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Abstract 

 

Air pollution is one of the most important environmental and public health challenges of our time, and it uniquely impacts urban areas, 

especially in the rapidly developing countries of the UAE. Traditional air quality monitoring systems lack the predictive capabilities 

needed for proactive intervention and sustainable urban planning. The research proposes BREATHE—a system of integrated real-time 

monitoring and machine learning-based forecasting to address air pollution challenges in urban environments by using GeoAI. The 

research implements deep learning algorithms alongside geographical data to establish a scalable system for air quality management. 

BREATHE system features four essential aspects that include (1) real-time AQI checks at 12 locations across the UAE territory (2) 

predictive models for AQI forecasting through climatic and historical data analyses (3) interactive dashboards with mapping visuals 

and alert features and (4) AI-powered chatbot assistance along with non-specialist user-friendly accessibility. The data processing 

together with model deployment operates without interruptions through Python-based automation. By bridging the gap between 

monitoring and predictive analytics, this study presents a replicable framework for large-scale air quality management in urban 

environments worldwide. 

 

1. Introduction 

Air pollution is a key challenge to urban sustainability, especially 

in rapidly developing countries such as the United Arab Emirates 

(UAE). The rapid urbanization and industrialization in these 

countries have caused air pollutants to increase exponentially, 

presenting serious concerns to public health, disaster risk 

management, and urban planning. Major air pollutants 

influencing urban air quality are particulate matter (PM10 and 

PM2.5), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone 

(O3), and carbon monoxide (CO) (Chen et al., 2022); Akomolafe 

et al., 2024; Vitaliano, 2024). They are mainly discharged from 

vehicular traffic, industrial operations, and construction 

activities, compounded by the distinct climate of the UAE, which 

has the potential to confine pollutants near ground level (Jena et 

al., 2023; Patel, 2020). 

 

The effects of air pollution on public health are significant, and it 

plays a role in respiratory disease, cardiovascular disease, as well 

as premature death (Yan, 2023; Ramírez, 2024). For example, 

research has indicated that heightened exposure to PM2.5 is 

correlated with increased cases of respiratory symptoms among 

children, indicating the sensitivity of certain populations 

(Ramírez, 2024). In addition to this, air pollution makes disaster 

risk management even more challenging as it adds to the 

extremity of health emergencies, during times of extreme 

weather conditions (such as heatwaves), which are prevalent in 

the UAE (Jena et al., 2023). Urban planning therefore needs to 

accommodate measures to cushion against air pollution, such as 

by expanding green areas and enhancing public transportation 

networks to lower the usage of private automobiles (Wang & Xu, 

2024; Vitaliano, 2024). 

 

Current air quality monitoring networks usually utilize static 

sensors at fixed points to record pollutant concentrations. 

Although such systems are useful, they possess fundamental 

limitations such as the absence of spatial coverage and the 

incapability of recording real-time air quality dynamics in 

different urban zones (Fattoruso et al., 2020). Further, most 

monitoring systems lack predictive features that are necessary for 

forecasting pollution events and taking early interventions 

(Bachechi et al., 2020; Deroubaix, 2024). 

 

Predictive air quality monitoring is increasingly required, rather 

than just real-time observations. Predictive models are able to use 

historical data to predict air quality levels, with proactive action 

being taken before pollution levels become dangerous (Bachechi 

et al., 2020; Deroubaix, 2024). Such a transition to predictive 

monitoring is essential to urban sustainability, so that it enables 

improved resource allocation along with enhanced public health 

response. Additionally, the incorporation of cutting-edge 

technologies like machine learning and IoT has the potential to 

increase the precision and timeliness of air quality monitoring, 

which can lead to healthier cities (Guo et al., 2022; Correia et al., 

2023;  Fattoruso et al., 2020). 

 

The BREATHE Air Quality Monitoring and Prediction system is 

specially built to overcome these significant limitations by 

incorporating real-time monitoring, GeoAI-enhanced 

forecasting, interactive dashboard, and AI-mediated chatbot. By 

enhancing user accessibility and carrying out a large-scale model 

validation comparing two current forecasting techniques, 

BREATHE provides a scalable and reproducible framework for 

urban air quality management. This study seeks to close the gap 

between surveillance and actionable information, ultimately 

informing more sustainable city planning, proactive public health 

interventions, and data-driven decision-making in fast-growing 

cities. 

