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Abstract 
 
As human exploration of space advances, the exploration of unknown spaces and the construction of digital twins for these 
environments have become increasingly important. Autonomous exploration and mapping by unmanned systems is one of the key 
methods to achieve this, but existing single-robot exploration approaches are inefficient in large-scale scenarios or time-critical tasks. 
Multi-robot collaboration can effectively address this issue, but enabling fully autonomous multi-robot collaborative exploration of 
unknown spaces and constructing digital models of these spaces remain significant challenges. This paper introduces the Luojia 
Explorer system, a multi-robot autonomous exploration and mapping system for unknown spaces. At the algorithmic level, the system 
is primarily divided into two parts: multi-robot collaborative simultaneous localization and mapping (C-SLAM) and collaborative 
exploration and planning. Through the seamless integration of these two components, efficient multi-robot collaborative exploration 
of unknown spaces is achieved. Its effectiveness has been validated in campus scenarios, where it achieved an exploration efficiency 
of 38.15 m³/s. 
 
 

1. Introduction 

Digital twin dynamically maps and simulates physical entities 
through virtual models. It enables comprehensive perception and 
precise modeling of physical objects through real-time data 
support and feedback (Tao et al., 2022). Among various data 
representations, point cloud has become one of the key data 
foundations for digital twins due to its ability to accurately 
capture 3D spatial information (Bisheng et al., 2017).  

As human exploration of space deepens, the exploration of 
unknown spaces, such as underground spaces and planetary 
environments, has become increasingly important. Moreover, 
constructing digital twin models for these spaces becomes 
increasingly significant. In the field of surveying and remote 
sensing, autonomous unmanned surveying using robotic systems 
has become one of the core methods for achieving digital twins 
of unknown spaces. This approach provides a digital foundation 
and construction basis for the creation of digital twins. 

Traditional surveying methods typically rely on Terrestrial Laser 
Scanning systems to collect data for environmental 
reconstruction. However, these methods are inefficient and 
require significant human involvement. In recent years, mobile 
laser scanning systems, such as backpack or helmet-mounted 
scanning systems (Wu et al., 2023), have rapidly developed. 
While these systems have improved portability, they still cannot 
overcome the limitations of manual operation and remain 
difficult to deploy in the exploration of unknown spaces. 

With the rapid advancement of mobile robotics, autonomous 
surveying based on diverse robots provides new opportunities for 
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efficiently exploring and modeling unknown spaces. SLAM 
technology enables robots to perform real-time localization and 
construct maps in unknown environments using equipped sensors. 
Meanwhile, autonomous planning and exploration technologies 
enable robots to navigate and collect information autonomously 
in complex environments. These technologies have been widely 
applied in fields such as planetary exploration and underground 
mining, significantly improving the efficiency and accuracy of 
exploring unknown spaces. 

Currently, many studies have developed single-robot systems 
capable of autonomous exploration (Cao et al., 2021; Sun et al., 
2024). However, the exploration range and efficiency of single-
robot systems are limited, making it difficult to meet the demand 
for efficient exploration in large-scale and complex environments. 
In contrast, multi-robot systems can leverage the advantages of 
heterogeneous unmanned platforms, offering high spatial 
exploration efficiency and a broad perception range (Xu et al., 
2023). However, the increase in the number of robots also 
introduces more challenges in terms of SLAM, task planning, and 
collaboration strategies for multi-robot systems. 

To address the challenges, we propose the Luojia Explorer 
system, a multi-robot autonomous exploration and Mapping 
system for unknown spaces. The system offers multi-robot 
collaborative autonomous exploration capabilities and efficient 
environment mapping, providing the data foundation for the 
efficient realization of digital twins in unknown environments. 
As shown in Figure 1, the hardware system consists of two 
unmanned vehicles: one with a four-wheel differential chassis 
and the other with a tracked chassis. The system is capable of 
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multi-robot C-SLAM, as well as distributed collaborative 
exploration and planning based on LiDAR in unknown spaces. 
The proposed system has been effectively validated in a campus 
scenario and can provide data support for digital twins of 
unknown spaces. 

 
Figure 1: Hardware Composition of the Luojia Explorer 

System. The system consists of two unmanned devices, each 
equipped with a LiDAR and communication module. 

