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Abstract

Classification of grasslands has an important role in environmental monitoring, and management. This study compares and evaluates
the performance of various machine learning and deep learning algorithms in grassland classification using remote sensing data
from Sentinel-1 and Sentinel-2 satellites. Sentinel-1 satellite provide Synthetic Aperture Radar data, which captures structural and
moisture-related information. Sentinel-2 captures high-resolution optical images with rich spectral details. Both datasets from
Sentinel-1 and Sentinel-2 satellites were used to train and evaluate a variety of machine learning models including Random Forest,
Support Vector Machines, Logistic Regression, XGBoost and Deep Neural Networks. The results of this study show that Random
Forest performs best on Sentinel-1 data and Neural Networks perform best when it comes to grassland classification using Sentinel-2
data. These results show how important it is to select a model based on the characteristics and the nature of the dataset.

1. Introduction

Grasslands are one of the major ecosystems in the world, sup-
porting different species and also play an important role in car-
bon sequestration, helping mitigate change (d’Andrimont et al.
(2018); Ojima et al. (1993); Bengtsson et al. (2019)). Accurate
classification of grasslands is important for effective monitoring,
management since it can allow informed decision-making for
sustainable land use practices. In addition to their importance
in ecological terms, grasslands also provide ecosystem services
such as water management, control of soil erosion. and land-
scape stability (Boval and Dixon (2012); Carlier et al. (2009)).
Farmers are encouraged to maintain permanent grasslands in
order to enhance biodiversity and carbon capture by policies
like the Common Agricultural Policy (CAP) (d’Andrimont et al.
(2018)).

Remote sensing has become a key aspect when monitoring grass-
lands, since it can provide tools to evaluate cover, biomass, and
degradation over large areas (Yong (2003)). Satellite data give
the opportunity to researchers to monitor changes in grassland
ecosystems using techniques such as vegetation indices and
texture analysis (Guo et al. (2004); Weeks et al. (2013)). Ad-
vances in satellite technology now allow us to extract grassland
characteristics with improved accuracy.

This study explores the use of Machine Learning (ML) and Deep
Learning (DL) techniques for classifying grasslands based on
remote sensing data retrieved from the Sentinel-1 (fig.1(a)) and
Sentinel-2 (fig.1(b)) satellites. Sentinel-1’s Synthetic Aperture
∗ Corresponding author

Radar (SAR) data, provide valuable insights into vegetation
structure and moisture levels while being unaffected by cloud
cover or lighting conditions. Sentinel-2 captures high-resolution
optical images with a large scale of spectral information across
multiple bands, giving the opportunity for a detailed analysis of
vegetation health and land cover. This spectral richness improves
the ability to find various differences in grassland composition
and vitality.

This study evaluates the performance of these two data sources
in grassland classification, highlighting their strengths and limit-
ations. By understanding these differences, it can help validate
farmer-provided data, support better informed grassland man-
agement practices, and also support more effective conservation
efforts.

2. Literature Review

Remote sensing has advanced significantly since Machine Learn-
ing (ML) and Deep Learning (DL) have also advanced, along
with the application of remote sensing data for classifying grass-
lands. European Space Agency’s Sentinel-1 and Sentinel-2 satel-
lites, that are part of the Copernicus program, provide important
data that can be used for the aforementioned purpose. Sentinel-
1’s Synthetic Aperture Radar (SAR) captures detailed inform-
ation about earth’s surface structure and texture. On the other
hand, Sentinel-2’s multi-spectral optical images, also provide
detailed information about earth’s surface but with a focus on
vegetation, land cover, and water bodies. Researchers have ex-
plored how well different ML and DL algorithms perform on
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(a) Sentinel-1: Synthetic Aperture Radar
(SAR) image

(b) Sentinel-2: Multi-spectral optical image

Figure 1. Sentinel-1 and Sentinel-2 satellite images from the Netherlands region of interest (ROI), as used in our dataset.

these datasets, to find the best models for grassland classifica-
tion.

