
 
* Corresponding author 

Automatic Non-Urban Road Surface Point Extraction Based on Geometric Features 

Using Neural Networks and Raster Structure Approach 
 

 

Mohammad Dowajy 1, Mohamed Fawzy 1,2*, Arpad Barsi 1, Tamás Lovas 1 

1 Department of Photogrammetry and Geoinformatics, Faculty of Civil Engineering, Budapest University of Technology and 

Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary,  

{mohammad.dowajy, mohamed.fawzy, barsi.arpad, lovas.tamas}@emk.bme.hu 
2 Civil Engineering Department, Faculty of Engineering, South Valley University, 83523 Qena, Egypt, 

mohamedfawzy@eng.svu.edu.eg 

 

 

 

 

Keywords: Road extraction, 3D point cloud, Neural network, Point cloud geometric features, Mobile laser scanning. 

 

 

Abstract 

 

The automatic segmentation of road surface points from 3D point cloud data has recently gained significant attention. However, it 

remains challenging due to the variability of road characteristics and the complexity of surrounding environments, especially in non-

urban areas. This study introduces a comprehensive methodology leveraging neural networks to segment road surface points from non-

urban point cloud data, supporting autonomous driving applications. The proposed approach computes multiple geometric features of 

the point cloud at two resolutions, 0.2 and 0.4 meters, to enhance segmentation accuracy. The features are projected onto a regular grid 

and converted into a raster format where each pixel's value represents the averaged features of points within its space. The rasterized 

values serve as structured inputs for a feature-based Neural Network (NN), which classifies road pixels based on intensity, density, 

curvature, planarity, roughness, surface variation, and verticality properties. Classified road pixels are further refined through 

morphological operations, distinguishing main road and road border pixels. The created masks are then used to extract the 

corresponding point cloud data of each category. The same neural network model is applied to extract road points within the border 

point clouds, where a precise road surface point cloud is obtained by merging the inside-road and filtered border points. The proposed 

method was evaluated on a MLS-acquired road point cloud dataset, achieving high performance with average completeness, 

correctness, quality, and overall accuracy rates of 98.9%, 97.6%, 96.6%, and 98.2%, respectively. Its key advantage lies in the reduced 

computational requirements demand by operating on rasterized inputs rather than traditional raw point cloud data. 

 

1. Introduction 

High-Definition (HD) maps play a crucial role in autonomous 

driving due to their highly precise and information-rich 

representations of road environments. As a result, HD mapping 

has gained significant attention in recent years (Bao et al., 2022). 

Creating HD maps requires detailed and accurate road surface 

data. Point clouds, which store comprehensive geometric and 

attribute details of scanned environments, serve as a key data 

source for both generating and updating HD maps (Chiang et al., 

2022). Thus, effectively utilizing point cloud data is essential for 

producing high-resolution, reliable, and up-to-date maps that 

meet the demands of modern automated driving systems. 

Manually segmenting road surface points from very big point 

cloud data is both labor-intensive and time-consuming. In 

addition, fully automated road extraction remains challenging 

due to the wide variability in road structures and the complexity 

of real-world environments (Y. Li et al., 2015; Martínez Sánchez 

et al., 2020; Xu et al., 2016). Unsupervised approaches often 

require manual feature extraction or preprocessing, which is 

difficult due to the irregular and unstructured characteristics of 

point cloud data. Moreover, the presence of noise, occlusions, 

and outliers further complicate the process (Chen et al., 2022). 

The variations in point cloud data based on the scanning device 

or technique introduce further challenges in developing robust 

algorithms capable of handling these differences while ensuring 

reliable road extraction. 

To address these challenges, Artificial Neural Networks (ANNs) 

have become increasingly popular in point cloud semantic 

segmentation approaches (Zhang et al., 2019). ANNs are broadly 

categorized into Deep Neural Networks (DNNs) and Shallow 

Neural Networks (SNNs) based on the number of hidden layers 

and the presence of built-in feature extraction capabilities. DNNs 

typically consist of many hidden layers, sometimes up to 

hundreds, whereas SNNs have only a few layers 

(Gorokhovatskyi & Peredrii, 2018). 

