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Abstract 

An updated map of the area's land use land cover (LULC) is necessary for strategic planning and management of land use to shape the town 

sustainably. The advances in remote sensing imageries and artificial intelligence have facilitated the extraction of LULC classification. With 

the high number of studies on LULC mapping using various machine learning (ML) and deep learning (DL) algorithms incorporating 

imageries, no established algorithm shows stable results for all the datasets and study regions. Therefore, we used three robust machine 

learning algorithms, Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), and four deep learning algorithms, 

Residual Network (ResNet50 and ResNet152) and Visual Geometry Group (VGG16 and VGG19), to understand which model can produce a 

highly accurate LULC map in the Indian context, which are inherently unplanned and unorganized using Sentinel 2 imageries. The results of 

these models were then comparatively analyzed statistically using Accuracy, Recall, Precision, F1-score, and Kappa coefficient. Although 

DL models require a large number of training datasets, they outperformed the ML algorithms with higher Kappa coefficient values 

(ResNET50 = 0.90, ResNET-152 = 0.91, VGG-16 = 0.94, VGG-19 = 0.94). VGG-19 has consistently given better performance in all 

accuracy metrics. Overall the study highlights the potential of deep learning models, particularly VGG-19, in generating highly accurate 

LULC maps for complex and unplanned urban environments in India. These findings underscore the importance of leveraging advanced AI 

techniques in remote sensing for effective land use planning and sustainable urban development. 

1. Introduction

The land is a crucial natural resource, and a larger part of it has been 

utilized without proper planning, leading to irreversible degradation. 

If not managed effectively, this mismanagement negatively impacts 

both society and the environment. Therefore, the development of 

accurate and up-to-date land use land cover (LULC) maps is 

essential (Pallavi et al., 2022; Verma and Jana, n.d.; Yassine et al., 

2021). LULC classification is the process of categorizing natural 

and artificial features on the Earth's surface within a specific time 

frame using scientific and statistical methods. These maps play a 

vital role in applications such as natural disaster monitoring, soil 

erosion estimation, environmental assessment, agriculture, and 

urban development. Access to updated LULC data facilitates 

sustainable planning and supports social, environmental, and 

economic development (Barakat et al., 2019; Boulila et al., 2021; 

Verma and Jana, n.d.). 

LULC maps can be created through manual or modern techniques 

or a combination of both. Manual classification methods, such as 

field surveys, require significant human effort, making them time-

consuming and costly. They rely on human interpretation and 

expertise, leading to varying levels of accuracy and scale (Carranza-

García et al., 2019). Modern mapping techniques employ numerical, 

digital, and spectral-based classification methods. Numerical 

classification utilizes artificial intelligence, while spectral-based 

methods rely on calculated indices such as the Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Water 

Index (NDWI), and Soil-Adjusted Vegetation Index 

(SAVI)(Kalpana and Nandhagopal, 2021; Pallavi et al., 2022; 

Sathyanarayanan et al., 2020; Yassine et al., 2021). 

Numerical and digital classification methods are further divided into 

hard and soft classification. Hard classification assigns each pixel to 

a single class, defining homogeneous land cover, whereas soft 

classification accommodates spatial heterogeneity and addresses 

mixed pixels. Hard classification techniques include traditional 

machine learning and advanced machine learning approaches. 

Traditional machine learning methods are categorized into 

unsupervised, semi-supervised, and supervised classification. 

Unsupervised classification does not require training samples and 

groups similar pixels automatically. Semi-supervised classification 

is applied when training samples are limited compared to the area of 

interest. Supervised classification relies on training samples and 

expert knowledge to classify images accurately (Alshari and Gawali, 

2021). A significant number of studies have focused on LULC 

classification using machine learning algorithms applied to remotely 

sensed imagery. Researchers have compared and optimized 

different algorithms to identify the most accurate models for LULC 

mapping. The accuracy of these algorithms varies depending on 

factors such as spatial and temporal resolution and sensor 

characteristics (Kalpana and Nandhagopal, 2021; Sathyanarayanan 

et al., 2020). Studies indicate that Support Vector Machines (SVM) 

and Random Forest (RF) generally outperform other machine 

learning algorithms. Comparative analysis of multiple classifiers has 

shown that the RF algorithm achieves high accuracy, often 

exceeding 95% (Arfa and Minaei, 2024; Dewangkoro and 

Arymurthy, 2021). 

