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Abstract

Indoor 3D reconstruction is a significant research topic in computer vision and computer graphics, focusing on the construction of
complete and accurate models of indoor scenes from 3D point cloud data. Traditional data-driven methods often demonstrate poor
robustness, low efficiency, and insufficient semantic information when addressing complex indoor environments. To address these
challenges, this paper proposes a variable template matching-based method for indoor 3D scene reconstruction, which reframes the
complex reconstruction problem as a matching problem. By adjusting and reconstructing library models according to the original
instance parameters of the scene, the proposed method facilitates the fine-grained reconstruction of various complex elements
within indoor spaces. Utilizing predefined geometric models and contextual constraints, this approach enhances the precision of
indoor scene reconstruction, effectively overcoming the limitations associated with traditional data-driven techniques. Extensive
experimental validation confirms the effectiveness of the proposed method, demonstrating its ability to alleviate issues such as point
cloud noise, data loss, and occlusions, thereby improving both reconstruction accuracy and efficiency. Furthermore, by enriching
the reconstructed models with semantic information, this method provides a more comprehensive data foundation for subsequent
applications.

1. Introduction

Indoor scene 3D reconstruction technology aims to recover the
three-dimensional structure of a scene from two-dimensional
images or point cloud data. This technology is widely ap-
plied in various fields, including urban planning, architectural
design, cultural heritage preservation (Yang and Zhu, 2021),
virtual reality, indoor navigation, and Building Information
Modeling (BIM). With the rapid advancement of 3D laser scan-
ning technology and depth cameras, the acquisition of high-
precision and high-density indoor point cloud data has become
increasingly accessible, significantly propelling the develop-
ment and application of existing 3D reconstruction methods in
indoor environments (Zhang, 2023) (Mabrouk and Zagrouba,
2018) (Zhang et al., 2022). Existing 3D reconstruction meth-
ods can be broadly categorized into data-driven and model-
driven approaches. Data-driven methods primarily allow the
data to ’speak for itself,’ learning patterns and features from
large datasets without the need for predefined rules or mod-
els. Their advantages include adaptability to complex data pat-
terns, the ability to uncover hidden correlations, and a high
degree of flexibility. In recent years, deep learning has made
significant strides in 3D reconstruction, exemplified by point
cloud completion methods based on convolutional neural net-
works (CNNs) (Charles et al., 2017) (Yuan et al., 2018)and
3D shape understanding techniques utilizing Transformers (Pan
et al., 2021). However, data-driven methods often face chal-
lenges such as poor model interpretability, reliance on substan-
tial amounts of high-quality training data, and reduced robust-
ness when confronted with noise, missing data, and complex
structures. In contrast, model-driven methods leverage prior
knowledge and predefined models to guide data analysis and
∗ Corresponding author

problem-solving. These methods employ geometric model con-
straints to direct the reconstruction process, decomposing ob-
jects into a series of fundamental models and extracting features
from data to fit these model parameters. For instance, structural
modeling can be conducted using basic geometric primitives
such as planes, cylinders, and cuboids (Nan et al., 2010), or
through high-precision modeling that integrates semantic seg-
mentation with geometric priors. By constraining the recon-
struction process with prior knowledge, model-driven methods
significantly enhance reconstruction accuracy, efficiency, and
robustness. Furthermore, they offer greater interpretability and
are better suited to manage data noise and missing information,
making them particularly advantageous for indoor 3D model-
ing (Dai et al., 2017). Existing research on indoor 3D recon-
struction has primarily concentrated on data-driven methods,
while the application of model-driven approaches remains re-
latively limited. The diversity of indoor environments, particu-
larly the challenges posed by complex structures, severe occlu-
sions, and missing data, complicates the ability of traditional
geometric models to accurately represent indoor scenes (Mura
et al., 2014). For example, indoor environments frequently con-
tain numerous furniture items and decorative objects, and data
acquisition may be obstructed by viewpoint limitations and ob-
ject occlusions, resulting in incomplete point cloud data (Ar-
meni et al., 2019). Furthermore, indoor scenarios necessitate
higher reconstruction accuracy and efficiency compared to out-
door environments. Applications such as virtual reality and in-
door navigation require more precise and real-time reconstruc-
tion results. Consequently, model-driven fine-grained 3D re-
construction methods for indoor environments present signific-
ant research value and promising application prospects.
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1.1 Related work