 

2. Related Work 

2.1 C-SLAM 

Single-robot SLAM has evolved significantly over the years 
(Cong et al., 2024) , and based on this foundation, C-SLAM has 
also seen substantial development. LAMP 2.0 (Chang et al., 2022) 
is a multi-robot SLAM system developed for large-scale 
underground environments, designed to address challenges such 
as perceptual aliasing and data outliers. It features a robust and 
scalable loop closure detection module, an outlier-resilient pose 
graph optimization backend based on Graduated Non-Convexity, 
and is adaptable to different odometry sources. DOOR-SLAM 
(Lajoie et al., 2020) introduces a fully distributed SLAM system 
that integrates distributed outlier rejection and efficient data 
exchange, enabling accurate trajectory estimation and robust 
multi-robot collaboration in low-bandwidth and limited 
connectivity scenarios. DiSCo-SLAM (Huang et al., 2022) 
presents a distributed multi-robot SLAM framework that 
leverages the scan context descriptor for efficient LiDAR data 
exchange and employs a two-stage global-local optimization 
procedure for accurate and stable localization. Swarm-SLAM 
(Lajoie and Beltrame, 2023) develops a decentralized, sparse, 
and scalable C-SLAM framework for multi-robot systems, 
incorporating a inter-robot loop closure detection algorithm 
based on algebraic connectivity maximization, optimized to 
minimize communication overhead in large-scale swarm robotics 
deployments. SlideSLAM (Liu et al., 2024) introduces a real-
time decentralized metric-semantic SLAM system for 
heterogeneous robot teams, utilizing sparse, lightweight object-
level semantic maps for efficient inter-robot loop closure 
detection and seamless collaboration. 

 

2.2  Multi-Robot Collaborative Exploration  

In comparison with single-robot exploration, multi-robot 
exploration can offer enhanced efficiency and robustness. In 
recent years, a large number of multi-robot autonomous 
exploration methods have emerged. SMMR-Explore (Yu et al., 
2021) proposes a submap-based DSLAM framework for efficient 
inter-robot communication and a Multi-robot Multi-target 
Potential Field strategy to improve exploration efficiency by 
optimizing goal selection and minimizing trajectory overlap. 

MUI-TARE (Yan et al., 2023) is a multi-agent exploration 
system that integrates adaptive sub-map merging and cooperative 
multi-agent planning to enhance exploration efficiency and sub-
map merging robustness in large-scale 3D environments with 
unknown initial poses. FAME (Bartolomei et al., 2023) proposed 
a decentralized multi-robot exploration strategy that dynamically 
balanced cautious exploration and aggressive exploitation of the 
environment, achieving faster and more efficient forest coverage 
than existing methods. RACER (Zhou et al., 2023) introduces a 
decentralized multi-UAV exploration approach that utilizes 
pairwise interaction based on online hgrid space decomposition, 
a CVRP formulation for efficient task allocation, and a 
hierarchical planner to ensure fast, safe, and scalable exploration 
of unknown environments. GVP-MREP (Dong et al., 2024) 
introduces a multi-UAV exploration method that leverages a 
multi-robot dynamic topological graph for efficient 
communication and a hierarchical exploration strategy using 
graph Voronoi partition to enable effective task allocation.  

 

3. System and Method 

3.1 Luojia Explorer System Overview 

This section introduces the composition of the Luojia Explorer 
system, including both hardware and algorithms. In terms of 
hardware, as shown in Figure 1, the system is configured with a 
mobile robot chassis, available in two types: a differential drive 
chassis and a tracked chassis. The high-performance computer is 
responsible for processing the data collected by the sensors and 
executing the system algorithms for data analysis. LiDAR and 
IMU sensors (the Livox Mid360 and its built-in IMU) are 
employed for robot localization and navigation. To enable multi-
robot collaborative exploration and task execution, each robot is 
equipped with a 1.5G wireless Mesh self-organizing network 
node. On the hardware side, Mesh-based WLAN devices are used 
to facilitate multi-hop, multi-path connectivity, thereby 
significantly enhancing both communication robustness and real-
time performance. On the software side, to overcome the 
limitations of ROS1, such as the necessity of a master node and 
potential issues with name conflicts or topic collisions, the 
system utilizes the ROS1_bridge for bidirectional mapping of 
ROS1 and ROS2 topics as shown in Figure 2. Additionally, it 
leverages the DDS-based distributed messaging system in ROS2 
to enhance communication flexibility and scalability. To support 
distributed collaboration, each node autonomously configures 
Quality of Service (QoS) policies at the DDS layer, enabling 
message isolation and prioritization of topics based on specific 
requirements. This ensures the reliable delivery of critical data 
even under network congestion or instability. Furthermore, the 
use of custom configuration files allows for flexible QoS tuning 
for key topics, providing a scalable and robust communication 
framework for multi-robot collaborative exploration. 