Advancements in artificial neural networks (ANNs) have led to the 

evolution of deep learning (DL), which excels in complex feature 

learning and computationally intensive tasks. Deep learning benefits 

from high-performance computing resources such as Graphics 

Processing Units (GPUs) and large datasets. It achieves superior 

accuracy in LULC classification due to its ability to process large 
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numbers of features and extract hierarchical representations from 

raw data (Gardner and Nichols, n.d.; Uba et al., 2016). Although DL 

models require longer training times compared to traditional 

machine learning optimization techniques such as max-pooling, 

batch normalization, and transfer learning can improve efficiency        

(Yassine et al., 2021). 

Various deep learning frameworks, including TensorFlow, Keras, 

and PyTorch, facilitate DL model development. Pre-trained 

networks such as Convolutional Neural Networks (CNNs) have 

been widely used for image classification. CNNs, in particular, have 

demonstrated high accuracy in LULC classification by capturing 

spatial and temporal dependencies within images (Bhosle and 

Musande, 2019; Dewangkoro and Arymurthy, 2021). Popular CNN 

architectures include VGGNet and ResNet. Studies comparing 

different CNN models have found that architectures such as VGG19 

and ResNet50 consistently achieve high classification accuracy, 

often exceeding 94% (Uba et al., 2016). Despite the extensive 

research on LULC classification using machine learning and deep 

learning, no single algorithm consistently delivers optimal results 

across all datasets. Most LULC analyses rely on well-structured test 

sites, whereas real-world datasets, particularly in regions with 

unplanned infrastructure, pose additional challenges. The selection 

of the best-performing model depends on dataset characteristics, 

parameter configurations, and hyperparameter tuning. 

Hyperparameters require expert knowledge and trial-and-error 

optimization to achieve the best model performance (Rousset et al., 

2021; Sathyanarayanan et al., 2020; Yassine et al., 2021). 

This study focuses on LULC classification using Sentinel-2 satellite 

imagery at 10m spatial resolution for the Lucknow district. The 

study employs three machine-learning techniques (RF, SVM, and 

K-NN) and four deep-learning CNN models (ResNet50, ResNet152, 

VGG16, and VGG19) to determine the most accurate method for 

generating high-precision LULC maps. By optimizing these models 

and analyzing accuracy statistics, this research aims to contribute to 

the effective application of Earth observation techniques for land use 

planning and management. 

2. Methodology 

2.1 Study Area 

In this study, we selected the Lucknow district, the capital of Uttar 

Pradesh, the most populous state in India (Figure 1). According to the 

2011 census, Lucknow is the eleventh-largest city in India, with a 

population of 4,589,838. In 2022, the estimated population was 

5,178,766, based on adhaar (uidai.gov.in) data from December 2020. 

The geographical extent of the study area ranges between 26° 45ꞌ and 

26° 55ꞌ N latitude and 80° 50ꞌ and 81° 5ꞌ E longitude in the northern 

hemisphere. It is situated in the core of the Gangetic plain, covering 

approximately 2,528 square kilometers (976 sq. Mi) at an elevation 

of about 123 meters (404 ft) above sea level (Shukla and Jain, 2019). 

LULC classification for Lucknow provides crucial data for 

environmental management, policymaking, and urban planning 

(https://lucknow.nic.in/). As one of India's most densely populated 

cities, Lucknow has undergone rapid and unplanned urban expansion, 

significantly altering its land cover (Salim et al., 2025; Shukla and 

Jain, 2019).The increasing conversion of land into residential zones 

has led to fragmented and unstructured urban development. Studies 

indicate a rise in built-up suburban areas and a decline in rural open 

spaces, driven by population growth and expanding human 

settlements (Rawat et al., 2020). 

 

Figure 1: Sentinel 2A Satellite imagery of Study area Lucknow 

shows the four areas selected for the training (in yellow) and the 

area selected for the test (in red). 

