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ABSTRACT: 

 

The production of high-definition maps (HD Maps) is a multi-stage, resource-intensive process that demands substantial 

investments in specialized equipment, skilled labor, and time. This study introduces a semi-automated mapping tool aimed at 

addressing these challenges through the integration of point cloud data, trajectory information, and image-based AI algorithms. One 

of the key innovations of this tool is a user-friendly graphical user interface (GUI), which enhances usability by facilitating data import, 

preprocessing customization, and feature visualization. The tool focuses on extracting essential road features such as lane lines, stop 

lines, directional arrows, and traffic signals, outputting data in various formats including LAS, PCD, and SHP. Performance evaluations 

were conducted in both controlled and real-world environments. In the Taiwan CARLab, the tool demonstrated high accuracy under 

diverse traffic scenarios. Testing on Taiwan's National Highway No. 1 further confirmed the tool’s robustness in handling real-world 

conditions, achieving up to a 50–70% reduction in processing time compared to manual digitization. These findings highlight the tool's 

potential to significantly reduce production costs while maintaining accuracy, thereby facilitating wider adoption of HD Maps in 

autonomous driving applications. 

 

 

1. INTRODUCTION 

The production of high-definition maps (HD Maps) 

involves multiple stages that require significant investments in 

equipment, labor, and time. Data collection necessitates 

specialized hardware such as LiDAR sensors, GPS receivers, and 

high-resolution cameras, which can be costly to acquire and 

maintain (Chiang et al., 2022). Manual data processing, 

particularly for feature digitization, is labor-intensive and time-

consuming (Sester et al., 2017). Skilled personnel are required to 

analyze and manage data, further increasing labor costs. 

 

This study presents a semi-automated tool developed to 

produce HD Maps. The primary objective of this tool is to replace 

labor-intensive manual digitization with a more efficient semi-

automated process, thereby reducing the substantial labor costs 

associated with HD Maps production (Van Nieuwenhuizen & 

Hegeman, 2020). Additionally, the tool integrates a user-friendly 

graphical user interface (GUI) to streamline operations. This GUI 

enables users to easily import data, configure preprocessing 

options, monitor output logs, and visualize extracted features in 

real-time. By providing an accessible interface, the tool bridges 

the gap between research and practical application, making HD 

Maps mapping technologies available to a broader range of users. 

 

The tool focuses on extracting essential road surface 

features from point cloud data, including lane lines (solid and 

dashed), zebra crossings, directional arrows, stop lines, and lane 

centerlines, which are subsequently modeled into shapefile 

vector formats. To achieve this, multiple data sources are utilized, 

enhancing the robustness and accuracy of feature extraction. 

 

The importance of automation in HD map production has 

been widely recognized in the literature. Lots of studies have 

emphasized the need for AI-based feature extraction to improve 

efficiency in transportation infrastructure projects. Automated 

tools that integrate point cloud and image data have shown 

significant promise in reducing manual workload and enhancing 

accuracy. Chang (2023) demonstrated the use of a cloth 

simulation filter (CSF) and Otsu’s thresholding method to 

separate ground points and extract road markings, such as stop 

lines and lane lines, from Mobile Laser Scanning point clouds. 

Additionally, Ma et al. (2019) proposed a robust approach for 

extracting lane features from curved roads, which highlights the 

adaptability of automated methods in diverse road environments. 

These tools are crucial for enabling scalable map production for 

autonomous vehicle navigation, where high levels of spatial 

precision and data integration are required. 

 

1.1 Data Sources 

This study uses three primary data sources: point cloud data, 

trajectory information, and images, all collected using RIEGL 

instruments. Point cloud data provides a high-precision spatial 

representation of road surfaces and surrounding objects. It is 

acquired using LiDAR sensors, which are known for their 

accuracy in capturing complex surface geometries. Trajectory 

data, recorded through integrated INS and GNSS systems, 

ensures precise positioning and alignment of point cloud frames, 

which is essential for maintaining data consistency across large 

areas. Additionally, high-resolution image data complements the 

point cloud by providing visual context for identifying road 

features, including traffic signals and lane markings. AI models, 

such as Mask R-CNN, leverage these images to automate the 

detection of complex features. 