 
Figure 2: Communication flow diagram for the proposed multi-

robot system. 
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Figure 3: Algorithm diagram of the Luojia Explorer system, where * denotes the robot acting as the main node. 

 

The Luojia Explorer system incorporates two key modules: 
multi-robot C-SLAM and collaborative exploration, as depicted 
in Figure 3. In the C-SLAM module, a centralized architecture is 
utilized, where each robot runs the single SLAM method to 
estimate its own local pose. The system designates the robot with 
the best performance, meaning the one with the highest 
computational efficiency, as the master node to execute the 
global SLAM algorithm. This master node processes the local 
poses and point cloud scans from all robots, estimates the global 
poses in the system, and shares this information with the other 
robots for subsequent planning. The collaborative exploration 
module is divided into global and local planning components. 
This approach employs a distributed framework, enabling each 
robot to analyze global data and plan its own trajectory. This 
design facilitates efficient autonomous exploration and mapping 
in unknown environments. 

 
3.2 Collaborative SLAM 

The main function of C-SLAM is to estimate the global pose of 
the robots and the global map based on the sensors carried by 
each robot. The C-SLAM algorithm employs a centralized 
architecture. Each robot runs a single SLAM module, utilizing 
LiDAR and IMU sensors for state estimation through LiDAR-
Inertial Odometry, based on the Fast-LIO2 algorithm (Xu et al., 
2022). However, the poses and point clouds obtained from the 
single SLAM are expressed in the robot’s local frame. Therefore, 
global SLAM is required to align the local poses of all robots into 
a unified global frame. The robot with the best performance is 
designated as the main node, which receives local poses and 
scans from the other robots. The main node estimates the global 
pose using the global SLAM module and shares it with the other 
robots for further exploration and planning.  

The global SLAM module consists of initialization, loop closure 
detection, relative pose computation, outlier rejection, and global 
pose graph optimization. First, if there are large overlapping 
areas between the initial regions of the robots, local poses and 
scans are accumulated to form submaps. By leveraging the 
overlap between the robot submaps and using the Fast-GICP 
algorithm (Koide et al., 2021), the initial relative poses between 
robots are computed, aligning the local frame to the global frame. 
Subsequently, the algorithm calculates reliable loop closure 
constraints between robots through loop detection, outlier 
rejection, and relative pose estimation modules. Finally, the 

multi-robot pose graph optimization module combines the 
odometry factors of the system, intra-robot and inter-robot loop 
closure constraints, solving for the globally optimal poses. A 
general likelihood model for these factors is defined as: 

𝜇𝜇(𝑝𝑝) = 𝜑𝜑 �𝑧𝑧𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗� 𝑝𝑝)                          (1) 

where 𝑝𝑝 = {𝑝𝑝𝛼𝛼 , 𝑝𝑝𝛽𝛽 , … }  represents the set of robot poses, and 
𝑧𝑧𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗  is the measurement model between the pose of robot 𝛼𝛼 at 
time 𝑖𝑖 and the pose of robot 𝛽𝛽 at time 𝑗𝑗. The module optimizes 
the loop closure and odometry constraints to solve for the global 
pose 𝑝𝑝∗ using the formula: 

𝑝𝑝∗ = arg max
𝑝𝑝

∏𝜇𝜇(𝑝𝑝)                            (2) 

The global poses are transmitted to the other robots for 
subsequent planning. 

 
3.3 Multi-Robot Collaborative Exploration 

In multi-robot collaborative exploration, we use the previously 
developed distributed multi-robot exploration algorithm DCARE 
(Zhao et al., 2024). At the mapping level, the unmanned robot 
team incrementally shares perceived information and merges 
local environmental data on each robot to generate a global 3D 
voxel map. At the global planning level, the robot team extracts 
frontiers of the known region in a distributed manner. A frontier 
is defined as a voxel on the boundary between free space and 
unknown space. The frontiers are then clustered into frontier 
clusters, which serve as rough targets for exploration. To 
determine the specific current target point, a cylindrical 
coordinate system is constructed at the origin of the frontier 
cluster, and a set of viewpoints is evenly sampled as the current 
candidate target set. Finally, an information gain function is used 
to assess the exploration value of each viewpoint, with the 
highest-scoring viewpoint being selected as the current 
exploration target. The specific definition of the information gain 
function is as follows: 

