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ABSTRACT:

Based on methods such as airborne oblique photogrammetry and laser scanning, high-precision urban 3D point
clouds can be obtained. However, existing airborne 3D data acquisition techniques are prone to interference from
dense building occlusions or vegetation cover, making it difficult to capture complete building point clouds. To
address this issue, this paper proposes a sky-ground cross-perspective collaborative method for building point
cloud completeness detection and autonomous completion. The core idea of this method is to use aerial point
clouds as a basis, conducting completeness detection of airborne building point clouds to identify missing regions
in both point and surface forms. Subsequently, aerial point cloud priors are employed to guide global and local
route planning for ground platforms. Finally, an autonomous completion of building point clouds is achieved
through a multi-objective TARE exploration method. The proposed method is evaluated through experiments
conducted in both simulation and real-world scenarios. Effectiveness analysis is performed from the perspectives
of point cloud completeness and building model reconstruction accuracy. The results show that the proposed
sky-ground cross-perspective collaborative point cloud completion method can acquire building point clouds with
higher completeness and significantly improve the modeling accuracy of building point clouds.

1. INTRODUCTION A promising solution to overcome these challenges is
cross-view collaborative surveying, which combines
aerial and ground perspectives to acquire comprehens-
ive building point clouds, enabling accurate 3D model
reconstruction (Liu et al., 2024b, [Huang et al., 2017,
Ma et al., 2023). Existing research has primarily fo-
cused on cross-view point cloud registration and col-
laborative localization between aerial and ground plat-
forms (Elhashash and Qin, 2022} Ling and Qin, 2022}
Zhou et al., 2023)). These approaches typically address
the alignment of point clouds from different perspect-
ives, using methods such as feature point matching
to estimate rotation and translation (Lee et al., 2024}
Persad and Armenakis, 2017). However, most studies
have concentrated on improving localization and regis-
tration, with less emphasis on optimizing the acquisi-
tion of missing data or minimizing redundancy during
data collection.

Three-dimensional building models are essential for
various applications, including urban planning (Cao et
al., 2021 |[Fidan et al., 2023)), smart cities (Jovanovic et
al., 2020, Sariturk et al., 2023), autonomous driving,
and low-altitude unmanned systems (Maboud1 et al.,
2023). Accurate 3D reconstruction from point clouds
or images has become a significant research area in
photogrammetry and computer vision (Yu et al., 2021}
Li and Shan, 2022). Traditionally, airborne LiDAR
and oblique photogrammetry are used to acquire point
clouds of urban buildings(Wu et al., 2023)), but these
methods often encounter challenges in dense urban en-
vironments, where factors such as vegetation, hollow
building bases, and occlusions prevent the full acquis-
ition of building facades and bases (Fruh and Zakhor,
2003| [Liu et al., 2024a} |Li et al., 2025)). These gaps in
data lead to significant reductions in reconstruction ac-
curacy (Elhashash and Qin, 2022} [Forster et al., 2013). Several methods have been proposed to fuse data from

aerial and ground platforms for more complete point
* Corresponding author clouds. Some studies have used aerial data as a con-
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straint to assist ground-based localization and map-
ping (Elhashash and Qin, 2022, |Potena et al., 2019),
but these methods focus more on improving traject-
ory tracking and localization rather than ensuring the
completeness of the data. Additionally, some methods,
such as (Sun et al., 2023), use aerial data for object
geo-localization to enhance the accuracy of ground-
based systems, yet they do not tackle the problem of
filling in missing data. Other methods, like (Miller et
al., 2022)), propose joint mapping between aerial and
ground platforms, but fail to address the automation
of data collection for missing point clouds. Moreover,
ground-based data collection remains highly manual
and prone to inefficiencies, resulting in redundant data
and high costs.

While the integration of aerial and ground-based sys-
tems has made significant advances, a gap remains in
the automated detection of missing data and the gener-
ation of efficient collaborative acquisition routes. The
current solutions often fall short of providing a com-
prehensive approach for optimizing data acquisition
and ensuring completeness in dense urban environments.
In response to these challenges, we propose a novel
cross-view collaborative surveying method that lever-
ages aerial point cloud data to automatically detect miss-
ing areas and generate optimized acquisition paths for
ground-based systems. Our method enhances the ac-
curacy and efficiency of data collection by systematic-
ally identifying regions with missing data and planning
autonomous data acquisition routes for these areas. This
approach not only reduces redundancy in data collec-
tion but also ensures comprehensive point cloud cov-
erage for 3D building reconstruction. The main con-
tributions of our work are as follows: 1) A cross-view
collaborative surveying framework for 3D building re-
construction that integrates aerial and ground data with
automatic path planning; 2) An innovative building in-
tegrity detection algorithm based on multi-layer slice
projections for identifying regions with missing data;
and 3) An automated method for generating ground-
based acquisition routes, combining global path plan-
ning and autonomous exploration techniques to optim-
ize data collection.