 

1.2 Feature Extraction 

The semi-automated tool employs a combination of 

geometric analysis and AI-driven feature recognition to extract 

key elements from the data. Point cloud clustering algorithms 

segment surface features, such as lane markings, based on 

reflectivity and spatial distribution. Meanwhile, image-based 
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models detect and classify visual features like signals. The 

trajectory data is helpful for feature extraction. 

     

    The role of AI in feature extraction has been explored 

extensively. Van Nieuwenhuizen and Hegeman (2020) 

highlighted the advantages of deep learning models in reducing 

the error rates associated with manual digitization. Similarly, 

recent advancements in oriented bounding box (OBB) 

classification have demonstrated improvements in the 

identification and modeling of road features from clustered point 

data. 

 

1.3 User Interface and Testing 

The graphical user interface (GUI) was designed to provide 

an intuitive and accessible platform for users, aligning with the 

goal of practical applicability beyond academic research. The 

GUI includes modules for data import, preprocessing 

configuration, real-time output logging, and visual display of 

extracted features. Usability studies have shown that well-

designed interfaces can significantly reduce the time required for 

data management and verification. 

 

Testing was conducted in both controlled and real-world 

environments to evaluate the tool’s robustness. The CARLab in 

Taiwan served as a closed test field, providing a controlled 

setting for algorithm testing. This facility includes various traffic 

scenarios, such as curved roads, tunnel, and intersections, which 

are critical for testing feature detection capabilities. For real-

world assessment, a one-kilometer section of Taiwan’s National 

Highway No. 1 was selected due to its repetitive and structured 

features. The highway tests demonstrated the tool’s effectiveness 

in replacing manual digitization with semi-automated processes, 

achieving high accuracy rates across multiple feature types. 

 

The findings from this research contribute to ongoing efforts 

to enhance HD map production workflows. By integrating AI and 

automated data processing techniques, this study addresses key 

challenges in scalability and cost reduction, making HD maps 

more accessible for autonomous driving applications. 

 

2. METHODOLOGY 

    The methodology for this research follows a structured data 

processing pipeline designed to efficiently extract essential road 

features by combining multiple data sources, including point 

cloud data, trajectory information, and images. This 

comprehensive workflow, illustrated in Figure 1, is divided into 

multiple stages—data preprocessing, filtering, feature extraction, 

and final output generation. Each stage plays a crucial role in 

ensuring both the accuracy and scalability of HD Maps 

production. 

 

The process begins with point cloud data preprocessing, 

which undergoes initial filtering using the Cloth Simulation Filter 

(CSF). This method separates ground and non-ground points by 

simulating the behavior of a falling cloth over inverted point 

clouds, helping to isolate the point clouds of road surface. Once 

ground points are identified, further processing such as voxel 

downsampling and noise filtering is applied to optimize data 

density while retaining essential features. Curb detection and 

high-reflectivity point extraction are then performed to define 

lane boundaries and identify painted road markings. 

 

Simultaneously, image data collected from onboard cameras 

is processed using AI models like Mask R-CNN. This step 

involves detecting critical road features, such as traffic signals, 

and generating bounding boxes around them. These image-based 

features are aligned with the point cloud data, ensuring spatial 

consistency across both data types. Trajectory data captured from 

integrated GNSS and INS systems is used to maintain accurate 

georeferencing and assist extraction throughout the process. 