Data-driven methods primarily rely on models learned from
extensive labeled datasets, utilizing deep learning and other
techniques to automatically generate 3D models (Charles et
al., 2017). Traditional data-driven approaches depend on the
geometric features of point cloud data, employing techniques
such as point cloud segmentation, plane extraction, and sur-
face reconstruction (Guo et al., 2020). While these methods
have shown promising results in specific scenarios, they require
substantial labeled data for training and often lack robustness
when confronted with noise, missing data, and complex struc-
tures (Han et al., 2017). This limitation is particularly pro-
nounced in indoor environments, where occlusions and gaps
significantly impair the performance of data-driven methods,
complicating the construction of accurate models with semantic
information (Kang et al., 2020). To address these limitations,
researchers have begun to integrate prior knowledge and model
constraints, leading to the emergence of model-driven 3D re-
construction methods, which have gradually become a focal
point in the field of 3D reconstruction (Schnabel et al., 2007).

Model-driven approaches leverage prior knowledge and con-
straints, integrating models from fields such as architecture
and interior design to guide and optimize the reconstruction
process (Mura et al., 2014). Compared to traditional meth-
ods, model-driven 3D reconstruction demonstrates enhanced
adaptability to complex indoor environments and structures
through model fitting and optimization. This leads to im-
provements in accuracy, completeness, and efficiency, while
also providing greater robustness and interpretability (Oe-
sau et al., 2013). Common model-driven techniques include
the RANSAC algorithm, least squares method, constrained
least squares method, and graph matching techniques. The
RANSAC algorithm is frequently employed to extract fea-
tures from noisy data and to fit model parameters (Fischler
and Bolles, 1981). The least squares method optimizes model
parameters by minimizing errors between the model and the
data (Hartley and Zisserman, 2003). The constrained least
squares method extends this approach by incorporating con-
straints such as symmetry, parallelism, and orthogonality to
enhance model accuracy (Furukawa and Ponce, 2009). Graph
matching techniques represent point cloud data and models as
graph structures, utilizing graph matching algorithms for ef-
fective model fitting (Zhou et al., 2018). These model-driven
methods have found widespread application in areas such as
building reconstruction and tunnel reconstruction. For example,
researchers have successfully reconstructed roof structures us-
ing LiDAR point cloud data by leveraging prior knowledge of
building roofs, including planar, gabled, and hipped roof mod-
els (Oesau et al., 2013). In tunnel reconstruction, researchers
decompose tunnel structures into fundamental components and
employ constrained least squares methods to accurately recon-
struct 3D tunnel models.

In summary, the successful application of model-driven meth-
ods in outdoor environments, such as building and tunnel re-
construction, further validates their effectiveness and robust-
ness. However, these existing model-driven methods are inad-
equate for addressing the challenges associated with complex
indoor 3D reconstruction. Firstly, the complexity and diversity
of indoor scenes hinder traditional geometric models from fully
capturing their structures (Armeni et al., 2019). Current model
libraries lack comprehensive support for objects such as fur-
niture and decorations, complicating model selection and para-

meter estimation. Different scenes necessitate different model-
ing strategies, thereby increasing the adaptability requirements
of the methods. Secondly, model-driven approaches heavily de-
pend on prior knowledge and predefined models, which may
result in suboptimal reconstruction outcomes when the environ-
ment deviates significantly from these predefined models (Dai
et al., 2017). Moreover, occlusions and noise continue to pose
challenges that affect the quality of point cloud data and re-
construction accuracy (Wu et al., 2011). The computational
demands of processing high-precision and high-density point
cloud data present another significant hurdle, as high compu-
tational complexity can reduce efficiency. The generalization
capability of models may also be limited when confronted with
complex or unique environments, and the optimization and ad-
justment processes often require substantial manual interven-
tion, which hinders automation. Finally, although some se-
mantic information has been integrated into model-driven re-
construction, its effectiveness remains suboptimal. Efficiently
incorporating and utilizing semantic information to enhance re-
construction quality is still an unresolved issue.

To address these challenges, we propose a variable-template
matching-based indoor 3D reconstruction method that effect-
ively tackles the point cloud reconstruction challenges in indoor
scenes and demonstrates superior performance compared to tra-
ditional techniques. The contributions are as follows.