 

2. Literature Review 

Air quality prediction has evolved over the years from simple 

statistical models to more advanced machine learning (ML) and 

deep learning methods, the evolution mirrors how air quality 

prediction progressed during different years. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-39-2025 | © Author(s) 2025. CC BY 4.0 License.

 
39



 

Statistical methods such as ARIMA and Multiple Linear 

Regression were mainly used with early models to forecast air 

quality indices, gaining insight into the dynamics of air pollutants 

and their interactions with meteorological variables. This field 

was pioneered by Kumar & Jain (2009) who used ARIMA to 

forecast O₃, NO, NO₂, and CO highlighting the application 

effectiveness of time-series based models for depicting air quality 

trends. Likewise, Nimesh et al. (2014) claimed ARIMA and its 

derivatives: ARFIMA and Holt-Winters smoothing are useful for 

predicting air quality indices and concluded that historical data is 

essential for best results. These initial statistical models served as 

a basis to develop benchmark methods for air quality prediction 

studies. 

 

While useful, these conventional statistical models found it 

challenging to model complex non-linear trends present in the air 

quality data. For instance, Liu et al. (2022) indicated that while 

regression-based models predict reasonably well, they are not 

very efficient in mapping complex relationships. This limitation 

pushed researchers to explore machine learning techniques. For 

instance, M. Liu et al. (2023) reported a hybrid model with 

Random Forest and Neural Networks to represent the 

dependency between meteorological conditions and air quality, 

and achieved a better predictive performance. 

 

Yazdi et al. (2020) utilized an ensemble method of different 

machine learning techniques to predict PM2.5 in the Greater 

London Area. Their model achieved a determination coefficient 

(R²) of 0.59, with moderate predictive competence (Yazdi et al., 

2020). Zhang et al. (2022) presented a Temporal Difference-

Based Graph Transformer Networks system as a new method for 

PM2.5 prediction in China. They investigated how deep learning 

could link with transfer learning procedures to develop advanced 

cross-city air quality prediction results for urban areas. 

 

The authors W. Wang et al. (2021) developed a recursive model 

that used Convolutional Long Short-Term Memory 

(ConvLSTM) neural networks to successfully predict air quality 

concentrations in Beijing. Through its specific design the model 

acquired insights from both spatial patterns and temporal 

relations within the dataset which produced superior prediction 

results. Ong et al. (2015) investigated Dynamically Pre-trained 

Deep Recurrent Neural Networks (DRNN) for PM2.5 prediction 

because these networks demonstrated their ability to learn from 

environmental monitoring data. The research findings showed 

that DRNN surpassed traditional models because deep learning 

operates exceptionally well in time-series forecasting scenarios. 

 

Focusing on the GCC region, particularly the UAE, a few studies 

have described challenges and suitable methods for air quality 

forecasting. Ramadan et al. (2024) conducted extensive 

investigations about air quality prediction in Abu Dhabi using 

ARIMA models which produced an RMSE of 2.16 μg/m³. The 

authors underlined the necessity of combining real-time data to 

boost air quality management efficiency (Ramadan et al., 2024). 

W. Wang and Yang (2020) created a BP neural network that 

predicts UAE metropolitan air quality. The researchers 

demonstrated how their neural network prediction model utilized 

historical data to predict air quality changes along with pollutant 

concentrations successfully (W. Wang & Yang, 2020). 

 

3. Materials and Methods 

3.1. Study Area and Dataset 

This study assesses air quality at different stations throughout the 

United Arab Emirates (UAE) which span metropolitan, industrial 

zones, rural expanses and desert domains. Monitoring stations 

throughout Abu Dhabi Emirate and Al Ain Region, along with 

Dubai Emirate cover the entire geographic regions of air quality 

conditions in the country (Refer to Figure 1). The established 

monitoring stations provide essential data that helps researchers 

understand pollution origins as well as air quality trends 

throughout time. 

 

The multiple monitoring stations positioned across Abu Dhabi 

provide sophisticated insights into the different pollution systems 

of urban zones and industrial regions, along with coastal areas. 