 

In the feature extraction phase, point cloud clustering is 

applied to segment road elements, with Euclidean distance-based 

clustering followed by Oriented Bounding Box (OBB) 

classification. OBB is preferred over Axis-Aligned Bounding 

Box (AABB) due to its ability to accommodate object 

orientations that do not align with the coordinate axes, thereby 

providing more precise feature representation (Gottschalk et al., 

2000; Jiang, 2017). The classification process identifies various 

road markings, including lane lines, stop lines, and directional 

arrows, based on their geometric properties. 

 

After feature extraction, the data is exported in multiple 

formats to support various applications. LAS files enable to store 

the full-resolution point cloud data, PCD files offer compatibility 

with 3D visualization tools, and shapefiles store vector-based 

features for integration into Geographic Information System 

(GIS) software. The final output undergoes manual verification 

to confirm feature accuracy and attribute completeness, ensuring 

reliability for HD Maps used in autonomous driving and other 

advanced mapping systems. 

 

This multi-stage methodology enables robust, high-

precision feature extraction while reducing the manual workload 

traditionally associated with HD Maps production. By 

integrating automation and cross-referencing multiple data 

sources, the workflow improves both efficiency and scalability, 

positioning it as a practical solution for large-scale, real-world 

mapping projects. 

 

 
Figure 1. Flowchart of semi-automated HD Maps feature 

extraction. 

 

2.1 Data Acquisition 

    Data for this research was gathered using the RIEGL VMX-

250 system, as shown in Figure 2, which captures both high-

precision point cloud and image data. Trajectory data was 

simultaneously recorded using GNSS and INS to provide precise 

georeferencing for each data frame. 
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Figure 2. RIEGL VMX-250 system (Zeng, 2020). 

 

2.2 Data Preprocessing 

The raw point cloud data undergoes several preprocessing 

steps to ensure the accuracy and efficiency of feature extraction. 

Ground points are separated using the Cloth Simulation Filter 

(CSF) method (Zhang et al., 2016), which provides a reliable 

approach to isolate road surfaces from point cloud data. Unlike 

traditional filtering methods that rely on elevation and slope, 

which struggle in complex or steep terrains, the CSF technique 

models a falling cloth over inverted point clouds to create a 

reference surface, as shown in Figure 3. To optimize 

computational performance, the point cloud is then voxelized, 

reducing data density while preserving essential details. 

 

 
Figure 3. Cloth simulation filter (Zhang et al., 2016). 

 

Several key parameters influence the outcome of the CSF 

simulation, including rigidity, cloth grid resolution, and the 

classification threshold. Rigidity determines how closely the 

cloth conforms to the ground surface, with this study selecting a 

'flat' setting due to the relatively even terrain in the test area. The 

cloth grid resolution, set to 0.1 meters, defines the density of cloth 

nodes, while the classification threshold, also set to 0.1 meters, 

specifies the maximum elevation difference allowed between the 

point cloud and the simulated reference surface. The 

implementation of CSF was carried out using 

CloudCompareStereo, which offers an efficient and user-friendly 

platform for point cloud processing, enhancing its suitability for 

diverse scenarios. 

 

Additional preprocessing involves noise filtering to remove 

outliers and irrelevant data points. Curb detection is performed to 

define lane boundaries, and high-reflectivity points, indicative of 

painted road markings (Li et al., 2019), are extracted for further 

analysis. 

 

2.3 Feature Extraction 

    Feature extraction combines geometric analysis with AI-

based methods. High-reflectivity points undergo clustering using 

Euclidean distance, and the resulting clusters are analyzed 

through oriented bounding box (OBB) classification. The 

classification of different road surface markings on the pavement 

relies on the geometric characteristics of each point cloud cluster 

obtained through clustering. In this study, the algorithm 

parameters were refined to align with road marking design 

standards, facilitating accurate recognition of various marking 

types. To deduce the geometric properties of each cluster, 

minimum bounding boxes were created to encompass all points 

within each cluster, allowing for the calculation of their length 

and width. This approach proved advantageous due to its regular 

structure and computational efficiency, making bounding boxes 

effective for object representation. OBB is preferred over axis-

aligned bounding box (AABB) as it offers greater flexibility in 

accommodating the varying orientations of road features, such as 

directional arrows, which may not align perfectly with the 

coordinate axes, as shown in Figure 4. Literature, including 

studies by Ma et al. (2019), has shown that OBB improves the 

accuracy of feature boundary fitting in complex environments. 