2. METHODOLOGY
2.1 Overview

To overcome these limitations on complete collection
of building point cloud, this paper introduces an innov-
ative sky-ground cross-perspective collaborative method
for building point cloud completeness detection and
autonomous completion shown in Figure[I] The cent-
ral premise of this method is to leverage aerial point
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clouds as a foundational reference. By performing com-
pleteness detection on airborne building point clouds,
the algorithm can identify regions that are missing both
in terms of individual points and surface structures.
This process allows for the systematic identification of
gaps caused by occlusions or other obstructions during
data acquisition. Once the missing regions are identi-
fied, aerial point cloud priors are utilized to guide both
global and local route planning for ground-based plat-
forms, such as autonomous vehicles or drones. This
collaborative approach ensures that the ground plat-
forms are directed to the most crucial areas where data
acquisition is lacking, improving the efficiency and ac-
curacy of subsequent point cloud collection. The in-
tegration of aerial and ground-based perspectives also
allows for continuous real-time adjustment of the col-
lection strategy, optimizing the overall process. Fi-
nally, the method incorporates a multi-objective TARE
(Targeted Autonomous Resampling Exploration) ap-
proach to autonomously complete the building point
clouds. This technique not only aims to fill in the miss-
ing regions but also ensures that the completed point
clouds meet the desired quality standards, balancing
both spatial coverage and geometric accuracy.

2.2 3D Scene Classification and Segmentation

This work performs semantic segmentation of 3D point
clouds, classifying points into three categories: ground,
vegetation, and buildings. A Random Forest (RF) clas-
sifier is trained using geometric, intensity, and contex-
tual features, including point density (p), height above
ground (z), and curvature (o). The RF model consists
of decision trees that split data based on thresholds
minimizing Gini impurity, which is computed as:

Gini(D)=1-Y P2, (1)

where P. is the proportion of points in class ¢ within
data subset D. During inference, each point is clas-
sified based on majority voting across all trees. The
model is trained using a labeled dataset, and its per-
formance is evaluated using precision, recall, F1-score,
and confusion matrices.

After semantic segmentation, the building points are

further individualized using 2D building footprints. The
building-classified points are projected onto the hori-

zontal plane by retaining only the = and y coordin-

ates, which simplifies the spatial relationship between

points and 2D building footprints:
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Figure 1. Overview of our proposed framework.

A point-in-polygon test is used to identify points inside
the building boundaries, defined as:

P;={pi € Py | ai € F}, 3

where P is the set of building-classified points and
F; represents the j-th building footprint. This process
segments the point cloud into individual buildings, en-
abling further analysis and applications in urban envir-
onments.

2.3 Building Integrity Detection Algorithm Based
on Multi-Layer Slice Projection

This paper proposes a building point cloud integrity
detection algorithm based on multi-layer slice projec-
tion to identify missing regions in airborne building
point cloud data. The method is designed for both
single and complex building structures, with the latter
consisting of a podium and multiple individual struc-
tures. First, the building point cloud is sliced at various
elevation levels, and the sliced point clouds are projec-
ted onto the 2D plane to extract contours. The build-
ing’s 2D contour is obtained by projecting the entire
point cloud onto the xy-plane:

Couitding = {(zi, i) | (i, yi,2:) € PH. (4

For complex buildings, clustering algorithms are ap-
plied to the contours to distinguish the projections of

individual structures. Medial axis transformation is ap-
plied to the contours of single structures to compute
their skeleton points, denoted as S,; = {sm | m =
1,2,..., My ;}. Each boundary point is connected to
the nearest skeleton point, and if the contour points
of the sliced cloud do not intersect this line, they are
labeled as uncollected; otherwise, they are classified
as collected.

To identify missing regions, the algorithm computes
the shortest distance from each point p; € Cg,; to the
line segment connecting the skeleton points s,, and
global contour points q, € Chuiiding:

d(piysmqn): )

where the point p; is classified as a missing point if the
distance exceeds a threshold 6, otherwise, it is labeled
as collected. This process is applied iteratively across
all skeleton points and contours, enabling comprehens-
ive detection of missing regions within the building’s
point cloud.