The air quality data in Abu Dhabi capital city is tracked at the 

representative urban site located at the US Embassy Abu Dhabi 

City. The industrial setting of Al Mafraq has manufacturing and 

transportation activities defining its primary pollutant sources. 

The coastal station Bain Al Jessrain experiences both urban and 

marine atmospheric processes in addition to urban pollution. 

Sweihan operationally serves as a rural monitoring station that 

functions to help determine natural air quality standards. The 

western industrial area consists of Ruwais which experienced 

severe environmental impact due to oil refinery emissions as well 

as Habshan South which functions as an essential location in the 

oil and gas industry. 

 

Al Ain provides distinct air quality information through its desert 

and urban locations because of its arid climate and minimal 

industrial development. The urban and residential monitoring 

station Al Tawia Al Ain operates alongside the Islamic Institute 

Al Ain that functions at the city center for measuring urban air 

pollution variations. The air quality conditions throughout Al Ain 

City are most accurately measured at Al Ain City station. Natural 

levels of particulate matter can be studied in Al Quaa because this 

desert zone contains low anthropogenic pollution. The air quality 

trends in a semi-urban setting are tracked by Zakher Al Ain. 

 

US Embassy Dubai stands as a vital urban metrology site in 

Dubai because it is located in an area facing severe traffic 

congestion and construction activities and industrial pollution. 

 

 

Figure 1. Study Area Locations on the UAE Map. 

The air quality dataset used in this study is taken from the World 

Air Quality Index Project (aqicn.org/historical/), ensuring 

globally recognized data collection. The monitoring period varies 

by site from 2015 to 2025, offering a valid long-term observation 

of air pollution trends. Data provided include particulate matter 

(PM₂.₅, PM₁₀), ozone (O₃), nitrogen dioxide (NO₂), and sulphur 

dioxide (SO₂), with the pollutant profile for each site as 

characterized in Table 1. 
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Emirate Location 

Name 

Date Range Pollutants 

Monitored 

Abu 

Dhabi 

US Embassy 

Abu Dhabi 

City 

2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Al Mafraq 2024-2025 PM2.5, PM10, 

NO₂, SO₂ 

Bain Al 

Jessrain 

2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Sweihan 

(School) 

2026-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Ruwais 2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Habshan 

South 

2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Station 

Mussafah 

2024-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Al Ain 

(Abu 

Dhabi) 

Al Tawia Al 

Ain 

2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Islamic 

Institute Al 

Ain 

2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Al Quaa 2016-2025 PM2.5, PM10, 

O₃, NO₂, SO₂ 

Zakher Al Ain 2016-2025 PM2.5, PM10, 

NO₂, SO₂ 

Dubai Dubai US 

Embassy 

2018-2025 PM2.5, O₃ 

Table 1. Study Area Locations and Information 

 

3.2. Methods and Models Used 

3.2.1.   KNN Imputer: The K-Nearest Neighbours (KNN) 

imputer serves as a well-known technique for managing missing 

data across various domains that range from machine learning to 

bioinformatics. KNN imputation functions by relying on the data 

point similarities to estimate empty cell values. A KNN imputer 

locates 'k' nearest neighbours for target data points with missing 

entries by using distance metrics typically Euclidean distance to 

predict values by averaging neighbour data points as weights 

(Wei et al., 2018; Liao et al., 2014; Fadlil et al., 2022). 

 

When working mathematically the KNN imputer calculates 

distances of data point 𝑋𝑗  to every other data point inside the 

dataset. The K nearest neighbours Nk correspond to those points 

selected by the minimum distance computations. The calculated 

missing entry value gets computed through the following formula 

(Liao et al., 2014; Fadlil et al., 2022): 

 

𝑋�̂� =
1

𝑘
∑ 𝑋𝑁𝑖

𝑘
𝑖=1 ,                                     (1) 

 

where 𝑋𝑁𝑖
 are the observed nearest neighbour values  

 

Choosing the 'k' value plays a vital role because it maintains 

equilibrium between bias and variance throughout the imputation 

process. The insufficient choice of 'k' leads to increased data 

variability, while selecting a larger 'k' value results in biased 

outcomes because of averaging dissimilar points (Gautam & 

Latifi, 2023; Magnussen & Tomppo, 2014). Studies indicate a k 

value of 5 stands out as the most appropriate choice for typical 

cases since it strikes an optimal balance between retrieving 

nearby zone knowledge and maintaining result stability (Gautam 

& Latifi, 2023). 