 

 

Figure 4. Oriented bounding box and axis-aligned bounding 

box (Chang, 2023). 

 

Image data is processed using an AI model, specifically 

Mask R-CNN, to detect and outline key objects by generating 

bounding boxes around them. These detected features, such as 

traffic signals, are then aligned with point cloud data to achieve 

precise spatial integration, as shown in Figure 5. The process 

begins with the AI model identifying important objects in the 

image data, including bounding box coordinates that serve as 

spatial markers. Once the bounding boxes are applied, the 

corresponding point cloud data within these regions is extracted 

for further analysis. This step ensures that both image and spatial 

data are synchronized, which enhances detection accuracy by 

leveraging the strengths of each data type. Point cloud data, 

known for its spatial precision, captures structural details, while 

images provide contextual and visual information. The workflow 

progresses with noise removal to isolate relevant features such as 

signal posts or traffic signs. Noise filtering reduces false positives 

and ensures that only the significant point cloud clusters remain. 

Afterward, the algorithm calculates the centroids of the extracted 

features, providing a precise spatial reference for each object. 

These refined data points are then exported as shapefiles, 

enabling seamless integration with Geographic Information 

System (GIS) applications. This combined approach significantly 

improves the robustness of feature extraction by utilizing both 

geometric and visual data sources. The AI-assisted methodology 

minimizes manual effort, increases processing efficiency, and 

reduces the likelihood of errors associated with independent data 

processing methods. This synergy between image and point 

cloud data makes the tool suitable for scalable, high-precision 

mapping projects in autonomous driving applications. 
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Figure 5. Image AI model-assisted detection process. 

 

 

2.4 Data Output 

    The extracted features are exported in multiple formats to 

support various applications. LAS files contain the full-

resolution point cloud data, while PCD files provide 

compatibility with 3D visualization tools. Shapefiles store 

vector-based features for use in GIS software. The final output is 

subjected to a manual verification process to confirm feature 

accuracy and attribute completeness, ensuring the reliability of 

the HD Maps. 

 

To ensure the reliability of these exported outputs, a manual 

verification process is implemented. This step involves cross-

referencing the extracted features against the original data to 

confirm both spatial accuracy and attribute completeness. 

 

3. RESULTS AND DISCUSSION 

3.1 Experiment Setups 

This study evaluated the performance of the semi-automated 

HD Maps production tool in two distinct environments: the 

closed test field at Taiwan CARLab and a one-kilometer segment 

of Taiwan National Highway No. 1. These environments were 

selected to provide both controlled and real-world scenarios, 

offering a comprehensive assessment of the tool’s accuracy, 

efficiency, and practicality. 

 

(1) Controlled Test Field:  

The Taiwan CARLab, located in Shalun, Tainan, is a 

specialized closed-field testing site designed for autonomous 

driving research as shown in Figure 6. For this study, data 

acquisition was conducted using the RIEGL VMX-250 system, 

supplied by a professional surveying firm. The CARLab features 

thirteen simulated traffic scenarios, including railway crossings, 

curved roads, and tunnels, which provide a diverse and controlled 

environment to test and calibrate algorithms. This controlled 

environment was chosen for its well-defined conditions, 

including clearly marked road features and the absence of 

external vehicle interference. These characteristics enhance the 

accuracy and reliability of the experiments. 

 

 

Figure 6. Taiwan CARLab (CARTURE, 2019). 