Sentinel-1 SAR data is particularly useful for areas with regular
cloud cover since it provides observations in all weather condi-
tions, day and night. However, there are particular challenges
when using SAR data, such as speckle noise and complex backs-
catter characteristics, which require specific processing tech-
niques. Several studies have shown how well machine learning
models and deep learning architectures handle these challenges
for vegetation and land-cover classification.

A thorough analysis of Random Forest (RF) for remote sensing
applications was carried out by Belgiu and Drăguţ (2016), which
emphasized the model’s ability to handle high-dimensional data
and reduce overfitting. The authors of the study highlighted RF’s
effectiveness in classification using SAR data, due to its ability to
incorporate multiple polarization features. These findings were
further supported by Alharbi (2024), who analyzed the impact
of decision tree-based models like RF and XGBoost (XGB) in
handling radar-based backscatter variations. In their study they
found that although XGB performed well in structured land
types, RF outperformed XGB in classifying grassland areas due
to its ensemble learning nature.

Beyond decision-tree models, Pelletier et al. (2019) explored
the application of Temporal Convolutional Neural Networks
(TempCNNs) on Sentinel-1 time-series data. They demonstrated
that CNNs could effectively capture seasonal variations in radar
backscatter, enhancing grassland classification accuracy. How-
ever, while CNNs excelled in learning spectral-temporal patterns,
RF remained a computationally efficient alternative with com-
parable accuracy.

In addition to supervised learning techniques, Guo et al. (2004)
explored SAR-derived texture measures for vegetation classific-
ation. Their results showed that integrating backscatter intensity
with polarization information significantly improved model ac-
curacy, reinforcing the idea that Sentinel-1 data contains struc-
tural and moisture-related features valuable for distinguishing
grassland cover.

These studies indicate that Random Forest is a strong contender
for Sentinel-1-based classification, consistently outperforming
other traditional ML models in terms of stability and interpretab-
ility. While CNNs show promise in handling time-series SAR
data, RF remains the preferred choice for standalone Sentinel-1
datasets due to its efficiency and adaptability to noisy radar data.

Sentinel-2’s 13-band multispectral images rich information for
vegetation monitoring, biomass estimation and land-cover clas-
sification. Sentinel-2 is well-suited for classifying grasslands
since it has the ability to directly measure vegetation reflectance,
in contrast to Sentinel-1, which records surface structure and
moisture.

Nalepa et al. (2019) investigated the potential of Deep Neural
Networks (DNNs) in their study for classification using Sentinel-
2 data. Their research showed that when trained on the high-
dimensional spectral data from Sentinel-2, DNNs performed
better than traditional ML models. According to the results
of the study, the neural networks can effectively model com-
plex relationships within multispectral imagery, resulting to the
improvement of classification accuracy.

Zhu et al. (2017) offered a broader perspective by reviewing
deep learning applications in remote sensing. Their findings
emphasized the superiority of Convolutional Neural Networks
(CNNs) for spectral-spatial feature extraction, making them
particularly effective for vegetation classification tasks. Their
analysis showed that CNNs consistently outperformed RF and
SVM when applied to high-resolution Sentinel-2 imagery.

Building on these insights, Helber et al. (2019) introduced
EuroSAT, a benchmark dataset derived from Sentinel-2, which
facilitated extensive land-use classification research. Their study
revealed that CNN-based models trained on Sentinel-2 data
achieved classification accuracies exceeding 98%, highlighting
the benefits of deep learning in multispectral analysis.

Furthermore, Weeks et al. (2013) explored the impact of vegeta-
tion indices on Sentinel-2 classification accuracy. They demon-
strated that incorporating indices such as NDV I and Red Edge
bands significantly enhanced model performance, particularly in
discriminating between healthy and degraded grasslands.