• Multi-modal Feature Extraction: We propose a method
that integrates geometric features from point clouds and
visual features from multi-view depth maps. PointNet
extracts initial point cloud features, refined via a Trans-
former encoder, while the CLIP model extracts visual fea-
tures from depth projections. A Transformer-based fusion
mechanism generates highly discriminative global features
for model retrieval.

• Optimized Model Retrieval: We introduce a similarity
retrieval approach that iteratively optimizes multiple sim-
ilarity metrics and dynamically adjusts thresholds. This
method efficiently selects the top-K most similar models,
improving retrieval precision and robustness.

• Dynamic Model Matching: We develop a high-
precision matching strategy combining rough alignment
via RANSAC and fine alignment using ICP. Preprocessing
steps, including outlier removal and coordinate normaliza-
tion, ensure accurate transformation estimation and robust
alignment.

2. Methodology

Our model utilizes an instance point cloud Q, which is ob-
tained through indoor scene semantic instance segmentation,
along with a predefined model library S. The reconstruction
process is structured into three stages: multi-modal feature ex-
traction, model retrieval, and model matching. Figure 1 shows
the overall flow of our research method.

3. Data Processing

The quality of input data and model libraries is one of the key
factors to ensure the accuracy of feature extraction, model re-
trieval, and fitting. In the following, we will introduce the rel-
evant works of data preprocessing in this study.
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Figure 1. An overview of our approach. With an input (a) indoor
scene instance and (b) predefined model library, the output 3D

scene is reconstructed with a three-stage process (c):
Multi-modal feature extraction, model retrieval, and model

matching.

3.1 Public Datasets

To verify the feasibility and reliability of the method, we con-
duct experimental analyses using the large public dataset of
indoor scenes known as S3DIS, which is generated from the
Matterport 3D laser scanner. The S3DIS dataset encompasses
six indoor regions, containing over 215 million points, 70,496
standard RGB images, 1,413 panoramic RGB images, and 272
indoor scenes with instance-level semantic annotations. The
total area covered exceeds 6,000 square meters and includes
13 categories. Each point in the dataset is characterized by at-
tributes such as surface normals, coordinates, and semantic an-
notations, which provide rich data information that ensures the
reliability of the experimental results.

3.2 Predefined Model Library

In the field of model-driven 3D reconstruction, a predefined
model library is the basis of the research, and it is essential
for achieving efficient and accurate 3D modeling. In our study,
we designed and constructed a predefined model library spe-
cifically for indoor environments, which is organized to manage
various structural entities and movable accessories within build-
ings. The basic construction classification framework illus-
trated is illustrated in Figure 2, we adopted a multi-scale mod-
ular design to develop the library, ranging from single build-
ings to individual rooms and specific example models. This ap-
proach allows for rapid customization and extension of building
models while maintaining consistency and accuracy, enabling
users to select appropriate building components based on vary-
ing needs and application scenarios. For instance, when con-
sidering a single room, the predefined model library decom-
poses the building structure into structural entities (e.g., ceil-
ings, floors) and accessory structural entities (e.g., windows,
doors), as well as movable parts (e.g., furniture such as chairs,
sofas, tables, cabinets) and other miscellaneous categories. This
hierarchical categorization approach effectively breaks down
complex interior structures into smaller, more manageable com-
ponents, thereby enhancing the organization, storage, and man-

agement of predefined models, while also improving the usab-
ility, flexibility, and scalability of the model library.

Figure 2. The basic classification framework of the predefined
model library.

In this study, in order to realize effective 3D reconstruction,
we established a predefined model library containing more than
300 different kinds of styles by means of Revit software and
network data retrieval. This library includes structural entities
such as 10 types of ceilings, 10 types of floors, and 30 types of
walls. Additionally, the accessory structural entities consist of
60 types of windows and 45 types of doors. The movable parts
library features 50 types of sofas, 60 types of chairs, 35 types
of tables, and 30 types of coffee tables, among others. Some of
the predefined models are shown in Figure 3.

Figure 3. Partial Display of Predefined Models.

4. Method Implementation

In this section, we detail the implementation of our proposed
method for indoor 3D scene reconstruction based on variable
template matching, accompanied by a comprehensive explana-
tion of the key techniques employed.