 

(2) Real-World Test Field:  

The second test environment was a one-kilometer segment 

of Taiwan National Highway No. 1. This highway section was 

chosen due to its repetitive features, which are common in real-

world road networks. These features, such as dashed lane lines, 

solid lane lines, and lane centerlines, provide an ideal scenario to 

demonstrate the tool’s ability to automate feature extraction 

efficiently and accurately. 

 

3.2 Graphical User Interface 

 

 

Figure 7. User interface of semi-automated HD Maps 

production tool. 

 

The development of a graphical user interface (GUI) was a 

crucial aspect of this research, aimed at ensuring practical 

usability beyond academic exploration. The GUI was designed to 

facilitate user interaction with the mapping tool, making the 

system accessible to both technical and non-technical users. It 

includes several key components, each serving a specific 

function within the workflow. 

 

The interface shown in Figure 7, the Import Data section 

allows users to easily import point cloud and image data files and 

so on into the execution system. Once the data is imported, the 
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Preprocessing Options panel enables users to configure 

parameters such as voxelization (downsampling), ground point 

filtering, and noise reduction. This customization ensures that the 

system can adapt to various data qualities and project 

requirements. 

 

Users can select the desired Output Format, choosing 

between LAS, PCD, and shapefile formats, depending on their 

needs. The Available Layers in the Field panel is designed to 

help users preemptively evaluate whether the input data includes 

critical features such as stop lines, directional arrows, and zebra 

crossings. This pre-assessment allows users to configure the 

system more effectively, thereby accelerating algorithm 

performance and enhancing feature extraction accuracy. An 

Output Log Messages window provides real-time updates on 

the processing status, informing users of any errors or completed 

tasks. Finally, the Canvas for Display serves as a visualization 

area that displays point cloud data and extracted features for 

inspection, without extensive interactive functionality. 

 

These features collectively streamline the map production 

process, allowing users to efficiently manage data, monitor 

progress, and export results. By integrating an intuitive interface, 

the system bridges the gap between academic research and real-

world application, empowering a wider range of users to benefit 

from high-precision mapping technologies. 

 

3.3 Road Surface Marking Extraction 

The extraction of road surface markings is another 

significant achievement of this research. The process starts by 

isolating ground points from the point cloud data using the cloth 

simulation filter (CSF). This separation enables the subsequent 

focus on surface details without interference from non-ground 

elements. Once the ground points are isolated, a binarization 

technique based on Otsu's thresholding method is applied to 

distinguish between paint markings and asphalt surfaces in the 

point cloud. This step ensures that the high-reflectivity paint 

areas, such as lane markings and stop lines, are clearly segmented. 

The results of Otsu's thresholding method are illustrated in Figure 

8, which demonstrates the clear segmentation of painted and 

asphalt surfaces. 

 

 

Figure 8. Binarization of road surface markings. 

 

The extraction process is further refined using trajectory 

data to assist in accurately identifying stop lines. Following this, 

the segmented points are grouped into clusters through a point 

clustering algorithm. Each cluster is analyzed to determine its 

geometric properties using oriented bounding box (OBB) 

analysis, which calculates the length and width of the cluster. 

Based on these geometric characteristics, the clusters are 

classified into various road objects, including zebra crossings, 

directional arrows, solid and dashed lane lines, and lane 

centerlines. 

 

A visual representation of the extracted road surface 

markings is shown in Figure 9. The red lines indicate the 

extracted stop lines, while the cyan lines represent the zebra 

crossings. Directional arrows are highlighted in green, with 

yellow lines marking double-lane lines. Single-lane lines are 

shown in white, and purple lines indicate the lane centerlines. 

This visualization confirms the effectiveness of the extraction 

and classification methods applied. 

 

This classification process allows for efficient and accurate 

modeling of road surface markings, contributing to the overall 

accuracy of the HD Maps. The output data is stored in formats 

suitable for further analysis and integration into mapping 

applications, ensuring compatibility with industry-standard tools. 

