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Abstract: 
 
Water purification capacity (WPC), a crucial regulator of aquatic ecosystem services, plays an important role in mitigating non-point 
source pollution and ensuring water quality in a basin. In this study, the long-term water purification capacity of the three countries 
surrounding Lake Victoria (Kenya, Tanzania and Uganda) was investigated using multi-source remote sensing data. and furthermore, 
the relationship between water purification and phytoplankton blooms, as well as anthropogenic activities, was exlored. By applying 
InVEST model, nitrogen and phosphorus (N/P) retention and output were derived, which were utilized to quantitatively assess 
reginal WPC. High resolution, long-term (2000-2021) spatial distribution of water purification capacity index (WPI) were then 
generated. The results reveal significant spatiotemporal changes of WPI, with a general trend of initial decline followed by 
subsequent increase being observed. Notably, comparatively lower WPI was exhibited by Uganda than by Tanzania and Kenya. 
Among the anthropogenic factors, the frequency of phytoplankton blooms was identified as serving as a spatial validation of WPI. 
While a significant negative correlation between WPI and GDP was demonstrated, its correlation with population was found to be 
considerably weaker. These findings contribute significantly to transboundary water resources management and sustainable 
development, and provide information support for the maintenance of regional ecological health. 
 
 
 

1. Introduction 

Water, a fundamental element for sustaining Earth’s life 
systems (Bilalova., 2023; Li and Wu., 2024), is crucial to 
ecosystems. Water ecosystems are not only closely related to 
human life, production and socio-economic development, but 
also play a protective role for the structure of natural 
ecosystems and regional ecological environments (Torres et al., 
2021; Pickard et al., 2017). However, rapid socio-economic 
development has intensified the impact on water ecosystems. 
Coupled with global climate change, this has led to declining 
water resources, both in quantity and quality, resulting in a 
continuous degradation of water ecosystem services (Shemer et 
al., 2023). Among these services, water purification capacity 
(WPC), which directly influences aquatic ecosystems, has 
triggered significant attention from researchers globally (Shi et 
al., 2021). 
 
Methods for assessing WPC are broadly categorized into 
statistical and empirical models (Rast et al., 2014). Statistical 
models, typically based on field-collected samples, often face 
challenges in data collection due to the complexity of some 
geographical environments (Pearce and Myers, 1990). 
Empirical models encompass physical and semi-empirical 
methods. Physical models generally require strong hydrological 
expertise and the results often lack spatial distribution 
information (Su et al., 2012; Björklund et al., 2001). Semi-
empirical methods, conversely, use datasets to obtain ecological 
parameters and combine them with ecohydrological processes 
to estimate WPC. Currently, semi-empirical modeling is the 
most widely used method for WPC evaluation. However, it is 
limited by data availability, and the calculated ecological 

parameters are often inaccurate, which in turn affects the results 
of WPC evaluation. 
 
The development of RS and GIS technologies, with their wealth 
of datasets (satellite image data, aerial photography data, etc.),  
has addressed the data limitations of traditional methods, 
providing new avenues for studying WPC (Chen et al., 2025; 
Habeeb and Weli, 2021). Researchers have proposed numerous 
simulation models by combining socio-economic and multi-
source remote sensing data. Commonly used models include 
SWAT (Myers et al., 2021), TOPMEDEL (Tian et al., 2018), 
ARIES (Tyrrell, 1999), and InVEST (Yohannes et al., 2021), 
each capable of evaluating water ecosystem service functions 
from different perspectives. The InVEST model, in particular, 
offers advantages in terms of ease of use and simplicity of its 
underlying principles. 
 
In addition, anthropogenic activities are a primary driver of 
changes in WPC (Luo et al., 2020). The discharge of substantial 
amounts of industrial and domestic sewage, along with 
agricultural runoff containing plant nutrients, into slow moving 
water bodies can lead to excessive proliferation of aquatic 
organisms, especially algae. This alter biomass levels and 
disrupts the ecological balance, impacting water quality (Jing et 
al., 2024). Many studies have shown that the WPC around lakes 
is highly correlated with phytoplankton blooms and 
anthropogenic activities (Lin et al., 2024). 
 