4.1 Input Data Preparation

Based on the public S3DIS dataset (Armeni et al., 2016), in
order to obtain the instance information that needs to be re-
constructed from the disordered point cloud. We firstly adopt
the Mask3D model (Schult et al., 2023) to perform instance-
semantic segmentation on the original point cloud to realize the
fine-grained extraction and classification of the complex indoor
scene, in order to recognize the key constituent parts of the in-
door scene, such as the furniture, the walls and the floors, and
obtain the corresponding information such as point cloud data
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and semantics of the components as input for query instances,
as shown in Figure 4(a).

For the candidate models in the constructed predefined model
library, we have designed a highly robust BIM model loading
and conversion method.The core of this method is its ability to
achieve efficient data conversion and processing through adapt-
ive sampling and support for multiple formats. In this method,
we introduce a dynamic threshold adjustment mechanism that
selects the appropriate voxel size for downsampling based on
the density distribution of the point cloud, thereby optimiz-
ing processing efficiency. This method not only accommodates
BIM models in various formats but also enhances the efficiency
and quality of data conversion through adaptive sampling and
density-aware preprocessing. Specifically, for the models in the
BIM model library, the appropriate loading method is selected
based on the file type. For mesh models (e.g., OBJ, STL), we
utilize the Open3D library to convert them into point clouds and
perform adaptive sampling (as shown in equation(1).), results as
shown in Figure 4(b).

Nsample = Nbase + α · Neffective

Dlocal
(1)

where Nsample = number of sampled points
Nbase = base number of sampled points
Neffective = effective number of points
α = adaptive factor controlling the impact of density
Dlocal = local density factor

Based on equation (1), the sampling process is dynamically ad-
justed according to the characteristics of the point cloud, en-
suring balanced sampling across different regions. The base
sample count (Nbase) ensures a minimum resolution, while the
effective points address noise and outliers. The adaptive factor
(α) controls the sampling sensitivity to density variations, en-
suring appropriate sampling of high-density areas without over-
or under-sampling.

Usually, the query point cloud and the predefined model may
differ in the coordinate system, scale, and resolution, which
can significantly affect feature extraction and model retrieval.
To mitigate this issue, we first compute the bounding box of
both the query and model point clouds to determine their center
points and extents. Then, we scale the point clouds based on
the maximum range to fit them within a unit cube. Finally, a
translation is applied to move the point cloud’s center of mass
to the origin, ensuring consistency in scale and position for sub-
sequent processing.

Figure 4. Input data preprocessing. (a) 3D scene semantic
instance segmentations. (b) Adaptive sampling based on BIM

model.

4.2 Multi-modal Feature Extraction

Feature extraction from point cloud data is a critical step in
reconstruction, as it significantly influences the accuracy of
subsequent model retrieval. We propose a multimodal fea-
ture fusion-based feature extraction method that integrates the
global feature extraction capabilities of Transformers with the
depth information enhancement provided by multi-view projec-
tions. This approach harnesses both the geometric information
inherent in point clouds and the visual information derived from
multi-view depth maps, thereby enhancing robustness and dis-
tinguishing ability.

In this study, we employ high-fidelity projection techniques to
convert sparse 3D point cloud data into multi-view depth maps,
this enhancing spatial information capture and structural per-
ception in three-dimensional space, thereby boosting model re-
cognition performance. Specifically, as shown in equation (2),
we define N fixed viewpoints, which can be dynamically ad-
justed depending on the application scenario. Each viewpoint
represents a unique camera position and orientation, enabling
the capture of the point cloud from various angles to gener-
ate multiple-depth maps. A perspective projection transforma-
tion is applied to convert the 3D point cloud data into 2D depth
maps, which are then smoothed using Gaussian filtering. As a
result, we can get the depth map of N views, and each depth
map reflects the depth of the point cloud from a specific camera
viewpoint.

p
(i)
2 = K ·R(i) · p3 + t(i) (2)

where p3 = 3D point in the point cloud, [X,Y, Z, 1]T

p2 = 2D projection point on the image plane, [x, y, 1]T

K = camera intrinsic matrix
R = rotation matrix
i = current viewpoint (total N viewpoints)