 

3.2.2.   GRU: Gated Recurrent Units (GRUs) represent a specific 

recurrent neural network architecture which addresses sequential 

data dependencies and overcomes conventional RNN’s 

drawbacks, like the vanishing gradient problem. GRU 

implementation surpasses LSTM complexity without 

compromising performance outcomes in text processing and 

time-series prediction, due to their less complex architecture 

(Choi et al., 2015; Nosouhian et al., 2021). 

 

A GRU model contains two gate mechanisms which function as 

update gate 𝑧𝑡 and reset gate 𝑟𝑡. At each time step t, the gates 

function to determine which information enters the hidden state  
ℎ𝑡.  
 

The flexible design of GRU allows it to identify different time-

related correlations automatically therefore making it suitable for 

various sequential operations (Ravanelli et al., 2017; Nosouhian 

et al., 2021). The model exhibits efficient computing power and 

high performance thus it has gained wide adoption in deep 

learning research and applications (Choi et al., 2015; Nosouhian 

et al., 2021). 

 

3.2.3.   Transformer: In 2017, Vaswani et al. launched the 

Transformer model that completely eliminated recurrent 

architectures from NLP while introducing self-attention for 

parallel processing and better handling of sequential 

dependencies in text (Vaswani et al., 2017). The Transformer 

operates through all three essential components which include 

multistep attention processing and position-based encoding: 

alongside feed-forward neural networks to extract deep 

interrelations within the dataset. 

 

Multi-Head Attention: Inside the model the multi-head attention 

mechanism allows parallel processing of various positional 

directions across the input sequence. The linear transformation 

distributes the information across multiple spaces where each 

space corresponds to its own "head." The basis of multi-head 

attention houses a mathematical formulation known as the scaled 

dot-product attention. 

 

1. Input Representation: For an input sequence represented as 

matrices 𝑄 (queries), 𝐾 (keys), and 𝑉 (values), the attention 

scores are calculated by the dot product (Vaswani et al., 2017): 

 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉,              (6) 

 

where  𝑑𝑘 is the keys’ dimension 

and the softmax function normalizes the scores to a probability 

distribution. 

 

2. Multi-Head Attention: The multi-head attention mechanism 

concatenates the results of several attention heads: 

 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊
𝑂,   (7) 

 

where each head is computed as: 

 

head𝑖 = Attention(𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) ,              (8) 

 

where     𝑊𝑖
𝑄

,𝑊𝑖
𝐾,𝑊𝑖

𝑉 are learned weight matrices for each head 

               𝑊𝑂is the output projection matrix 

 

Positional Encoding: As the Transformer model architecture does 

not capture the sequence order of the input inherently, positional 

encoding is added to give information about the position of each 
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token. Positional encoding is added to the input embeddings and 

is specified using sine and cosine functions (Zheng, 2021): 

 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
),                   (9) 

 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
),              (10) 

 

where  𝑝𝑜𝑠 is the position 

 𝑖 is the dimension index 

  

This encoding enables the model to capture the relative positions 

of tokens, which is important for contextual understanding in 

sequences. 

 

The Transformer contains two main components known as 

encoder and decoder stacks. Each encoder layer begins with a 

multi-head attention mechanism which applies feed-forward 

neural networks through normalization and residual connections 

throughout each process. The decoder contains the same 

structural design as the encoder yet adds an additional attention 

mechanism to consider the encoder output (Vaswani et al., 2017). 

The architecture provides efficient execution during training and 

inference stages so it can support various tasks beyond NLP such 

as image handling and time-series pattern analysis (Ahmed et al., 

2022). 

 

3.3. Data Preprocessing and Model Development 

The process of data preprocessing and model development 

ensures that air quality predictions are accurate to changing 

environmental conditions. Before training begins the dataset 

(Figure 2) receives preprocessing operations that consist of KNN 

Imputer-based value imputation and Min-Max Scaling-based 

numeric feature normalization. 