This study mapped the long-term water purification capacity 
index (WPI) of three countries around Lake Victoria (Kenya, 
Tanzania and Uganda) based on multi-source remote sensing 
data and explored its relationship with phytoplankton blooms 
and anthropogenic activities. This study is significant for 
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promoting local sustainable development and water 
environment management. 
 

2. Materials 

2.1 Study area 

Lake Victoria is the largest lake in Africa and the second largest 
lake in the world after Lake Superior (Ali et al., 2024; Jovanelly 
et al., 2015). It is located in the East African Plateau, with a lake 
area of 68,800 km2, an east-west length of about 350 km, a 
north-south length of about 400 km, a maximum depth of about 
80 m, and an average depth of 40 m. Most of Lake Victoria is 
within the countries of Tanzania (51% of the lake area) and 
Uganda (43%), and a small portion belongs to Kenya (6%), 
which is one of the most densely populated areas in Africa 
(Swallow et al., 2008). 
 
The Lake Victoria Basin is home to about 45 million inhabitants, 
whose livelihoods are highly dependent on natural resources 
(Garg et al., 2023). The Basin's population accounts for 30% of 
the total population of the countries along the Basin, with a 
population density of about 300 people/km2, making it one of 
the fastest-growing regions in the world. The main economic 
activities in the Lake Victoria Basin are agriculture, fishery, 
tourism, etc. More than 85% of the population in the basin rely 
on agriculture as their main economic and livelihood activities, 
and it is one of the poorest regions in the world. Among them, 
agricultural production is the mainstay of the basin's economy, 
with agriculture consisting mainly of maize, rice, sugarcane, 
coffee, tea, and dairy products. Export and fisheries are also 
among the most important economic activities in the basin. In 
recent years, the basin has become the region with the fastest 
economic growth rate, but poverty is widespread in the basin. 
 
Since the 1960s, due to the intensification of anthropogenic 
activities and the invasion of exotic species, the ecosystem of 
Lake Victoria has been seriously damaged, mainly reflected in 
the reduction of water transparency and the intensification of 
eutrophication (Macintyre et al., 2012). Nutrient pollution by 
N/P has disrupted the original productivity processes of lakes, 
making phytoplankton such as phytoplankton the absolutely 
dominant population. phytoplankton now account for about 70% 
of the phytoplankton biomass. N/P are among the major 
pollutants in the Lake Victoria basin. 
 

 
Figure 1. Study area. 

 
The study area and 1 degree buffer zone are shown in Figure 1. 
 

2.2 Data Sources 

In this study, the NDR (Nutrient Delivery Ratio) module of the 
InVEST model was utilized to obtain N/P retention and export 
data for the study area. The data to be data in the model include 
digital elevation, land use, precipitation data and biophysical 
parameters. Among them, the digital elevation data were 
obtained from General Bathymetric Chart of the Oceans 
(GEBCO) with a spatial resolution of 15 arc seconds. Land use 
data were obtained from European Space Agency (ESA), a 
dataset that provides a global map classifying land surface into 
22 categories defined using the Land Cover Classification 
System (LCCS) of the Food and Agriculture Organization of the 
United Nations (UN FAO). Precipitation data are from the 
Global Precipitation Climate Center (GPCC). Biophysical 
parameters were obtained from the InVEST user's guide and a 
review of the literature of the region. In addition, phytoplankton 
bloom data from Lake Victoria, socio-economic data and 
demographic data were used in the analysis. 
 

Data Use Source 

DEM InVEST model www.gebco.net 

Land use InVEST model cds.climate. 
copernicus.eu 

Precipitation InVEST model opendata.dwd. 
de 

phytoplankton 
bloom Verification Experimental 

calculation 
GDP Correlation analysis Worldbank.org 

Population Correlation analysis landscan.ornl. 
gov 

Table 1. Data sources. 
 

3. Methodology 

An integrated framework based on multi-source remote sensing 
data was proposed to map the long-term WPI of Kenya, 
Tanzania and Uganda) and explore its relationship with 
phytoplankton blooms and anthropogenic activities, shown in 
Figure 2. 
 

 
Figure 2. Workflow of this study. 