G(𝑐𝑐,𝑃𝑃𝑖𝑖) = 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�ℒ𝑐𝑐,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏� − 𝜔𝜔𝑑𝑑𝑖𝑖𝑏𝑏𝐷𝐷𝑑𝑑𝑖𝑖𝑏𝑏�𝑝𝑝𝑖𝑖 ,ℒ𝑐𝑐,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏� −
                    𝜔𝜔𝑜𝑜𝐷𝐷𝑜𝑜�𝑦𝑦𝑖𝑖 ,𝑝𝑝𝑖𝑖 ,ℒ𝐶𝐶,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏� − 𝜔𝜔𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔𝐷𝐷𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔�𝑔𝑔𝑖𝑖 ,ℒ𝑐𝑐,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏� −
                    𝜔𝜔𝑜𝑜𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝐷𝐷𝑜𝑜𝑏𝑏ℎ𝑎𝑎𝑎𝑎(𝑃𝑃) − 𝜔𝜔𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔𝐷𝐷𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔(𝐶𝐶,𝑃𝑃)           (3) 

where 𝑐𝑐  represents a frontier cluster, and 𝑃𝑃i = {𝑝𝑝i, 𝑦𝑦i, 𝑔𝑔𝑖𝑖} 
denotes the state of robot 𝑖𝑖. Specifically, 𝑝𝑝i, 𝑦𝑦i, and 𝑔𝑔𝑖𝑖 represent 
the robot's position, heading, and current goal, with the global 
pose from C-SLAM. ℒ𝑐𝑐,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏  denotes the viewpoint with the 
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highest gain corresponding to the frontier cluster 𝑐𝑐 . 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
represents the information gain of the viewpoint, which 
corresponds to the volume gain achievable by the robot when 
heading to this viewpoint. 𝐷𝐷𝑑𝑑𝑖𝑖𝑏𝑏 is the path length to the viewpoint 
𝜉𝜉𝑐𝑐,𝑏𝑏𝑎𝑎𝑏𝑏𝑏𝑏, while 𝐷𝐷𝑜𝑜 is the cost of direction change, which penalizes 
frequent turns. 𝐷𝐷𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔  represents the cost of the previous goal, 
promoting goal consistency, and 𝐷𝐷𝑜𝑜𝑏𝑏ℎ𝑎𝑎𝑎𝑎 accounts for the state set 
of other robots, encouraging team collaboration in decentralized 
exploration. 𝐷𝐷𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔  represents the cost of different execution 
mode. The weights 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝜔𝜔𝑑𝑑𝑖𝑖𝑏𝑏, 𝜔𝜔𝑜𝑜, 𝜔𝜔𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔,  𝜔𝜔𝑜𝑜𝑏𝑏ℎ𝑎𝑎𝑎𝑎, and 𝜔𝜔𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔  
are the corresponding positive weights. 

To specify, 𝐷𝐷𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔  is calculated as follows. Frontiers are 
categorized into two types: large and small, based on their shape 
and location. In the default mode, robots in explorer mode 
prioritize the rapid coverage of unknown areas, focusing on large 
frontiers while ignoring small ones. However, if too many small 
frontiers are neglected, smaller but potentially significant 
features such as corridors or openings that lead to larger 
unexplored spaces may be overlooked. Therefore, when the 
number of small frontiers surrounding a robot exceeds a certain 
threshold, the system switches to collector mode, constructing a 
Traveling Salesman Problem (TSP) to cover all small frontiers. 
As a result, the expression for 𝐷𝐷𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔 is as follows: 

𝐷𝐷𝑔𝑔𝑎𝑎𝑏𝑏𝑎𝑎𝑔𝑔 = �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑏𝑏𝑠𝑠𝑎𝑎𝑔𝑔𝑔𝑔 , 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒 𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑔𝑔𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎 , 𝑐𝑐𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝       (4) 

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑏𝑏𝑠𝑠𝑎𝑎𝑔𝑔𝑔𝑔 represents the penalty for neglecting small 
frontiers, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦𝑔𝑔𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎 represents the penalty for neglecting 
large frontiers. 