For resulting N multi-view depth maps, we use a pre-trained
CLIP visual Transformer (ViT-B/16) to extract depth features,
as shown in equation (3), which are encoded into feature vec-
tors for subsequent fusion. For the point cloud, we initially ap-
ply the PointNet method to compute local feature vectors, and
these vectors are subsequently processed using a Transformer
Encoder Layer, which utilizes an 8-head Multi-Head Attention
mechanism to learn the global dependencies among the points.
and aggregates the features into a comprehensive descriptor
vector by global max pooling, resulting in a 128-dimensional
feature representation through a fully connected layer and ob-
tain global feature finally,as shown in equation (4). . After ob-
taining the depth map features and point cloud features, the fea-
ture information from both modalities is effectively integrated
using a fully connected layer and a Transformer encoder, ulti-
mately resulting in a highly discriminative global feature rep-
resentation, as shown in equation (5).

fdepth = F

({
CLIP(RP(pc, i))

∥CLIP(RP(pc, i))∥

}N

i=1

, dim = 0

)
(3)

where pc = point cloud data
RP(pc, i) = projection from the i-th viewpoint
CLIP(·) = CLIP model for feature extraction
∥CLIP(RP(pc, i))∥ = normalization of the feature
fdepth = concatenated feature of all N views
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fpoint = W3 (max (T (X2 + P(X2)) , dim = 0)) + b3 (4)

where X2 = local feature
Xinput = input point cloud data
P(X2) = position encoding
T(·) = Transformer Encoder
Xpooled = global feature
W3 = weight matrix for the final fully connected layer
b3 = bias for the final fully connected layer
fpoint = final global feature

ffinal = Transformer(fpoint ⊕ fdepth) (5)

Through this series of operations, we obtain a highly discrim-
inative global feature that effectively integrates the geometric
information of the point cloud with the visual information from
the depth map. This feature not only yields a high-precision
representation of the point cloud data but also captures inform-
ation from various viewpoints, thereby providing more accurate
and robust feature representations for subsequent tasks, such as
model retrieval and 3D reconstruction.

4.3 Model Retrieval

In the model retrieval phase, in order to improve the accuracy
and robustness of model retrieval, we design a similarity re-
trieval method that incorporates multi-method iterative optim-
ization and introduces a dynamic threshold adjustment mech-
anism to adapt to different data distributions and matching re-
quirements, aiming at efficiently identifying the model that is
most similar to the query point cloud from a set of candid-
ate models. The method dynamically adjusts the similarity
threshold through continuous iterative computation and dynam-
ically selects the appropriate similarity computation method to
achieve the purpose of obtaining the optimal solution. The es-
sence of this method lies in the integration of multiple similar-
ity computation techniques, which greatly enhances the robust-
ness of model detection. Specifically, based on the multi-modal
fused features extracted from the query point cloud and candid-
ate model in Section 4.2, we calculate the similarity between
the query feature and candidate feature as follows equation (6):

simm(fq, fk) for each method m (6)

where fq = feature vector of the query instance
fk = feature vector of the candidate model
simm = similarity score calculated for method m

To improve the robustness of similarity calculation, we perform
a weighted fusion of the results from different similarity com-
putation methods, obtaining a weighted similarity score:

simfused(fq, fk) =

M∑
m=1

wm · simm(fq, fk) (7)

where M = total number of similarity calculation methods
wm = weight for each method m

In the retrieval process, we adopt a dynamic threshold adjust-
ment mechanism to update the similarity threshold based on the
current similarity calculation results. The threshold update for-
mula is as follows:

thresht+1 = thresht + α (simfused (fq, fk)− thresht) (8)

where α = learning rate,
controlling the speed of threshold update.

In each iteration, we dynamically select the most suitable sim-
ilarity calculation method m∗ based on the current similarity
values:

m∗ = arg max
m∈M

simm (fq, fk) (9)

Finally, after multiple iterations of calculation and optimiza-
tion, we rank the candidates according to the weighted similar-
ity scores and output the top K most similar candidate models
to the query point cloud, ensuring the accuracy and robustness
of the retrieval results:

Top-K(fq) = argmax
fk

simfused(fq, fk) (10)

Following these calculations, we obtain a similarity ranking of
the image object in relation to all models in the library, as illus-
trated in Figure 5(b). For reference, this study presents the top
three retrieval results.

Figure 5. Model retrieval result for the query instance. (a) Input
query instance. (b) Top 3 retrieval results in candidate

predefined models (Models are sorted in descending order based
on similarity scores ).