2.2 Dataset and Processing 

Sentinel is a widely used dataset in multi-disaster assessment 

including land deformation, environmental monitoring, change 

detection, etc. (Boulila et al., 2021; Mohan et al., 2021; Salim et al., 

2025; Srivastava et al., 2025; Thakur et al., 2025, 2024; Zope et al., 

2017). For this study, sentinel-2 satellite imagery of the Lucknow 

district, dated September 15, 2023, was downloaded from the 

United States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov). The sentinel-2 dataset comprises 

13 spectral bands with varying spatial resolutions (10m, 20m, and 

60m). In this study, we used three bands (R, G, B) at 10m spatial 

resolution. To minimize atmospheric effects, we selected satellite 

images with low cloud cover and performed atmospheric correction 

using QGIS software. 

Five locations of interest in Lucknow district were chosen (Figure 

1). These locations, spread across the district, represent diverse 

ecosystems, including built-up areas, barren land, vegetation, 

forests, water, and wetlands. The selection aimed to capture the 

area's landscape diversity. We generated approximately 2000 

patches from the selected locations to create a comprehensive 

dataset. These patches were divided into training, validation, and 

testing sets, ensuring a balanced representation of all LULC classes. 
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The patches from four locations were used for training and 

validation, while patches from the fifth location were reserved 

exclusively for testing. This spatial segregation ensures that the 

model is evaluated on unseen data, enhancing its generalization 

ability. 

The dataset was structured into patches, following a patch-based 

approach widely used in recent LULC classification studies 

(Carranza-García et al., 2019). This method involves extracting 

small, fixed-size three-dimensional patches centered at each pixel 

instead of using single-pixel data. Patches are used because nearby 

pixels often represent the same underlying material (Carranza-

García et al., 2019). The accuracy of classification varies with patch 

size. After testing patch sizes ranging from 3 to 15, we found that a 

size of 5 performed best across all datasets. 

Five LULC classes—barren land, built-up areas, forests, 

vegetation, and water/wetlands—were identified based on a 

literature survey  (Rawat et al., 2020) and expert knowledge of the 

study area. Each class encompasses various subcategories; for 

example, the water and wetland class includes both flowing and 

stagnant water bodies, as well as wetlands. Similarly, the vegetation 

class includes scrub/shrubland, agricultural land, and urban parks, 

while the forest class comprises both dense and sparse tree cover. 

The built-up class includes human settlements and industrial areas. 

The correlation between these classes is generally low. To improve 

model performance and enhance dataset diversity, we applied data 

augmentation through rotation. Specifically, each patch was rotated 

seven times at 45-degree intervals. This approach introduces visual 

variability, helping the model learn different spatial features while 

also reducing overfitting (Azedou et al., 2023; Carranza-García et 

al., 2019). 

2.3 Methods for Land Use Land Cover (LULC) Modelling and 

Optimization 

 

Figure 1:Methodological workflow depicting different steps 

involved in the study. 

The LULC classification was performed using three widely used 

ML models—SVM, RF, and K-NN —along with four DL CNN 

models: ResNET (ResNET-50 and ResNET-152) and VGGNet 

(VGG-16 and VGG-19) (Figure 2). While both ML and DL models 

aim to learn from data, their approaches differ. ML models rely on 

identifying patterns within training data to make predictions, 

whereas DL models learn hierarchical features through artificial 

neural networks (ANNs), where each neuron in a layer is connected 

to some or all neurons in the subsequent layer. During training, 

weights and biases are adjusted to determine the influence of inputs 

on outputs, ensuring efficient feature extraction and classification 

(Boulila et al., 2021). 

In this study, hyperparameter tuning was conducted to enhance the 

classification accuracy of ML and DL models. The optimization 

process involved grid search, where multiple hyperparameter 

values were tested to identify the best-performing configuration for 

each model. For ML models, RF was optimized by varying the 

number of decision trees (n-tree) and input features (mtry), while 

SVM was fine-tuned by selecting the most suitable kernel function 

and reclassification threshold. KNN was optimized for different K-

values, distance functions, and leaf sizes. Similarly, DL models, 

including ResNet and VGG architectures, underwent optimization 

for dropout rate, learning rate, batch size, number of epochs, and 

activation functions. After testing multiple values, the most 

effective hyperparameter combination for each model was selected 

to improve overall performance. (Table 1). 