2.4 Automatic Calculation of Point-Based and Regional-

Based Ground Data Supplementation

This study proposes a method for determining the ap-
propriate ground data supplementation strategy based
on the ratio of missing points to the total boundary

points in building contours. The supplementation strategies

are categorized into point-based supplementation for
minimal missing regions and regional-based supple-
mentation for larger missing regions. For point-based
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supplementation, skeleton points are connected to miss-
ing boundary points, and extension lines are drawn
outward. Supplemental coordinate points are sampled
along these extensions, followed by downsampling to
produce the final target points. Mathematically, for
each missing point m;, the Euclidean distance to the
nearest boundary point greqrest 1S computed:

dim = ||mi—Sm|l2 = \/(mL1 — Smy )2+ (mi, — Smy)zy

(6)

where m;,, , m.,, are the coordinates of the missing point
m; and Sm,, , Sm,, are those of the nearest skeleton point
sm. For regional-based supplementation, a buffer re-
gion is calculated around the missing contour, and the
region is expanded outward, defining the supplementa-
tion area. The method efficiently handles both types of
supplementation, improving the precision of ground-
based data collection.

To determine the appropriate supplementation method,
the ratio of missing boundary points Rissing to the
total boundary points is calculated:

|CB,missing|

Q)

Rmissing = )
|CBuilding |

where CB, missing denotes the set of missing boundary
points, and C'guyiiding 18 the total set of building bound-
ary points. If Ryissing < 6, point-based supplementa-
tion is applied; otherwise, regional-based supplement-
ation is used. For point-based supplementation, a ray
is cast from each missing boundary point towards the
nearest skeleton point, with sampled target points gen-
erated along the ray. The final target points are down-
sampled:

7jiown = D(T), (8)

where 7 represents the set of sampled target points,
and Tgown 1S the down-sampled set. For regional-based
supplementation, the boundary points are expanded out-
ward along their normal vectors, and the convex hull of
the expanded points defines the region requiring com-
pletion:

Rcomplete = H(Bezpand)7 (9)

where H denotes the convex hull operation applied to
the expanded boundary points.
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2.5 Path Planning for Automated Point Cloud Sup-
plementation

This study introduces a path planning method for auto-
mated point cloud supplementation by constructing a
ground topology graph. First, an airborne 3D point
cloud dataset is processed to extract ground points us-
ing the Cloth Simulation Filter (CSF) algorithm (Zhang
et al., 2016)), resulting in a filtered ground point cloud
Pground- A distance-based downsampling method is
then applied to produce a set of ground nodes Vyrouna =
{v1,...,vn}. The pairwise Euclidean distance between
nodes is computed, and a connection is established if
the distance dv,v,; = ||[vi — v;||2 is below a threshold
dthreshold- A collision check is performed using the
non-ground point cloud Py,on— ground to refine the graph
by removing edges that intersect non-ground points,
resulting in the final ground topology graph Ggrouna =
(Vgroundy gg'round)~

For path planning, the target points 7aown = {t1,...,t5}
and target regions Bezpand = {bfzp‘”“i |i=1,...,N}
are integrated into the ground topology graph. For
each target point t;, the nearest ground node vycarest

is found by minimizing the Euclidean distance:

min
VEVground

HV—tiH2. (]0)

Vnearest — arg

For each target region bj‘"‘p“"d, the intersection with
ground nodes is computed and marked as region-specific
candidate nodes. The final traversal set, Vi qverse, 18
the union of point- and region-specific nodes:

Vpoint
traverse

U V'region

traverse* (11)

Vtravcrse =

A distance matrix D shown in Table [l is construc-
ted to capture topological distances between all can-
didate nodes, including point-to-point, point-to-region,
and region-to-region distances. The shortest distance
between candidate nodes is used to generate an effi-
cient path. The global traversal path is initialized from
the starting point, and the algorithm alternates between
visiting point-specific and region-specific nodes, using
the shortest distance matrix to guide the path. Local
exploration paths are activated for regions, ensuring
full coverage while minimizing traversal length. This
approach integrates global and local paths for efficient
automated data supplementation.
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P1 P2 PM b, by
p1 0 d(p1,p2) d(p1,pm) | d(p1,b1) d(p1,bn)
p2 | d(p2,p1) 0 d(p2,pm) | d(p2,b1) d(p2,bw)
pyv | d(pm,p1) | d(pwm,P2) 0 d(pa,b1) d(par,bw)
b1 d(bl,pl) d(bl,pg) d(bl,pM) O d(bl,bN)
bN d(bN,pl) d(bN,pQ) d(bN,pM) d(bN,bl) O

Table 1. Distance Matrix for Target Points and Regions. Legend: Yellow cells () represent point-to-point distances
d(ps, pj), blue cells () represent point-to-region distances d(p;, b;), and green cells () represent region-to-region
distances d(b;, b;).

