x, y, z) to 
2D image coordinates (ximg, yimg) is computed as shown in 
equation (1).  
 

                (1) 
 

Where (ximg, yimg) are the pixel coordinates in the orthophoto, 
(x, y) are the geo-coordinates of a 3D point, (xmin, ymin) are the 
geo-coordinates of the bottom-left pixel on the orthophoto, and 
GSD is the Ground Sample Distance or Spatial resolution of the 
orthophoto. 
 
Once each building’s point cluster is mapped to the orthophoto, 
a Convex Hull is applied to ensure that all the structural points 
belonging to a single building candidate are enclosed (Figure 
7). 
 

 

 
Figure 7. Building candidate points and corresponding image 

 
These building candidates are further processed to ensure 
completeness and accuracy, serving as the foundational dataset 
for building-specific 3D modeling.  
 

2.4 Roof  Edge Detection 

 
Roof edge detection is a critical step for delineating the break 
lines of each building. The Mobile LSD algorithm is employed 
to identify roof edges in each building candidate image. 
Identification of major line directions is carried out by applying 
line clustering techniques to ensure that dominant roof edges 
are accurately constructed. This step also eliminates or adjusts 
incorrect directions caused by noise or misidentifications during 
line detection, resulting in more reliable edge representations. 
The accuracy of this process is vital as it directly impacts the 
quality of the 3D reconstruction. 
 
The Mobile LSD algorithm is chosen due to its robustness in 
detecting line segments in complex urban environments. 
Compared to traditional edge detection techniques such as 
Canny or Hough Transform; Mobile LSD offers higher 
robustness to noise and illumination variations, faster 
computation, and suitability for large-scale urban mapping. It 
also improves the detection of fine roof details, such as dormers 
and overhangs (Figure 8). 
 
 

 
 

Figure 8. Roof edge detection using Mobile LSD 
 
While Mobile LSD provides an initial set of line segments, raw 
detections may contain noise, missing edges, or misaligned 
segments. To improve detection accuracy, a clustering-based 
refinement process is implemented: 
 
+ Clustering: Groups detected edges into clusters based on 
proximity and alignment. 
+   Line Merging and Simplification: Parallel or closely spaced 
edges are merged into single continuous edges; Edge gaps due 
to occlusion or noise are interpolated. 
+   Outlier Removal: Short, disconnected segments are filtered 
out based on a minimum edge length threshold. 
 

2.5 Building Reconstruction 
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Roof edges derived from subsection 2.4 are extended and 
intersected each other to make bounding boxes with height 
attributes. Such attributes are assigned from the highest z-values 
of the corresponding points. By checking height information of 
the neighboring bounding boxes, these boxes are combined 
together to form 3D structures of buildings while ensuring that 
the reconstructed models reflect real-world structures. 
 
The detected roof edges are extended into bounding boxes that 
define the spatial limits of the roof. This is implemented by: 
+  Identifying roof lines from the Mobile LSD-based edge 
detection. 
+   Expanding each roof segment to form a closed bounding box 
around the detected roof structure. 
+   Dividing the bounding box into a grid. Each bounding box is 
subdivided into smaller grid cells. For each grid cell, the highest 
z-value from the non-ground point cloud within the cell is 
selected according to the equation (2). 
 

            (2) 
 
Once all grid cells in the bounding box have been assigned z-
values, the final height of the bounding box is determined using 
a frequency-based approach. Specifically, the distribution of z-
values across all grid cells within the bounding box is analyzed, 
and the most frequent z-value (mode) is selected as the 
representative height of the bounding box. After determining 
the z-value for each box, we then combine boxes with similar z-
values to define a plane (Figure 9). 
 

  
 

Figure 9. Bounding box and building model generation 
 
 

3. Experimental Results 

 

3.1 Pre-processing data 

The area of interest is located in Suseo-dong, Gangnam-gu, 
South Korea. This area is characterized by numerous modern 
high-rise buildings and large-scale structures, including the 
Suseo Station, which plays a crucial role in transportation and 
urban development (Figure 10). 
 
The data acquisition site is a 0.6 km radius area around Suseo 
Station in Suseo-dong, Gangnam-gu, Seoul, South Korea, 
covering approximately 1.13 km². A total of 1,328 UAV images 
were captured with a resolution of 5,472 × 3,648 pixels at an 
altitude of 130 meters. The flight was conducted with an image 
overlap and sidelap of 85% each to ensure high-quality 
photogrammetric processing. DJI Terra and PIX4D Mapper 
were used to generate the orthophotos and point clouds. The 
orthophoto has a GSD of 3.55 cm, while the point cloud has a 
density of 97,476 points per cubic meter. 

 
 

Figure 10. Experiment area: Suseo area, South Korea 
 

3.2 Building Candidate Generation 

 
This study introduces enhancements to the U-Net model for 
improving tree segmentation from orthophotos. The 
modifications of the U-Net model discussed in subsection 2.2 
lead to improvements in accuracy (Figure 11) and efficiency 
compared to the original U-Net model. 
 