 
3.1 N/P quantitative calculation of retention and output 

The InVEST (Integrated Valuation of Ecosystem Services and 
Trade-offs) model is an ecosystem service assessment model 
based on a geographic information system (GIS) combined with 
actual land use/cover. It has been widely used for ecosystem 
service assessment at home and abroad.This study utilizes the 
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Nutrient Transport Rate Module, which is based on the 
traditional output coefficients and takes into account factors 
such as topography, runoff, and loss of N/P during transport. 
The output loads of N/P as they flow into the receiving water 
body to the outlet can be simulated, so that the purification 
service capacity of vegetation and soil for N/P nutrients can be 
mapped later. We pre-processed digital elevation, land use and 
climate data for the study area and obtained a table of regional 
biophysical parameters from empirical values and related 
studies, and input these into the InVEST model to obtain long 
time-series high-precision N/P retention and export around Lake 
Victoria. 
 
The InVEST model is run on various types of raster data with 
the following process: 1) Determine the water flow path based 
on the input DEM extracting the slope and extracting the river 
network information. 2) Estimate the pollution output of each 
parcel by the output coefficients of different land use/cover 
types. 3) Considering the retention capacity of different land 
use/cover types, simulate the amount of deposition and retention 
loss of N/P when migrating between grid cells. 4)Finalize the 
simulation of spatial distribution of N/P nutrients in the study 
area. 
 
In the above process, a hydrological sensitivity score was added 
to the model for the differences between different regions in 
order to adjust the results to the specific application and make 
the results more accurate. The specific formulas are as follows: 
 

 xxx polHSSALV ×=

 
(1) 

 
where ALVx is the retention value regulated by grid x, HSSx is 
the hydrological sensitivity score of grid x, and polx is the 
corresponding output coefficient. 
 

 
w

x
xHSS

λ
λ

=
 

(2) 

 
where 𝜆𝜆𝑥𝑥  is the runoff coefficient of the grid and 𝜆𝜆𝑥𝑥���  is the 
average runoff coefficient. 
 
3.2 Mapping and analyzing WPI for long time series 

Based on the generated long time series of high-resolution 
spatially resolved data on N/P retention and export around Lake 
Victoria, we quantitatively assessed the WPC of the region by 
calculating a water purification capacity index (WPI). From the 
N and P calculations, it can be obtained that in some areas, even 
if the retention of N/P in the watershed maintains an increase in 
successive years, the N/P export from the watershed will also 
increase in the same way. It can be seen that it is difficult to 
accurately assess the water quality purification capacity of a 
region based only on individual indicators. Therefore, to more 
directly and accurately quantitatively evaluate the WPC and its 
spatial and temporal changes in the study area, this study 
proposes the use of WPI, which evaluates the WPC of a given 
area by calculating the ratio of the difference between N / P 
retention and export volume to the sum. The larger the value of 
WPI, the stronger the WPC of the region. 

 

 
NPNP

NPNP

ortexpreten
ortexpretenWPI

+
−

=
 

(3) 

 
where exportNP represents the total N and P output, retenNP 
represents the total N and P retention. 

 
Using Eq. (3) we mapped high-resolution spatially data of WPI 
for the long time series of Lake Victoria from 2000 to 2021, 
which can visualize the spatial and temporal evolution of WPC. 
 
3.3 Selection and assessment of anthropogenic factors 

In our study, we chose three anthropogenic effects on WPI, 
including phytoplankton blooms due to eutrophication of lake 
water, socio-economic indices and population. Among them, the 
data of phytoplanktonl blooms are obtained from relevant 
articles through Landsat images, which can be used as 
validation data to analyze the surrounding WPI. It can visually 
reflect the eutrophication of water bodies in the region over a 
long period of time and the adsorption of nutrients such as N/P 
by the surrounding vegetation and soil. At the same time, the 
study obtained the gross domestic product(GDP) of the three 
countries around Lake Victoria (Kenya, Tanzania and Uganda) 
from the World Bank and the population distribution data from 
the Oak Ridge National Laboratory (ORNL) in the United 
States, as anthropogenic factors to explore its impact on the 
regional WPC. The study also quantifies the correlation of GDP 
and population with WPI in the three countries and the study 
area using the Spearman correlation coefficient. 
 