These studies collectively suggest that deep learning models, es-
pecially CNNs, surpass traditional ML approaches for Sentinel-
2-based classification by effectively utilizing high-dimensional
spectral information. However, RF remains a viable alternative,
particularly when computational efficiency and interpretability
are essential considerations.
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3. Data

3.1 Space-level datasets

The dataset used in this study is a multi-level and multi-sensor
resource provided by (Choumos et al. (2022)), and it aims at
supporting grassland classification for agricultural monitoring.
The dataset consists of Earth observation data extracted from
the Sentinel-1 and Sentinel-2 satellites, part of the Coperni-
cus program (Jutz and Milagro-Perez (2020)) managed by the
European Space Agency (ESA). It is a pre-annotated dataset
where Sentinel-1 and Sentinel-2 data were georeferenced and
labeled with crop-type information from the Dutch Land Parcel
Identification System (LPIS). Sentinel-1 and Sentinel-2 satel-
lites provide complementary data, with Sentinel-1 capturing
Synthetic Aperture Radar (SAR) data, and Sentinel-2 providing
multi-spectral optical imagery data. Both of these data modalit-
ies contain data from 2017 in a span of 7 months.

3.1.1 Sentinel-1 The Synthetic Aperture Radar (SAR) data
that Sentinel-1 data consist of, were gathered across several
months in 2017. Sentinel-1 functions in the microwave spectrum,
collecting data day and night in any weather situation compared
to optical satellites. The current dataset, which was gathered
for every month from April to October in 2017, has two dif-
ferent polarization modes: Vertical-Vertical (V V ) and Vertical-
Horizontal (V H), and two coherence values: Horizontal-Horizontal
(HH) and Horizontal-Vertical (HV ). The dataset contains dif-
ferent observation points, denoted by parcel ids - the id of the
polygon for the corresponding agricultural parcel - and the labels
of these points, indicate whether the vegetation is dominated by
grass or not.

The radar backscatter coefficients for each month and polariza-
tion are shown in the columns with names like 2017-04 VH SAR,
2017-04 VV SAR, etc. The strength of the radar signal reflected
from the surface is indicated by the backscatter values, which
can be influenced by vegetation structure, moisture content, and
surface roughness.

3.1.2 Sentinel-2 Sentinel-2 provides 13 spectral bands of
high-resolution optical imaging, including visible, near-infrared,
and short-wave infrared bands (see Table 1). The table presents
Sentinel-2’s 13 spectral bands, which are used for a variety
of Earth Observation applications. These bands cover various
portions of the electromagnetic spectrum, including visible, near-
infrared, and short-wave infrared regions. Every band is tailored
to perform particular observational tasks, such as identifying
water bodies, vegetation, or atmospheric properties. In this study,
we utilize all bands except B1, B9, and B10, to extract mean-
ingful spectral information for the classification of grassland
areas.

The dataset contains of multi-spectral optical data that were
gathered in 2017 for every month from March until the end
of October. Like the Sentinel-1 dataset, each observation in
the dataset is represented by a distinct id and a corresponding
label that shows whether the area of interest (AOI) belongs to
the Grassland class or not. The dataset contains Sentinel-2
reflectance values from all spectral bands across multiple time
points, without focusing on B1, B9 and B10 at all since they
are primarily designed for coastal and atmospheric applications
(Ali and Johnson (2022)).

The data collection records temporal sequences of spectral values
that enable dynamic analysis, which is needed for the aforemen-

Band Function
B1 Coastal Aerosol
B2 Blue
B3 Green
B4 Red
B5 Red-edge
B6 Red-edge
B7 Red-edge
B8 NIR
B8a Red-edge
B9 Water vapour
B10 SWIR
B11 SWIR
B12 SWIR

Table 1. Sentinel-2’s 13 spectral bands

tioned task, land cover classification using the spectral properties
of various land surfaces.

3.2 Data Preparation

As previously mentioned, the dataset for each sensor contain
over 35,000 records in total. However, only approximately 4,000
records from these datasets have a parcel id that matches an
entry in the parcel-level crop label dataset. This subset was
derived by merging the Sentinel-1 and Sentinel-2 datasets with
the parcel-level annotations, ensuring that only records with
overlapping parcel ids are included. This overlap enables a
comparative analysis of models trained independently on each
satellite dataset, offering valuable insights into the relative ef-
fectiveness of radar and optical data for classification tasks.