Recently, several DNN architectures have been developed for 

point cloud classification tasks. Some models provide point-by-

point labeling, while others convert point cloud data into 

structured formats before classification such as multi-view 

representations (Su et al., 2015), voxel grids (Maturana & 

Scherer, 2015), or point grids (Le & Duan, 2018). DNNs have 

shown outstanding performance in classifying and segmenting 

3D point cloud data (Diab et al., 2022). Their ability to capture 

complex patterns makes them highly effective for a variety of 

computer vision tasks. However, the deep architectures often 

necessitate large training datasets, which may not be practical in 

scenarios with limited annotated data (Lei et al., 2020). 

Additionally, the complexity of DNNs can make them difficult 

to interpret and fine-tune for specific applications. 

SNNs offer an alternative approach, especially in structured 

environments like roads and achieving high-resolution road 

extraction results. Their simpler architecture enables faster 

training and inference while requiring fewer labeled samples 

(Fawzy, et al., 2023). While DNNs remain preferred for highly 

complex classification tasks, SNNs provide a lightweight and 

practical solutions for tasks where deep models may be 

unnecessary. Recent research has increasingly focused on the use 

of neural networks for point cloud segmentation, showing 

promising outcomes in urban environments where road markings 

and structures are well-defined. However, there is a gap in the 

literature regarding the applications of such techniques in non-
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urban areas, where roads tend to be less structured and more 

integrated with the natural landscape. 

The current study presents a novel methodology for extracting 

road surface points in non-urban environments by leveraging 

point cloud geometric features and shallow neural networks. The 

approach computes multiple geometric features from the point 

cloud data, projects them onto a regular grid, and converts them 

into a raster format which reducing data complexity while 

preserving the accuracy. These structured raster values serve as 

inputs for a feature-based neural network to classify road pixels 

based on the geometric properties such as intensity, density, 

curvature, and roughness. Morphological operations refine the 

classification by distinguishing main road and border pixels, 

which are then used to extract the corresponding point cloud data. 

The same SNN model is applied to classify road points within 

border regions into road and non-road points. Consequently, a 

precise road surface point cloud is generated by merging the 

inside-road and filtered border points. The method enhances 

scalability, computational efficiency, and seamless geospatial 

integration by structuring data in a raster format instead of 

processing millions of individual points. Finally, the research 

aims to improve the accuracy and reliability of road surface 

segmentation which support the advancements in autonomous 

navigation and road infrastructure analysis. 

 

2. Related Work 

In recent years, researchers have made significant improvements 

in using ANN techniques for road point cloud extraction. (Rizzoli 

et al., 2022) reviewed the most common deep learning 

architectures for multimodal semantic segmentation in 

autonomous driving, in addition to the various techniques for 

combining multiple inputs such as color, depth, and other 

properties at different steps of the learning architectures, and their 

impact on performance. Point cloud classification methods using 

artificial neural networks are differ based on the input data type. 

Several researchers apply point-based approaches, where the 

point cloud data is processed directly, eliminating the need for 

data transformations such as voxelization or graph conversion, 

thereby improving computational efficiency. (Dowajy et al., 

2025) applied a Shallow Neural Network (SNN) for fast and 

efficient road surface extraction using RGB values from 

photogrammetric point cloud data. Despite potential limitations 

from color similarities, minimal inputs, and the simple network 

architecture, the approach achieved high accuracy 

(completeness: 98.36%, correctness: 99.53%, quality: 97.90%, 

and overall accuracy: 99.87%). (Soilán et al., 2022) employed a 

deep-learning technique based on Point Transformer for the 

semantic segmentation of road point clouds acquired using 

Mobile Laser Scanning (MLS). The algorithm processes the 

point clouds directly, classifying the output like asphalt, road 

markings, road signs, and others. (Ma et al., 2022) automatically 

extracted road footprints from high-resolution co-registered 

images and airborne LiDAR point clouds in urban areas using the 

PointNet++ neural network. The network inputs were the raw 

LiDAR point features, such as 3D coordinates, intensity, etc., and 

the co-registered images’ RGB Digital Number (DN) values. The 

extracted road points completeness and correctness were 84.7% 

and 79.7%, respectively. (Bai et al., 2021) employed the 

RandLA-Net point-wise neural net for automatic road-type 

classification of colored MLS point clouds. They investigated 

three input feature combination scenarios and their impact on 

classification results. The inputs included geometric features 

alone, geometric features combined with attribute features (e.g., 

color), and geometric features combined with local differences in 

attribute features. The findings showed that the second and third 

combinations had the highest overall accuracy of 86.23%. 