Testing demonstrated that this method effectively handles 

various road marking types, making it a robust solution for large-

scale mapping projects. 

 

 

Figure 9. Extraction results of closed test field. 

 

Additionally, one of the research’s objectives focused on 

highways, given their relatively simple and repetitive features. 

Such characteristics make highways ideal candidates for semi-

automated extraction to replace manual digitization. To validate 

this approach, a one-kilometer section of Taiwan's National 

Highway No. 1 was selected for testing. During the highway tests, 

the tool maintained high performance despite the dynamic and 

less controlled environment. The results are shown in Figure 10, 

where white lines represent dashed lane markings, yellow lines 

indicate solid lane lines, and purple lines denote the lane 

centerline. These results illustrate the tool's ability to efficiently 

extract and classify highway features, further supporting its 

scalability for large-scale applications. 
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Figure 10. Extraction results of Taiwan's National Highway 

No. 1. 

 

3.4 Traffic Signal Extraction 

The extraction of traffic signals was a key component of this 

study. The process began by separating non-ground points from 

the point cloud data using a cloth simulation filter (CSF). An AI 

model was then applied to the image data to detect traffic signals, 

generating bounding boxes around identified objects. These 

bounding boxes were spatially aligned with the point cloud data, 

allowing for the extraction of point cloud data corresponding to 

each detected signal. Points within the bounding boxes were 

further refined to isolate and filter traffic signal points, and the 

centroid of each signal was calculated. The final output was 

saved in shapefile format for use in HD maps. 

 

Testing in the controlled environment at Taiwan CARLab 

revealed that out of 59 traffic signals present, the system 

successfully extracted 50, with 9 signals missed. No false 

positives were detected during the extraction process. The 

primary reason for missed detections was the limited field of 

view of the cameras, which were mounted on the sides and rear 

of the vehicle, causing some signals to be excluded from image 

capture. Despite these limitations, the results demonstrated 

strong potential for automated traffic signal extraction. 

 

The performance results for traffic signal extraction are 

summarized in Table 1 and the display results of signal extraction 

are shown in Figure 11 below. The red dot in the figure is the 

center position of the extracted signals. 

 

Table 1. Accuracy analysis of extraction results of lane lines 

Test Environment Taiwan CARLab 

Total Signals 59 

Extracted Signals 50 

Missed Signals 9 

False Positives 0 

Accuracy Rate 84.7% 

 

These results highlight the effectiveness of combining point 

cloud data and image-based AI for traffic signal detection while 

also indicating areas for further optimization in sensor placement 

and coverage. 

 

 

Figure 11. Result of signal extraction. 

 

 

3.5 Quantitative Analysis 

The comparative analysis of manual digitization and the 

semi-automated tool, based on a one-kilometer segment of the 

real-world test field: Taiwan National Highway No. 1, 

demonstrates a significant improvement in production efficiency 

for HD map generation. As shown in Table 2, the semi-automated 

tool requires only 40 minutes to complete the entire process, 

compared to 90–120 minutes for manual digitization. This 

represents a reduction in processing time by approximately 50–

70%, highlighting the tool's ability to dramatically decrease 

production costs while maintaining accuracy. These results 

validate the tool's potential as a cost-effective solution for HD 

map production, facilitating broader adoption in autonomous 

driving applications. 

 

Table 2. Comparison of processing time between manual 

digitization and semi-automated tool for HD Maps production 

Process 

Manual 

Digitization 

(min) 

Semi-

Automated 

Tool (min) 

Downsample 

90~120 

7 

Outlier Removal 3 

Ground Extraction  7 

Curb Detection 4 

High-Intensity Point Cloud 

Extraction 
3 

Marking Extraction 1 

Manual Review and Fine-

tuning 
20 

Total Duration 90~120 min 45 min 

 

These findings reinforce the importance of automation in 

large-scale mapping projects and emphasize the tool's role in 

enhancing both productivity and cost-efficiency. 
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