3.2.1 Handling Class Imbalance The dataset used in this
study shows a significant class imbalance, with 3,513 records
labeled as Grassland and only 533 records labeled as Non−
Grassland. As a result of this class imbalance, ML models can
become biased towards the majority class and perform poorly
on the minority class which can make the training challenging
(Chakraborty et al. (2021); Wang et al. (2023)). In order to
solve this problem and make sure that the minority class is not
underrepresented during training, we computed the inverse fre-
quency of each class in the training data to establish determine
the proper class weights. The class weights that are determ-
ined after calculating the class counts, are then allocated to
individual samples, by using the PyTorch (Paszke et al. (2019))
module, WeightedRandomSampler. This sampler guaran-
tees that each class contributes proportionately during the train-
ing process. This method helps to reduce the impact of class
imbalance and encourages more balanced model learning.

4. Methodology

4.1 Data Preprocessing

The datasets used in this study, Sentinel-1 and Sentinel-2, were
pre-aligned geographically and linked to specific parcels to en-
sure consistency in spatial representation. No missing values
were observed in either dataset, eliminating the need for imputa-
tion or other handling techniques. Input features were normal-
ized using the StandardScaler method from scickit− learn
(Pedregosa et al. (2011)) to standardize their scale and improve
model convergence during training. The datasets were split into
training, validation and test sets with an 80 : 10 : 10 ratio. Ad-
ditionally, a 5-fold cross-validation procedure was applied to
evaluate model robustness across varying subsets of data.
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4.2 Feature Selection and Input Details

For the Sentinel-1 dataset, the input features comprised 28 val-
ues, representing V V and V H polarizations collected monthly
between April and October 2017. These values were treated in-
dependently without temporal aggregation. Similarly, Sentinel-2
dataset included 290 input features derived from 10 spectral
bands, also collected independently over the same period. No
additional feature engineering or transformations, such as the
computation of vegetation indices, were applied.

4.3 Model Architectures and Configurations

To evaluate the effectiveness of various machine learning al-
gorithms for grassland classification, we assessed Neural Net-
works (NN), Support Vector Machines (SVM), Random Forest
(RF), Logistic Regression (LogReg), and XGBoost (XGB), fine-
tuning each model’s hyperparameters for optimal performance.
The Neural Network models were designed with distinct archi-
tectures based on the dataset: for Sentinel-1 the network had
28 input features with three layers comprising 32, 16, and 8
neurons, whereas for Sentinel-2 it utilized 290 input features
with layers of 512, 128, and 16 neurons. Both architectures were
trained using a learning rate of 0.00001, a dropout rate of 0.2,
and the CrossEntropyLoss function, running for 500 epochs
while selecting the best-performing parameters based on MCC.
The SVM model employed an RBF kernel with a regularization
parameter C = 1.0 and a balanced class weight to address class
imbalance. The Random Forest classifier as configured with
100 trees, a maximum depth of 10, and a balanced class weight.
For Logistic Regression, we used L2 regularization, the LBFGS
solver, and a maximum of 1000 iterations, with class weights
adjusted o handle imbalance. Lastly, the XGBoost model was
trained with 100 boosting rounds, a maximum tree depth of 6,
and a learning rate of 0.1, incorporating the scale pos weight
parameter to mitigate class imbalance. These configurations en-
sured that each model was optimized for the classification task,
maximizing performance across both Sentinel-1 and Sentinel-2
datasets.

4.4 Evaluation Metrics

Neural network models were trained using the RAdam optimizer,
chosen for its ability to handle adaptive learning rates while en-
suring stable convergence. In preliminary experiments, RAdam
outperformed Adam in terms of both convergence speed and
final classification performance. Cross-entropy loss was used
as the objective function for the classification task. The train-
ing was conducted for 500 epochs with a batch size of 64, and
the best-performing model parameters were saved based on the
highest MCC achieved during the evaluation of the model.

To compare the performance of models trained on Sentinel-1
and Sentinel-2 data, we analyzed accuracy, loss, and MCC for
each algorithm. Metrics were computed independently for both
datasets to assess the effectiveness of radar versus optical data in
grassland classification tasks. Additionally, we compared results
statistically by observing trends in MCC values during training
and testing across folds.