3. EXPERIMENTS
3.1 Datasets and experimental setup

Experimental datasets: To validate the effectiveness
of the proposed cross-perspective aerial-ground col-
laborative mapping approach, we conducted experi-
ments using a synthetic dataset. The dataset is a syn-
thetic dataset constructed through manual modeling to
create a 3D triangular mesh model representing a scene
that includes ground surfaces, vegetation, and building
structures. This scene spans an area of 200 m x 200 m,
as shown in Figure [J] To generate a 3D point cloud
representation, we sampled the triangular mesh model,
treating the resulting point cloud as the ground-truth
data, and used the Helios LiDAR simulation frame-
work to generate realistic airborne point cloud data,
enabling a controlled evaluation of the proposed aerial-
ground collaborative mapping framework under vari-
ous conditions.

Ground truth

Airborne 3D point cloud

Figure 2. Visualization of dataset.

Experimental platform:To ensure the accurate gen-
eration of data supplementation paths, we developed
a simulation platform based on Linux and the Robot

Operating System (ROS). This platform integrates the
Gazebo open-source simulation tool, which serves as
the foundation for creating 3D environments and sim-
ulating physical interactions. Building on this, we in-
corporated CMU’s Autonomous Exploration Develop-
ment Environment (AEDE) Chao2022, which provides

functionalities for motion control, state estimation, autonom-

ous navigation, and high-level planning. These capab-

ilities collectively enable a seamless pipeline for autonom-

ous path planning and execution in simulation environ-
ments.

3.2 Experimental Analysis

Results of missing regions: As shown in the figure
below, the building missing detection results based on
the proposed method are presented. Figure [B(a) dis-
plays the generated contours of all buildings along with
their skeleton points. It can be observed that the pro-
posed method accurately captures the skeletons of build-
ings with various shapes. Based on this, missing re-
gions for each building were detected, as shown in
Figure3(b), where the missing region point clouds for
each building component are identified. To facilitate a
clearer comparison, these missing regions are overlaid
with the building components, as shown in Figure[3|c).
It is evident that complex buildings tend to have more
missing areas, with potential data gaps appearing on
multiple walls of the building. In contrast, simple rect-
angular buildings exhibit fewer missing regions, typ-
ically occurring on only one side. This missing data
information will serve as an important basis for sub-
sequent data supplementation strategies.

Results of supplementation region: As shown in Fig-
ure[d] the data supplementation methods for each build-
ing are presented. Based on the terrain data obtained
after semantic classification, the traversable node in-
formation can be automatically calculated, as shown
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(a) Skeleton of each building

(c) Overlapping of missing region
and buildings

TP

(b) Missing region of each building

Figure 3. Results of missing regions.

in Figure ffa). Additionally, based on the proposed
method for automatic calculation of point-based and
regional-based ground data supplementation and the

results of integrity detection, the supplementation strategy

for each building is categorized into point-based and
region-based methods. For buildings with relatively
small missing regions, point-based data collection is
primarily employed, whereas for buildings with miss-
ing regions exceeding a certain threshold, region-based
supplementation is used, as demonstrated in Figures

Elb) and (c).

(a) Traversable nodes

(b) Point-based supplementation region (c) Region-based supplementation region

Figure 4. Results of supplementation region.

Optimized results of 3D buildings: To evaluate the
effectiveness of the proposed method, extensive ex-
periments were conducted in simulation environments.
The evaluation focused on two main aspects: the com-
pleteness of the acquired point clouds and the accur-
acy of the reconstructed building models. The results
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in Figure[5|and Table[2]show that the proposed method
effectively improves the completeness of building point
clouds, increasing the overall point cloud complete-
ness from 83.51% to 89.95%. Additionally, the av-
erage distance to the ground truth point cloud is re-
duced from 0.248m to 0.005m. The results demon-
strate that the sky-ground cross-perspective collabor-
ative method significantly enhances point cloud com-
pleteness, leading to more detailed and accurate 3D
models of buildings. Furthermore, the method out-
performs traditional approaches in terms of both data
acquisition efficiency and modeling accuracy, making
it a promising solution for urban modeling and other
applications requiring high-fidelity 3D data. Further-
more, to further assess the effectiveness of the pro-
posed method in improving building modeling results,
we employed Polyfit to reconstruct 3D models of the
building point clouds before and after data completion
and evaluated the corresponding accuracy. As shown
in Figure @ the first building model is relatively com-
plex. Prior to data supplementation, the modeling ac-
curacy of the building’s roof was poor; however, after
supplementation, the roof structure was modeled more
accurately, with the precision improving from 1.7m
to 0.189m. After supplementation, the second build-
ing’s shape closely matches the original point cloud,
and the accuracy of the third building was also signi-
ficantly improved. Therefore, it can be concluded that
the proposed method effectively enhances the accuracy
of building model reconstruction.

Method Coverage(%) | Avg dsit | Time Cost (s)
Before Resampling 83.512 0.248 2%29mins
After Resampling §9.952 0.115

Table 2. Quantitative Results Before and After
Resampling

Before data supplementation

After data supplementation

Figure 5. Results of point cloud resampling.
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