  

 
 

Figure 11 . Enhanced U-Net model accuracy 
 

The enhanced U-Net model, which integrates layer 
normalization after each convolution, demonstrates stable 
training and strong performance. The loss and validation loss 
curves show steady improvement over epochs, indicating 
effective convergence. Both the ROC and Precision-Recall 
curves suggest high predictive accuracy, with an AUC nearing 
1.0. Additionally, the table in Figure 11 highlights the model’s 
reliability by presenting consistently high accuracy, Dice 
coefficient, and validation scores during the final epochs. These 
results confirm the model’s robustness in segmentation tasks 
and the effectiveness of the architectural enhancements. Figure 
12 shows the tree segmentation results using the enhanced U-
Net model. 
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Figure 12. Tree segmentation results 
 
Figure 13 shows the separated ground and non-ground point 
clouds from the original point clouds. Also, Figure 14 shows 
the outcomes after applying three removal and height-filter on 
the non-ground point clouds.  
 

 
 

Figure 13. Point clouds separation using CSF algorithm 
 

 

 
 

Figure 14. Before and after applying tree removal and height-
filter 

 
By applying tree segmentation, CSF, and height-based filtering 
algorithms, non-building objects such as ground, trees, cars, 
humans, and other small objects are filtered out while leaving 
only significant structures like buildings. 
 
Afterwards, a clustering technique is carried out to separate the 
building point cloud into individual clusters, each representing 
a single building candidate (Figure 15).  
 

 
Figure 15. Building candidate extraction using DBSCAN  

clustering algorithm 
 
Afterward, the Convex Hull algorithm is applied to each 
building candidate, and the corresponding building image is 
extracted from the orthophoto. Figure 16 shows several results 
of building image candidates in Suseo area.  

 
 

 Figure 16 .Building image candidates  
 

3.3 3D Building Model Reconstruction 

 
The Mobile LSD algorithm is employed to detect roof edges 
from the building images. Line clustering is then applied to 
identify the major line directions from the line segments, 
ensuring that dominant roof edges are accurately captured. This 
step helps refine the results by eliminating or correcting 
misaligned directions caused by noise, producing clean and 
precise edge lines. These refined lines serve as the foundation 
for constructing bounding boxes and modeling building 
structures. 
 
Using the detected roof edges and bounding boxes, 3D building 
models are reconstructed. Height attributes for each box are 
determined using point coverage calculated through the alpha 
shape algorithm. This method accurately identifies z-values by 
analyzing the spatial distribution of points within each box, 
enabling the generation of detailed 3D planes for each building. 
 
The final models accurately represent the spatial and structural 
characteristics of the buildings, showcasing the success of the 
integrated workflow (Figure 17). 
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Building 1 Building 2 Building 3 Building 4 
 
Figure 17. Examples of reconstructed building models in Suseo 

area 
 
The quantitative measures of the 3D building reconstruction in 
this context are computed using the following equations: 
 

            (3) 
 

                  (4) 
 

                        (5) 
 
Where Precision represents the proportion of correctly predicted 
positive instances out of all instances predicted as positive. 
Recall represents the proportion of correctly predicted positive 
instances out of all actual positive instances. F1 represents the 
harmonic mean of Precision and Recall. Table 1 shows the 
quantitative evaluations carried out using the four buildings 
shown in Figure 17. 

 
Table 1 summarizes the accuracy of plane detection in 3D 
building reconstruction, comparing the proposed method to 
ground truth across four buildings.  
 

 
Number of plane 

Number 
of 

correct 
plane 

 
Precision 

 
Recall 

 
F1 Ground 

truth 
Our 

method 

Building 
1 

10 10 10 1.0 1.0 1.0 

Building 
2 

24 32 20 0.625 0.833 0.714 

Building 
3 

13 13 13 1.0 1.0 1.0 

Building 
4 

16 10 10 1.0 0.625 0.769 

 
Table 1 . Quantitative Analysis for Planes in 3D reconstruction 

 

For simpler structures (Buildings 1 and 3), the method achieves 
perfect results, with precision, recall, and F1 scores of 1.0. In 
more complex cases (Buildings 2 and 4), either recall or 
precision is slightly reduced. For Building 2, while the 
proposed method captures most ground truth planes, it also 
identifies some additional ones. In the case of Building 4, which 
has many structures on the roof, the method misses some 
planes. This demonstrates the method's robustness while also 
highlighting challenges in handling complex structures. 

 
4. Conclusions 

This study demonstrates an effective workflow for 3D building 
reconstruction using UAV-derived orthophotos and point 
clouds. By integrating deep learning, clustering, and geometric 
approaches, the research ensures accurate building candidate 
extraction, roof edge detection, and 3D building modeling. 
   The results highlight the synergy of integrating orthophotos 
and point clouds, combining contextual details with geometric 
precision. Future work will focus on advancing the current 
outcomes, toward more detailed and complex models up to the 
Level of Detail 3. This involves integrating more refined 
architectural details and tackling challenges in modeling 
complex building structures to improve applicability in dense 
urban environments. 
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