All experiments were conducted on a workstation with the fol-
lowing specifications: a 12th Gen Intel® Core™ i9-12900 CPU,
64 GB of RAM, and an NVIDIA RTX A2000 12 GB GPU. The
training pipeline was implemented using PyTorch for neural
networks and Scikit-learn for traditional machine learning al-
gorithms.

Figure 2. Neural Network architecture. NN architecture used for
Sentinel-1 data: [28, 32, 16, 8, 2]. NN architecture used for

Sentinel-2 data: [290, 512, 256, 16, 2]

5. Results

The table of the results (see table 2) shows the performance of
various machine learning models when applied to Sentinel-1 and
Sentinel-2 datasets, as determined by two key metrics: accuracy
and the Matthews Correlation Coefficient (MCC).

For the Sentinel-1 dataset, the Random Forest model demon-
strated the highest accuracy (0.9172 ± 0.0086) and MCC (0.5888
± 0.0500), indicating that it was the most reliable and accurate
model when classifying grasslands using radar data. While the
neural network achieved a high accuracy of 0.9040 ± 0.0192, its
MCC score (0.4704 ± 0.2388) was notable lower compared to
the Random Forest and SVM models, indicating less consistent
performance in handling imbalanced data. Logistic Regression
had the lowest accuracy and MCC, suggesting its limitations for
more complex classification tasks in this dataset.

For the Sentinel-2 dataset, which consists of optical imagery,
the neural network outperformed other models with the highest
accuracy highest accuracy (0.9649 ± 0.0082) and MCC (0.8381
± 0.0396). Given that the Sentinel-2 dataset we used has 290
input features, this result demonstrates how well neural network
can handle high-dimensional data. With accuracies of 0.9632
± 0.0046 and 0.9622 ± 0.0030, and MCC scores slightly lower
than the neural network’s, other models like Random Forest and
SVM, respectively, also showed strong performance.

Overall, these results show how dataset characteristics have a
big impact on the performance of the model. While the Random
Forest model performed well with Sentinel-1 radar data, offering
a balanced performance in terms of accuracy and MCC, the
neural network demonstrated outstanding performance with the
high-dimensional Sentinel-2 data. These results highlight how
crucial it is to select machine learning models that are relevant
to the data’s characteristics.

6. Discussion

6.1 Summary of Key Findings

The results of the study show notable differences in the perform-
ance of the machine learning models when they are used on
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Dataset Metric Model
Neural Network Logistic Regression SVM Random Forest XGB

Sentinel-1 Accuracy 0.904 ± 0.019 0.861 ± 0.006 0.887 ± 0.007 0.917 ± 0.009 0.908 ± 0.011
MCC 0.470 ± 0.239 0.533 ± 0.019 0.569 ± 0.027 0.589 ± 0.050 0.589 ± 0.032

Sentinel-2 Accuracy 0.965 ± 0.008 0.921 ± 0.009 0.962 ± 0.003 0.963 ± 0.005 0.961 ± 0.006
MCC 0.838 ± 0.040 0.690 ± 0.020 0.826 ± 0.015 0.831 ± 0.023 0.834 ± 0.025

Table 2. Performance metrics (Accuracy, MCC, and Loss) of various machine learning models applied on Sentinel-1 and Sentinel-2
datasets. Bold values indicate the best performance in terms of Accuracy and MCC within each dataset.

Sentinel-1 and Sentinel-2 datasets for grassland classification.
For the Sentinel-1 dataset, the Random Forest (RF) model out-
performed all the other models, obtaining the highest accuracy
and MCC scores. The neural network on the other hand, outper-
formed the other models in terms of accuracy and MCC score
when tested on the Sentinel-2 data. Regarding the aforemen-
tioned results, we can see how important it is to select models
based on the dataset’s characteristics in order to get the best
performance out of it.