At the local planning level, we employ a heuristic path planning 
algorithm 3D A*, along with a probabilistic trajectory generation 
method to safely and stably navigate the robot to the selected 
target location. We use Falco method (Zhang et al., 2020) to 
generate trajectory and speed commands. Given the start state 
𝑠𝑠𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏 and the goal state 𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔 , the planner incrementally 
maximizes the probability of reaching the goal P(𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔|s) , 
generating the specific trajectory step by step. This process can 
be expressed as: 

𝑠𝑠𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 = arg𝑚𝑚𝑝𝑝𝑒𝑒 P(𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔|s)                    (5) 

To specify, P(𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔|s) is calculated using Monte Carlo sampling. 
We draw n ∈ 𝑍𝑍+ samples 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛 to estimate the reaching 
probability, where 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛 represent the paths derived from 
the current state s, and P�𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔|𝜃𝜃𝑖𝑖� denotes the probability of 𝜃𝜃𝑖𝑖  
successfully reaching the goal state 𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔 . The reaching 
probability is approximated as: 

P(𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔|s) ≈𝑛𝑛↑∞
1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 P�𝑠𝑠𝑔𝑔𝑜𝑜𝑎𝑎𝑔𝑔|𝜃𝜃𝑖𝑖�           (6) 

 

4. Experiments 

4.1 Experimental Data Collection and Setup 

To validate the effectiveness of the proposed Luojia Explorer 
system, we conducted a series of tests within our campus 
environment. The test scenario encompassed a variety of 
challenging features, including buildings, roads, vehicles, and 
open areas, with complex terrain that posed significant 
difficulties for multi-robot collaborative exploration and 
localization. The 3D reconstruction model of the scene, as shown 
in Figure 4, provides an accurate representation of the 
environmental complexity, which includes narrow passages and 
variations in terrain that are typical of real-world settings. 

For the experiment, two robots were deployed, as illustrated in 
Figure 1. Each robot was equipped with essential sensors, 
including LiDAR and IMU, as well as communication devices 
and high-performance computing platforms for data processing. 
These sensors enabled the robots to perceive the environment, 
localize themselves, and perform real-time mapping. During the 
experimental setup, the robots were initially placed in close 
proximity at starting positions to begin autonomous exploration. 
The robots then autonomously navigated through the 
environment, collaborating with one another to explore and map 
the space efficiently. 

 

 
Figure 4. 3D model of the experimental scenario. 

 
4.2 Results 

In the real-world experiment, our system successfully completes 
the autonomous exploration task within the campus environment. 
The experiment demonstrates that the two robots are able to 
autonomously choose different paths and explore distinct areas, 
achieving effective distributed cooperation. As shown in Figure 
5, we present the robot exploration states at various time points, 
including point cloud maps, voxel maps, and third-person 
perspective exploration images. Over time, the area covered by 
the multi-robot autonomous exploration expands, ultimately 
leading to the successful completion of the exploration and the 
construction of the environment's 3D model. The system exhibits 
high adaptability, adjusting its exploration strategy in response to 
environmental changes. 

In Figure 6, we present the final results of multi-robot 
collaborative mapping. As shown in Figure 6 (a), different color 
maps are used to represent the point cloud maps obtained by each 
robot. It is evident that the robots explore distinct areas, and the 
point clouds acquired by both robots are seamlessly integrated 
into the global frame, with no noticeable layering. Additionally, 
the global map is colored by Z-axis values, resulting in a uniform 
color distribution. A histogram of point count based on elevation 
is generated, with the majority of points distributed within the 0-
10m range. 

For the exploration task, we use exploration volume and path 
length as quantitative metrics. Exploration volume refers to the 
known volume in the voxel map with a resolution of 0.2m, while 
exploration efficiency represents the rate of increase in the 
explored volume. Path length effectively measures the quality of 
the exploration path, with the average path length representing 
the mean distance traveled by the two robots to complete the 
exploration. Our system completed the exploration and mapping 
of a 9557.09 m³ area in 250.45 s, with an average path length of 
66.74 meters. The exploration efficiency reached 38.15 m³/s, 
demonstrating the system's high efficiency in large-scale spatial 
exploration, as shown in Figure 7. Compared to traditional 
single-robot exploration methods, the distributed collaborative 
strategy of this system significantly improves both task 
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completion efficiency and coverage, providing essential data 
support for digital twins. 

 
Figure 5: Real-world scenario autonomous exploration results 

 
Figure 6: Multi-robot collaborative mapping results 

 
Figure 7: Exploration efficiency analysis 

 
5. Conclusion 

This paper presents the Luojia Explorer system, a multi-robot 
autonomous exploration and mapping system. The system 
enables multi-robot collaborative localization and mapping, as 
well as LiDAR-based collaborative exploration and planning in 
unknown spaces. Its effectiveness has been validated in campus 
scenarios, achieving an exploration efficiency of 38.15 m³/s. 
Furthermore, the system provides critical data support for the 
development of digital twins in unknown environments. Future 
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work will focus on optimizing the system's communication 
architecture to enhance overall performance. 
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