4. Results 

4.1 Analysis of changes in N/P retention and output 

 

 
Figure 3. Retention, export and total amount of (a) N and (b) P. 
 
The long-term retention and output of N/P in the study area 
were calculated (Figure 3) based on the InVEST model. 
Meanwhile, N/P had basically the same change trend, but the 
retention and export of N were significantly greater than P. In 
the long time series, there was no significant change in the 
retention of N/P, but there was a significant change in the output. 
The trend in the output of N/P was generally consistent with the 
trend in total N/P. Total N/P peaked in 2006. Total N peaked at 
9.82 × 106 g/m3 and total P peaked at 1.34 × 106 g/m3, with 
total N peaking at 7.3 times that of total P. The total N dropped 
to the lowest value(9.47×106 g/m3) in 2021, while the lowest 
value of P(1.31×106 g/m3) appeared in 2003. N/P was at a high 
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level from 2006 to 2018 and decreased after 2018, which was 
affected by people 's attention to the ecological health of Lake 
Victoria.  
 
4.2 Spatiotemporal analysis of WPI 

 

 
Figure 4. Spatial distribution of WPI around Lake Victoria. 

 
High-resolution maps of WPI around Lake Victoria were 
generated using data on the spatial distribution of N/P in the 
long time-series study area (Figure 4). The study also quantified 
the WPI in the study area and three countries (Figure 5). The 
results showed obvious spatial differences and changing trends 
in WPI. In 2000, the northern side of Lake Victoria had a 
significantly weaker WPI, while the northeastern side had a 
clear advantage. The southern of Tanzania has a weaker WPI 
than the rest of the country. Between 2000-2006, the weaker 
WPI around Lake Victoria shifted along the perimeter of the 

lake towards the eastern side, and the extent of the weaker WPI 
increased significantly. Uganda and Tanzania had significantly 
lower WPI, which was associated with increased regional 
pollution. The disadvantage of WPI on the northern and eastern 
sides of Lake Victoria worsened in 2012, while WPI in other 
areas improved. Between 2012-2018, WPI increased on the 
northern and western sides of Lake Victoria, but significantly 
decreased in Tanzania. The year 2021 as a whole was the the 
highest WPI in the study area, which is related to certain local 
ecological protection measures. 
 

 
Figure 5. Temporal analysis of WPI. 

 
Meanwhile the statistical results show that the trend of WPI 
varies from region to region. Of these, Uganda has a significant 
disadvantage compared to the other regions, which is consistent 
with the results of the spatial distribution of the wpi data in 
Figure 4. Uganda's WPI as a whole first declined and then 
increased, with a minimum value of 0.52 in 2012. WPI change 
trend in Tanzania showed an “M” shape, with a maximum 
value of 0.70 in 2003 and a minimum value of 0.67 in 2018. 
While Kenya's WPI fluctuates with high frequency, taking the 
highest value of 0.83 in 2000 and the lowest value of 0.70 in 
2018. The highest value in Kenya is 1.32 times higher than that 
of Uganda and the lowest value is 1.35 times higher. The WPI 
of the study area as a whole fluctuated up and down at 0.7, with 
the highest value of 0.74 in 2003 and the lowest value of 0.68 in 
2018.In summary, WPI has significant spatial and temporal 
variability, and its spatial and temporal variations are influenced 
by local anthropogenic activities. 
 