4.4 Model Matching

After obtaining the most similar predefined model, it is essen-
tial to align and adjust the retrieved 3D model with the objects
in the input image. This alignment must ensure that the model
matches the input object in terms of spatial position, scale,
and orientation, thereby achieving the final 3D reconstruction.
To attain high-precision alignment between the query instance
point cloud and the target point cloud, we have designed a dy-
namic matching method. This method progressively enhances
registration accuracy and robustness through a series of optim-
ization steps, ensuring both efficiency and reliability in complex
scenes.

First, based on the most similar predefined model retrieved, we
obtain the original query point cloud and the predefined model
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point cloud for matching. Preprocessing operations are conduc-
ted on both point clouds, including outlier removal, unit nor-
malization, and coordinate system alignment, to mitigate the
effects of data noise and discrepancies on the registration res-
ults. Following these operations, we acquire a set of partially
overlapping, clean point clouds. Subsequently, the RANSAC
algorithm is employed for coarse matching, allowing for the
rapid estimation of an approximate alignment transformation
matrix, as shown in equation (11).

E(T ) =

N∑
i=1

||T (xi)− yi||2 (11)

where xi = source point of query instance, [X,Y, Z]T

yi = corresponding point of target, [x, y, z]T

T = transformation matrix
N = number of matching points
E(T ) = error metric to minimize
T (xi) = the transformation matrix

Building on this, the ICP algorithm is utilized to iteratively
identify the closest point pairs and refine the transformation
matrix, thereby performing fine matching to enhance alignment
accuracy, as shown in equation (12)(13)(14). To increase the
algorithm’s adaptability, we introduced a dynamic threshold
adjustment mechanism during matching. This mechanism dy-
namically modifies the maximum corresponding point distance
threshold in the ICP algorithm based on the feature range of
the point cloud, facilitating an adaptive adjustment of matching
precision according to the local features of the point cloud and
circumventing the limitations associated with fixed thresholds.

E(T ) =

N∑
i=1

||T (xi)− yi||2 (12)

R, t = argmin
N∑
i=1

||T (xi)− yi||2 (13)

T ′ = T ·
(
R t
0 1

)
(14)

where xi = source point of query instance, [X,Y, Z]T

yi = corresponding point of target, [x, y, z]T

T = transformation matrix
R = rotation matrix
t = translation vector
N = number of matching points
E(T ) = error metric to minimize

Furthermore, we conducted post-processing on the final align-
ment results, which included centroid and angle optimization to
further enhance alignment accuracy. A validation mechanism
was implemented to ensure the reliability of the alignment res-
ults, ultimately achieving the outcome depicted in Figure 6(b).

5. Experiment and Analysis

To evaluate the effectiveness of our method, we conduct tests
on various indoor scene point clouds sourced from public data-
sets and analyze the results.Based on the query point cloud of

Figure 6. The match results between the query instance and the
predefined model. (a) Input indoor scene query instance point

cloud. (b) Matching result visualization. (c) Output final indoor
scene query instance reconstruction result.

semantic strength segmentation and the predefined model lib-
rary constructed, we validate the effectiveness of the method
by controlling the difference of its missing degree (as shown in
Figure 7) based on query instances of different types and scales
(as shown in Figure 8) as well as the same query instance point
cloud, respectively.

For query instance point clouds of different scales, our method
demonstrates good adaptability and accuracy, as shown in Fig-
ure 8. However, the effectiveness of model retrieval is influ-
enced to varying degrees by the presence of missing data within
the input query instance point cloud. Specifically, as depicted
in Figure 7, when the input query instance point cloud is re-
latively complete, our method accurately matches the correct
model. When there is missing data, if the missing data is not
situated at critical locations, our method can still successfully
identify the correct model. However, when the missing data oc-
curs at critical locations, the matching outcomes may become
biased. For instance, as shown in Figure 7, if an office chair is
missing essential wheels, or if a right-angled sofa lacks critical
right-angle information, the matching result tends to favor the
model most similar to the current state of the point cloud with
missing components, rather than the expected correct model.
This shows that our method achieves good reconstruction work
in that it can, to a certain extent, overcome the problem of miss-
ing data due to occlusion, but further optimization is needed
to improve its robustness and accuracy in the face of missing
critical information.