3. Results and Discussions 

3.1. Parameter Tuning 

Table 1:Grid Search and Selected Hyperparameter Values 

Model 
Hyper-

parameter 

Parameter Grid 

Search 

Selected 

Value 

 RF 

mtry (input 

features) 
{2,3,5} 3 

n-tree 

(decision 

trees) 

{10,20,30,40} 20 

SVM 

Kernel 

function 

{Radial basis, 

Polynomial, Sigmoid} 

Radial 

basis 

function 

Pyramid 

reclassificatio

n threshold 

{0.70, 0.80, 0.90} 0.90 

KNN 

K-value {2,5,10,50,100} 50 

Distance 

function 
{Euclidean} 

Euclidea

n 

Leaf size {20,30,50} 30 

 CNN 

(ResNet, 

VGGNet

) 

Dropout rate {0.2,0.5} 0.2 

Learning rate 
{0.1,0.01,0.001,0.000

1} 
0.00001 

Decaying 

learning rate 
{True, False} True 

Number of 

epochs 
{20,50,80,100} 50 

Batch size {32,16} 32 

Hidden layers {3,5} 3 

To improve the accuracy of  LULC classification, hyperparameter 

tuning was conducted. For RF, different combinations of input 

features (mtry) and the number of decision trees (n-tree) were 

evaluated, revealing that an mtry value of 3 with 20 trees yielded the 

lowest out-of-bag (OOB) error rate of 8.4%, whereas increasing 

mtry to 5 resulted in a higher 9.4% OOB error rate. Therefore, mtry 

= 3 and n-tree = 20 were chosen as the optimal parameters. For 

SVM  classifier radial basis function (RBF) kernel is selected, which 
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efficiently handles non-linear relationships in high-dimensional 

data. The best-performing configuration included a gamma value of 

1, a penalty parameter (C) of 100, a pyramid level of 1, and a 

pyramid reclassification threshold of 0.90, ensuring precise class 

separation. F or KNN, the model was fine-tuned by selecting K = 

50, using the Euclidean distance function for similarity 

measurement, and setting a leaf size of 30 to balance accuracy and 

computational efficiency. In the case of DL  models, including 

ResNet and VGGNet architectures, hyperparameter tuning was 

conducted to enhance feature extraction capabilities (Table 1). The 

optimal configuration consisted of a dropout rate of 0.2 to prevent 

overfitting, a learning rate of 0.00001 for stable convergence, an 

adaptive learning rate decay for dynamic weight adjustments, 50 

training epochs, a batch size of 32, and three hidden layers to capture 

complex spatial patterns in Sentinel-2 imagery.   

3.2. Evaluation of Classification 

Table 2:Performance Comparison of ML and DL Models for 

LULC Classification. 

Model Accuracy Precision Recall 
F1- 

score 

Kappa 

Coeff. 

RF 0.65 0.64 0.65 0.63 0.57 

KNN 0.43 0.32 0.43 0.36 0.30 

SVM 0.62 0.62 0.62 0.60 0.54 

ResNe

t50 
0.93 0.93 0.93 0.92 0.91 

ResNe

t152 
0.92 0.92 0.93 0.92 0.90 

VGG1

6 

0.95 0.95 0.95 0.94 0.94 

VGG1

9 

0.95 0.96 0.96 0.96 0.94   

All DL-based CNN methods achieved accuracies above 92%, 

significantly outperforming ML models. Among the ML models, RF 

and SVM showed moderate accuracy levels of 65% and 62%, 

respectively, while KNN performed the worst with an accuracy of 

43%. In contrast, DL models demonstrated superior performance, 

with VGG-16 and VGG-19 achieving the highest accuracy of 95%. 

Most models exhibited higher recall than precision, indicating that 

user accuracy was higher than the producer’s accuracy. 

Furthermore, DL models outperformed ML models in terms of the 

Kappa coefficient, a statistical measure of classification reliability, 

with values reaching 0.94 for both VGG16 and VGG19 (Table 2). 

The ResNet50 and ResNet152 models also performed well, with 

Kappa coefficients of 0.91 and 0.90, respectively. The best-

performing model, VGG-19, was further analyzed using a confusion 

matrix, as shown in Table 3. The matrix provides insights into class-

wise performance, highlighting that the model achieved high 

classification accuracy across all LULC classes. Vegetation areas 

and water and wetland exhibited the highest classification accuracy 

at 97% and 98%, respectively, while other classes also showed 

strong performance, with minimal misclassification (Figure 3). 

Table 3:Confusion matrix for the VGG19 model. 