(Balado et al., 2019) proposed a method for MLS point cloud 

semantic segmentation of continuous elements in the road 

environment, including the road surface, ditches, fences, and 

borders. First, the point cloud is divided into sections along the 

road, and the PointNet neural network is applied directly to the 

points in those sections. The input features included point 

coordinates, intensity, return number, and total number of 

returns. The network training time was nearly 8 hours. The 

confusion matrix reveals that the overall segmentation accuracy 

for road surface points was 96.2%. (Dowajy et al., 2024) 

proposed a comprehensive approach using SNNs to segment non-

urban MLS road point clouds for autonomous driving 

applications. The method converts raw point cloud data into a 

regular grid of cells or partial clouds. The SNN inputs were 

derived from the properties of partial clouds, including plane 

fitting error, average intensity, elevation range, and weighted 

density. The extracted road point clouds were further refined and 

assessed. The method’s performance was evaluated, achieving 

completeness, correctness, quality, and overall accuracy close to 

98%, 99%, 97%, and 98%, respectively. 

Other researchers have investigated classifying road point cloud 

data using different data structures derived from the point cloud. 

(Caltagirone et al., 2017) presented a fully convolutional neural 

network for road extraction from MLS point clouds. An image 

was produced by projecting point clouds from the top view. Six 

statistics were calculated for each pixel in this image including 

the number of points, mean reflectivity, mean, standard 

deviation, and minimum and maximum elevation. Then, a pixel-

wise semantic segmentation was implemented for road detection. 

The introduced system performance was compared with the best-

performing algorithms on the KITTI road benchmark. (Fawzy, et 

al., 2024) designed, trained, validated, and implemented a CNN 

model in a built-up study area with building, road features. To 

enhance the classification capabilities, a MS image has been 

integrated with point cloud data which enabled deriving digital 

surface model, intensity, normal vector, surface variation, and 

vertical layers. The applied CNN model achieved an overall 

accuracy of 83.25% for the classification process and 87.00% for 

the post-classification refinement outperforming the traditional 

classification results. (H. T. Li et al., 2022) applied the mask 

Region-based Convolutional Neural Network (R-CNN 

algorithm) for road surface object segmentation in a 3D LiDAR 

point cloud captured by a Mobile Mapping Vehicle (MMV). The 

model inputs were a 2D image generated by projecting the point 

cloud intensity and height information. The result proved the 

model’s efficacy in lane detection. 

While the state-of-the-art approaches have achieved success, 

road point cloud classification has faced challenges associated 

with computational capacity, temporal constraints, and cost 

limitations. To overcome these challenges, the investigated 

work offers a new methodology that leverages point cloud 

geometric features and neural networks for extracting road 

surface points in non-urban environments. 

 

3. Methodology 

This paper proposes a structured methodology for extracting road 

surface points from non-urban point cloud data by employing 

point cloud geometric features and neural networks. (Figure 1) 

provides a clear, step-by-step flowchart outlining the research 

methodology and procedures. 
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4. Experimental Works 

4.1 Study Area and Data Used 

The performance of the proposed method was evaluated using a 

mobile mapping point cloud dataset collected from the 3 km long 

Handling Course at the ZalaZone automotive proving ground in 

Hungary (Figure 2). A Leica Pegasus: two mobile mapping 

system was used for data acquisition. It is built of a Z+F Lidar 

unit with a 120 m range and 360° field of view, along with seven 

cameras (2046 × 2049 pixel, 24-bit). The lenses have an 8.0 mm 

focal length, except for the zenith camera (2.7 mm). Images were 

captured at 8 fps. Positioning was ensured by a Novatel 

GNSS/IMU system. The dataset consists of 109 million colored 

road points. 

 

 
Figure 1. Procedures of the presented methodology. 

 

 

 

 
a 

 
b 

 
c 

Figure 2. Study area: (a) ZalaZONE Proving Ground, (b) Study 

area point cloud (general view), and (c) Point cloud of the study 

area (detailed view). 