After the above coarse-to-fine matching, we can get a pre-
defined model that is basically consistent with the query in-
stance. After the above coarse-to-fine matching, we can get
a predefined model that is basically consistent with the query
instance, and then we combine the semantic, color, and other
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Figure 7. Retrieval results for one query instance point cloud
using different degrees of points missingness. (a)Input query

point cloud, while L1, L2, L3 correspond to different levels of
points missingness. (b) Top 3 retrieval results in candidate
predefined models. (With the models within the red boxes

indicating the true model.)

information obtained from the semantic-instance segmentation
in Section 4.1 to adjust the matched predefined model. Finally,
we can get a model with the same location, orientation finally,
semantics, color, and relationship of the query instance. Based
on this information, we put the final model into the 3D scene
that needs to be reconstructed. Utilizing this information, we
incorporate the final model into the 3D scene that requires re-
construction. Thus, we have successfully achieved the recon-
struction process through matching for 3D scene reconstruc-
tion. Figure 9 illustrates our final 3D interior scene.

6. Conclusions

This study presents a method for indoor 3D scene reconstruc-
tion based on variable template matching, effectively transform-
ing the complex reconstruction problem into a matching task.
The method directly addresses the challenges faced by tradi-
tional data-driven approaches in managing intricate indoor en-
vironments, including poor robustness, low efficiency, and in-
sufficient semantic information. By constructing a predefined
model library and utilizing instance point clouds obtained from
semantic instance segmentation as input, the method facilit-
ates the effective retrieval of models from the predefined lib-
rary. It subsequently matches and adjusts the retrieved models
according to the parameters of the query instance. Further-
more, this approach integrates semantic information derived
from semantic segmentation with 3D point cloud models, en-
abling fine-grained reconstruction of diverse movable entities
within indoor scenes. This integration not only enhances the
accuracy and efficiency of reconstruction but also enriches the
semantic content of the model, providing more comprehensive
data support for subsequent applications. Experimental results
demonstrate that the proposed method, when confronted with
challenges such as point cloud noise, missing data, or occlu-

Figure 8. Visualization of different instances and scale
reconstruction results. (a) Input indoor scene or query instance

point cloud. (b) reconstructed 3D scene or single instance.

Figure 9. Indoor scene reconstruction result. (a) Input indoor
scene point cloud data. (b) Final indoor scene reconstruction

result.
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sion, significantly improves accuracy, efficiency, and robust-
ness, thereby offering an effective solution for fine-grained 3D
reconstruction of indoor scenes.

Despite the demonstrated advantages, several key issues and
challenges remain to be explored and resolved in future re-
search. Building a comprehensive and diverse indoor object
model library, developing more efficient model-matching al-
gorithms, and better integrating semantic information into the
reconstruction process are crucial directions for future stud-
ies in this field. These research avenues will not only propel
the development of indoor 3D reconstruction technology but
also provide robust technical support and innovation potential
for related application areas, such as virtual reality, augmented
reality, and building information modeling (BIM).In summary,
this study offers a valuable perspective and technical approach
in the realm of indoor 3D scene reconstruction. Through a
model-driven method, it effectively enhances the accuracy and
efficiency of reconstruction while also providing guidance for
future research efforts. With ongoing technological advance-
ments and deeper investigations, this approach is anticipated to
yield broader applications and further optimizations in the fu-
ture.

7. ACKNOWLEDGE

This work was supported in part by Natural Science Founda-
tion of China(Project Nos.42471442), Research Project of Nat-
ural Science Foundation of Guangdong Province (Project No.
2024A1515030061), Research Project of Shenzhen S and T In-
novation Committee (Project No. KJZD20230923115508017)
and Research project of State Key Laboratory of Subtropical
Building and Urban Science(Project No. 2023ZB18)

References

Armeni, I., He, Z. Y., Gwak, J. Y., 2019. 3d scene graph: A
structure for unified semantics, 3d space, and camera. Proceed-
ings of the IEEE/CVF international conference on computer
vision, 44, 5664–5673.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., 2016.
3D Semantic Parsing of LargeScale Indoor Spaces. In IEEE
Conference on Computer Vision and Pattern Recognition.

Charles, R. Q., Su, H., Mo, K., Guibas, L. J., 2017. Pointnet:
Deep learning on point sets for 3d classification and segment-
ation. Proceedings of the IEEE conference on computer vision
and pattern recognition, 652–660.
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