4.3 Assessment of human impacts on WPI 

4.3.1 Analysis of the association between phytoplankton 
blooms and WPI  
 
Figure 6 showed Lake Victoria phytoplankton blooms and WPI 
of the buffer zone. phytoplankton blooms in Lake Victoria were 
more severe in 2009 and after 2015. From the figure, we can 
visually get the relationship and spatiotemporal change 
characteristics between the phytoplankton bloom situation in 
Lake Victoria and the WPC around Lake Victoria in a long 
period of time. In 2000, the phytoplankton bloom in Lake 
Victoria was mainly concentrated in the west side, and the 
eutrophication degree of the lake was not high compared with 
that afterwards. In 2006, there was an obvious increase in 
phytoplankton bloom inside the lake, which was mainly 
concentrated in the northern and northeastern of Lake Victoria, 
and the WPI of the northeastern buffer zone was obviously 
weaker compared with that of other areas. The WPI of the 
northeastern part of the buffer zone was significantly weaker 
than that of other areas. During the period 2006-2015, the 
eutrophication degree of Lake Victoria was high, and the 
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ecological environment was obviously affected. It is not 
difficult to see that domestic sewage and industrial wastewater 
generated by anthropogenic activities have seriously damaged 
the water quality of Lake Victoria, and the WPI of the 
surrounding areas has been significantly reduced. In 2021, the 
phenomenon of phytoplankton bloom was still serious, and the 
ecological protection and sustainable development of the area 
was still in danger of collapse. The ecological conservation and 
sustainable development of the region urgently needs the 
attention of the local government. In general, the areas with 
frequent phytoplankton blooms were in the northern and 
northeastern of Lake Victoria, where WPI of these areas was 
weaker. The spatial distribution of phytoplankton blooms can 
verify the accuracy of the mapping.  
 

 
Figure 6. Phytoplankton blooms in Lake Victoria and WPI of 
its buffer zone. 
 

4.3.2 Correlation analysis of economy and population 
with WPI  
 
We discussed the correlation between two anthropogenic factors, 
socio-economic and demographic, and WPI in different regions 
(Table 2). The results showed a significant negative correlation 
between WPI and GDP in the study area (-0.750). The 
Spearman correlation coefficient of Kenya reached -0.821, 
while that of Uganda was only -0.286. However, the correlation 
between population and WPI was not high (-0.494), and even 
Uganda 's correlation coefficient is positive. This showed that 
economic development affected the ecological health around 
Lake Victoria and weakened the ability of the land to purify 
water. In turn, population increases can burden ecosystems. 
 

WPI in different areas Human activity indicators 
GDP Population 

Kenya -0.821* -0.381 
Tanzania -0.571 -0.567 
Uganda -0.286 0.143 

Study Area -0.750* -0.494 
Table 2. Spearman correlation coefficient of WPI with GDP 

and population 
 

5. Conclusion 

Under the continuous threat of global sustainable development, 
quantitative evaluation of WPC and analysis of the relationship 
between anthropogenic activities and WPC are of great 
significance for strengthening the protection and rational 
utilization of water resources. In this study, we used the 
InVEST model to map the spatial distribution data of WPI in a 
long time series with high resolution around Lake Victoria from 
2000 to 2021, and analyzed the spatial and temporal 
characteristics of WPI at multiple scales. The study also 
explored the relationship between phytoplankton blooms, 
socioeconomics and population and WPI. The study showed 
that 1) the total N/P in the study area had basically the same 
trend, but the retention and export of N were significantly 
greater than P; 2) There were significant spatiotemporal changes 
of WPI, with a general trend of initial decline followed by 
subsequent increase being observed. WPI is affected in areas 
near rivers and lakes. In terms of countries, Uganda had the 
weakest WPI overall, and Kenya had the strongest; 3) Domestic 
and industrial wastewater from anthropogenic activities 
seriously damaged the water quality of Lake Victoria, and 
phytoplankton blooms worsened year by year from 2000-2021, 
with a significant decrease in the WPI of the surrounding areas; 
4) The WPI of the study area showed a significant negative 
correlation with GDP (-0.750), whereas the correlation with 
population correlation was not high (-0.494). In this study, high-
resolution mapping and human impact assessment around Lake 
Victoria were completed using multi-source remote sensing data.  
The results of this research are important for water 
environmental protection and promotion of sustainable regional 
development, and can provide data support for local 
governments. 
 
In further research, the assessment framework of WPI can be 
optimized in two ways. On the one hand, by improving the 
accuracy of the land use data in the InVEST model, the 
accuracy of the N/P output and retention can be improved. This 
can improve the resolution of the spatial distribution data of 
WPI and enable analysis at finer scales. On the other hand, 
when constructing the WPI, parameters related to anthropogenic 
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activities and land properties can be introduced, making the 
quantitative calculation of WPC more accurate. 
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