6.2 Interpretation of Results

The good performance of Random Forest on the Sentinel-1 data-
set may be attributed to its ensemble-based architecture, which
allows the model to effectively handle moderate dimensional
radar data. Its architecture also provides robustness against noise
and variability which it can be seen in Synthetic Aperture Radar
(SAR) images. As mentioned by Alharbi (2024), RF can effi-
ciently handle the speckle noise and variability due to environ-
mental factors that SAR data contain by combining multiple de-
cision trees to improve generalization and reduce overfitting. In
addition, dual-polarization (V V and V H) features in Sentinel-1
data provide valuable information about surface properties. The
performance advantage that RF had, was probably influenced by
its ability to handle non-linear relationships and a wide range of
input features. As also mentioned in the literature, Belgiu and
Drăguţ (2016) show in their study Random Forest’s ensemble
learning nature as benefit for radar datasets, while Pelletier et
al. (2019) have demonstrated the algorithm’s ability to use both
polarization and texture for land cover classification.

On the other hand, the neural network’s outperforming perform-
ance on the Sentinel-2 dataset is probably because of its capacity
to handle multi-spectral, high dimensional input. Sentinel-2 data
provide rich information across several spectral bands, and the
neural network’s architecture allows it to learn complex rela-
tionships between these data points. The neural network can
recognize complex patterns in the data that other models would
overlook thanks to its capacity to process large-scale input fea-
tures and advanced optimization techniques like RAdam. This
capability is particularly significant when working with high-
dimensional optical imagery, where subtle spectral variations
can be crucial for accurate classification. This finding is also
supported by the literature, which shows that neural networks are
effective at modeling non-linear interactions in hyper-spectral
and multi-spectral remote sensing data (Nalepa et al. (2019)),
while Zhu et al. (2017) discuss how neural networks can be used
to exploit spectral information for vegetation classification.

6.3 Limitations and Future Work

The limitations of this study should be addressed in future re-
search. First, because the analysis was limited to a specific re-

gion, the results may not be as applicable to other places with dif-
ferent meteorological or environmental characteristics. Second,
although we handled the class imbalance using a WeightedSampler,
a larger dataset could provide more balanced class representation
and improve model performance further.

Future research can investigate the integration of Sentinel-1 and
Sentinel-2 data in order to take advantage of the complementary
information that each dataset provides. This approach could en-
hance the classification accuracy by providing a more complete
representation of grassland features. Performance could also be
further improved by exploring more advanced machine learning
architectures, such as transformer-based models or ensemble
methods that combine machine learning algorithms with deep
learning neural networks. Finally, testing these algorithms on
many datasets from different regions, can also make the res-
ults more reliable, opening the door for grassland monitoring
systems that are more broadly applicable.

7. Conclusion

Using the sentinel-1 and Sentinel-2 datasets, this study assessed
how well different Machine Learning models performed in grass-
land classification. The study’s findings showed that the type
of remote sensing data had a big impact on model performance.
Random Forest (RF) excelled on Sentinel-1 data, likely due
to its ability to handle noise and incorporate polarization and
texture features that are inherent in Synthetic Aperture Radar
(SAR) images. The neural network’s ability to model complex
relationships across multiple spectral bands on the other hand,
achieved the best results on Sentinel-2 data.

These results have significant implications for grassland monit-
oring in remote sensing applications. The robust performance
of RF on Sentinel-1 data shows its reliability for radar-based
classification tasks, especially in areas with persistent cloud
cover where optical imagery is less effective. Conversely, the
neural network’s success with Sentinel-2 data highlights how
well suited is is for high-dimensional spectral analysis, making
it an effective tool for in-depth vegetation evaluation.

Despite these positive outcomes of the study, certain limita-
tions should be acknowledged. While class imbalance in the
datasets was mitigated using a WeightSampler, increasing the
volume of training data could further improve model perform-
ance. Moreover, this study concentrated on the separate analysis
of Sentinel-1 and Sentinel-2 data, while further research could
investigate the integration of both datasets to capitalize on their
complementary strengths. Exploring more advanced machine
learning architectures could also enhance classification accuracy.

Overall, this study provides insightful information about the
applicability of different machine learning models for grassland
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classification using remote sensing data. By identifying the
strengths of RF for radar-based data and neural networks for
multi-spectral imagery, these findings aid in the development
of more effective, data-driven approaches for environmental
monitoring and land cover classification.
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