4.2 Input Features 

4.2.1 Intensity 

Point intensity refers to the return strength of the laser pulse that 

generated the point. Intensity differs based on the reflection 

characteristics of the material surface, offering the 

distinguishment of different materials or objects. Intensity is 

crucial in point cloud classification and object detection, 

especially for road extraction, as the road surface points tend to 

have lower intensity values than other objects in the road 

environment. Consequently, the intensity index effectively 

highlights the distinctions between the road and non-road points 

within the road point cloud environment. 

 

4.2.2 Geometric Features 

Geometric features are tools that assess the point cloud-based 

statistics by extracting eigenvectors with attached eigenvalues 

from the data using the Principal Component Analysis (PCA). 

Eigenvectors and eigenvalues give an overview of the local shape 

of the point cloud when combined with other input parameters, 

such as the radius of the neighborhoods, density, and scale 

(Bazazian et al., 2015). In our study, several point geometric 

features were derived for each point within the point cloud by 

analyzing neighboring points within 20 cm and 40 cm radiuses. 

After experimenting with different searching radii, the optimal 

one was determined. The chosen radius demonstrates a 

significant variation between the road and non-road areas using 

the following extracted geometric features:  

 

a) Verticality 

The verticality represents the deviation of the local geometry of 

a point from the horizontal plane. It is calculated by measuring 

the angle between the normal vector of the point and the vertical 

axis. The normal vector is estimated based on the local geometry 

within the defined search radius (Hackel et al., 2016). This value 

distinguishes between the road and other objects whose surfaces 

exhibit vertical or slope geometry. 
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b) Surface Variation 

The surface variation for each sample point with neighborhoods 

allows to determine whether the point belongs to a flat plane or a 

salient point (Edge) in the point cloud (Harshit et al., 2022). The 

road geometry tends to have flat surfaces, resulting in lower 

surface variation compared to neighboring objects. 

 

c) Planarity 

Planarity indicates how much the local point distribution 

resembles a planar surface. A high value suggests that the points 

are well aligned along a plane, while lower values indicate a more 

scattered distribution. 

 

d) Normal Change Rate 

Normal change rate presents the variation in surface normal 

between neighboring points in a 3D point cloud, indicating 

surface orientation and discontinuities changes. 

 

e) Roughness 

Roughness quantifies the deviation of a surface from a perfectly 

smooth plane. It is typically measured as the standard deviation 

of point distances from a locally fitted plane. 

 

f) Mean Curvature 

Mean curvature describes the local bending of a surface and is 

defined as the average of the principal curvatures at a given point. 

 

g) Surface Density 

Surface density refers to the number of points per unit area in a 

point cloud to reflects how dense a surface is. 

 

4.2.3 Rasterization 

After computing the point cloud geometric attributes, features are 

converted into raster format. The conversion involves projecting 

the point-wise features onto a regular grid. The pixel value in 

each resulting raster grid is calculated by averaging the features 

of all points that fall within the corresponding pixel. The 

geometric resolution of the output raster was set to match a 0.5 × 

0.5 m resolution, which is suitable for road scan density and 

typical road dimensions. 

 

4.3 Shallow Neural Networks 

The study utilizes a feature-based shallow neural network with 

one hidden layer consisting of ten neurons (Figure 3). The 

network uses point cloud intensity and geometric features as 

inputs to predict the corresponding class. The model was trained 

using feature values extracted from raster pixels to categorize 

them into road and non-road classes. After training, the network 

was applied to classify the raster image into road and non-road 

pixels, thereby segmenting the road surface. Additionally, the 

same neural network architecture can process features directly 

extracted from the point cloud and classify individual points as 

road or non-road. The model flexibility allows the network to 

work with both raster and point cloud data formats. 

 

 

Figure 3. SNN network data processing architecture. 

 

5. Results and Discussions 

The trained cell-based SNN model was utilized to generate a 

binary road mask (Figure 4). However, in certain instances, bad 

road conditions or surface damage could lead to the 

misclassification of specific regions of the road as non-road 

pixels. To solve this issue, a dilation morphological operation 

was applied to identify and restore any missing areas within the 

detected road surface. Next, additional morphological operations 

were employed to classify the road mask into road and road 

border pixels. The resulting masks were then used to integrated 

with the point cloud and segment the corresponding road points.  

Since the road border point cloud was generated using a raster 

mask, resolution limitations led to including both road and non-

road points. To enhance segmentation accuracy, a feature-based 

SNN model was employed to refine the extracted border data. 