Predicted\ 

Actual 

Barren 

Land 

Built-

up 
Forest Vegetation 

Water 

and 

Wetland 

Barren 

Land 
0.90 0.00 0.00 0.01 0.002 

Built-up 0.00 0.96 0.00 0.00 0.00 

Forest 0.01 0.00 0.90 0.04 0.00 

Vegetation 0.00 0.00 0.00 0.97 0.00 

Water and 

Wetland 
0.002 0.00 0.00 0.00 0.98 

 

 

Figure 3:LULC classification using VGG19 model 

3.3. Discussion 

This study compares DL and ML models for LULC classification, 

highlighting the significant improvements offered by DL models. 

Patch-based labeling, which provides labeling captures spatial 

context by classifying groups of pixels together (Rousset et al., 

2021), was used. Among all models, VGG-19 emerged as the best-

performing DL model, demonstrating high accuracy, fast execution, 

and low CPU time consumption. A balanced dataset was used for 

training, ensuring all LULC classes were represented, while the 

Testing1 (Figure 1) dataset contained all possible labels to provide 

comprehensive validation. However, class imbalance was observed, 

with vegetation covering over 70% of the total area (Figure 3). 

Misclassifications, particularly between forest and vegetation, were 

attributed to spectral similarities, and the inherent imperfections. 

The distinction between forest and vegetation remains open to 

interpretation, as areas with dense trees in gardens may be 

misclassified as forests, emphasizing the need for on-the-ground 

verification. Performance metrics such as the Kappa coefficient, and 

confusion matrix analysis, revealed variations in classification 

accuracy across models, though differences among DL classifiers 

were minor but still significant for LULC mapping and planning. 

While deeper neural networks are harder to train, residual learning 

frameworks like ResNet facilitate training by learning residual 
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functions instead of direct mappings. Empirical evidence indicates 

that ResNets benefit from increased depth but have fewer filters and 

lower complexity than VGG networks. Previous studies reported 

that LULC classification results vary across ML and DL models, 

with discrepancies influenced by atmospheric conditions, 

illumination, geometric distortions, and parameter optimization 

(Wawan Cenggoro et al., n.d.). Our study found less variation in 

class-wise LULC estimates for DL models compared to ML models, 

reinforcing their stability and reliability for large-scale mapping. 

VGG19 achieved the highest classification accuracy (96%) while 

KNN had the lowest accuracy (0.65). Though minor variations 

existed in the accuracy of SVM, KNN, RF, ResNet-50, ResNet-152, 

VGG-16, and VGG-19, VGG19 consistently outperformed all 

models based on the Kappa coefficient and confusion matrix 

analysis (Oikonomidis et al., 2023; Pallavi et al., 2022; Saleem et 

al., 2021). 

Computational complexity in ML models depends on factors like 

the number of training samples, feature dimensions, and model-

specific parameters, such as the number of decision trees in RF, the 

number of neighbors in KNN, and the number of support vectors in 

SVM. In contrast, DL models' complexity depends on training time, 

inference time, and hardware specifications, requiring extensive 

computations that are mitigated by parallel processing in deep neural 

networks. While DL models demand higher computational power, 

their superior accuracy and generalization ability make them the 

preferred choice for large-scale LULC classification. 

4. Conclusion 

This study aimed to generate an updated LULC map for Lucknow 

city and evaluate the performance of various ML and DL models 

using Sentinel-2 satellite imagery. The results demonstrated that 

classifier performance varies with dataset characteristics, with DL 

models showing minor accuracy variations that hold significant 

implications for LULC mapping and planning. Among the tested 

classifiers, VGG19 achieved the highest accuracy, as confirmed by 

the Kappa coefficient, confusion matrix analysis, Precision, Recall, 

and F1-score metrics. While previous studies have highlighted the 

effectiveness of RF, SVM, and ResNet50, our findings align with 

the literature suggesting VGG-19 or VGG-16 as the most reliable 

classifiers for LULC classification. The study also reinforces that 

LULC mapping accuracy is influenced by temporal and locational 

factors, necessitating future research across diverse morphoclimatic 

and geomorphic conditions. Moreover, integrating additional 

spectral indices such as NDVI, GNDVI, and BNDVI could further 

enhance classification accuracy. Regular updates to LULC maps 

are crucial for urban planning, environmental monitoring, and 

policy-making, and government agencies should prioritize 

maintaining up-to-date LULC datasets. 
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