The network effectively filtered out non-road points by utilizing 

points' geometric features, achieving a more precise road 

structure (Figure 5). The road surface point cloud is then 

generated by combining the main road point clouds with the 

refined border point cloud. 

 

 
Figure 4. Road and road border point clouds. 

 
Figure 5. Border point cloud filtering using feature-based SNN. 

 

5.1 Accuracy Assessment 

Four quality metrics, completeness, correctness, quality, and 

overall accuracy (Equations 1-4), proposed by (Heipke et al., 
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1997) were used to quantitatively assess the method’s 

effectiveness in extracting road points. The assessment involved 

comparing the classification results with a manually labeled 

ground truth point cloud. 

Completeness = TP/(TP+FN)    (1) 

Correctness = TP/(TP+FP)    (2) 

Quality = TP/(TP+FP+FN)    (3) 

Overall accuracy = (TP+TN)/(TP+FP+FN+TN)  (4) 

Where TP (True Positive) represents the count of correctly 

classified road points, 𝐹N (False Negative) is the number of road 

points misclassified as non-road, 𝐹P (False Positive) is the 

number of non-road points that are misclassified as road points, 

and TN (True Negative) refers to the number of non-road points 

that are classified correctly. The values were calculated using 

Equations 5-8.  

𝑇𝑃 = 𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑟𝑢𝑡ℎ ∩ 𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑    (5) 

𝑇𝑁 = 𝑛𝑜𝑛_𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑟𝑢𝑡ℎ ∩  𝑛𝑜𝑛 𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 (6) 

𝐹𝑃 = 𝑛𝑜𝑛_𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑟𝑢𝑡ℎ ∩ 𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  (7) 

𝐹𝑁 = 𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑟𝑢𝑡ℎ ∩  𝑛𝑜𝑛 𝑟𝑜𝑎𝑑 𝑝𝑜𝑖𝑛𝑡𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑   (8) 

The detailed confusion matrix of the proposed method is 

presented in Table 1. The comparison of the classification results 

to the validation data demonstrated the efficacy of the proposed 

method in road point cloud extraction. The overall classification 

accuracy (98.15%) refers to the percentage of points in the 

dataset that were correctly classified, considering both road and 

non-road classes. The completeness (98.91%) is the percentage 

of correctly classified road points compared to the total number 

of road points in the ground truth data. The correctness (97.59%) 

indicates the points classified as ‘road’ were indeed road points. 

The quality score (96.56%) represents the percentage of the road 

points in the dataset that were correctly classified, considering 

both true positives and negatives. 

 

  True label  

 Classified 

data 
Road Non- Road 

Total 

points 

P
r
e
d

ic
te

d
 l

a
b

e
l 

Road 62,012,372 1,530,373 63,542,745 

Non- Road 681,376 55,217,654 55,899,030 

Total points 7,282,938 62,693,748 56,748,027 

     

TP 62,012,372 Completeness 98.91% 

TN 55,217,654 Correctness 97.59% 

FP 1,530,373 Quality 96.56% 

FN 681,376 
Overall 

accuracy 
98.15% 

Table 1. The results of the proposed method. 

 

The proposed method demonstrates strong classification 

capabilities, particularly in distinguishing road and non-road 

features. The key advantage is the rasterization approach, which 

simplifies data processing while maintaining accuracy. The 

method’s efficiency is further enhanced by its lightweight neural 

network, minimal training data requirements, and direct 

applicability to raster and point-wise LIDAR data. Integrating 

geometric features has proven effective in differentiating road 

and non-road areas, even on smooth or visually similar surfaces; 

however, certain limitations should be considered. The simple 

architecture of the SNN model constrains its ability to learn 

complex patterns, and its reliance on geometric features 

necessitates high-quality road scans for optimal accuracy. 

6. Conclusions and Future Works 

The study introduces a novel non-urban road surface extraction 

approach from point cloud data, leveraging geometric features, 

rasterization, and neural networks. The proposed method 

achieves high accuracy and computational efficiency, making it 

well-suited for autonomous driving applications in non-urban 

settings. Future research will focus on refining the methodology, 

optimizing the neural network structure, and integrating 

additional inputs, such as color values, to enhance classification 

accuracy and adaptability across diverse environments. 
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