 

 
Figure 2. Initial Data collected from 12 stations across UAE 

 

The research applies two deep learning approaches, including 

GRU-based and Transformer models for model development. 

The GRU model tracks extended dependencies across air quality 

sequences through its 64 units per layer section, which leads to 

the correlated output layer that predicts the next time step. The 

model implementation uses the Mean Squared Error (MSE) and 

Adam acts as the optimizer. Table 2 presents the detailed 

structure of the GRU model. 

 

 

 

 

Layer 

Type 

Units Activation Input Shape 

GRU 64 tanh (timesteps, 

features) 

GRU 64 tanh (timesteps, 64) 

Dense Features Linear (64,) 

Table 2. GRU model architecture used 

Self-attention functions within Transformers allows the model to 

dynamically find important time steps when making predictions. 

This framework incorporates dense embedding before 

implementing positional encoding, which helps maintain time 

sequence relations. Multi-head self-attention layers help detect 

distant relationships between elements while feedforward layers 

smooth features for better representation. The modelling 

application uses Mean Squared Error (MSE) loss together with 

Adam optimization. The Transformer model architecture can be 

found in Table 3. 

 

Layer Type Units Activation Input Shape 

Input Layer - - (timesteps, 

features) 

Dense 128 Linear (timesteps, 

features) 

Positional 

Encoding 

- - (timesteps, 128) 

Multi-Head 

Attention 

4 Heads - (timesteps, 128) 

Dropout - - (timesteps, 128) 

Layer 

Normalization 

- - (timesteps, 128) 

Dense (Feed 

Forward) 

128 ReLU (timesteps, 128) 

Dropout - - (timesteps, 128) 

Layer 

Normalization 

- - (timesteps, 128) 

Dense 

(Output) 

Features Linear (128,) 

Table 3. Transformer model architecture used 

The preprocessing data pipeline delivers refined input data to the 

models. The GRU model suits sequential relationships, but the 

Transformer model is advantageous because of its self-attention 

capability to identify key time points dynamically. The output 

from both techniques generates multiple output variables which 

match the number of pollutants being estimated per location. The 

results of model comparison enable researchers to identify the 

most suitable forecasting approach for air quality assessment 

across the United Arab Emirates. 

 

After training, the models are stored in Keras format for every 

location so inference can be performed without requiring any 

new retraining processes, unless mandatory. Nevertheless, model 

retraining becomes necessary for changing environmental 

conditions, and the process starts whenever concept drift is 

found. When a target variable’s statistical attributes transform 

over time, it leads to a deterioration of model performance which 

we call concept drift. The processes of urbanization, traffic 

pattern modifications and regulatory changes make concept drift 

applicable for air quality modelling. Baier et al. (2020) state that 

performance tracking must continue with corresponding model 

retraining, for concept drift management strategies to work 

efficiently. Regular model assessment and training procedures 

start when we detect a substantial drift, to maintain accurate 

modelling of present-day air quality patterns. 
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3.4. System Architecture 

The air quality forecasting system uses four essential modules 

which start with data acquisition followed by preprocessing and 

prediction along with output integration. The system retrieves 

data automatically through Selenium WebDriver and uses KNN 

to normalize and standardize it before data entry. Predictions 

from TensorFlow and Keras deep learning systems produce 

week-long estimates which the system transforms into usable 

results for external dashboards. Organizing the forecasting 

system in modules results in greater real-time capabilities as well 

as scalability and enhanced prediction accuracy. 

 

3.4.1.   Data Acquisition and Processing: The monitoring 

system operates through its built framework to automatically 

gather data for real-time processing and forecast evaluation 

leading to an updated air quality assessment. The system runs 

scheduled automation that combines efficient data processing 

with state-of-the-art predictive modelling to help decision-

makers. 

 

Selenium WebDriver controls automatic data extraction during 

the Automated Data Collection module to retrieve air quality data 

from web-based sources through timed operations. The system 

operates through time-based scheduling (once a week). While 

Selenium imitates browser functions, downloads the most recent 

data file and maintains them within a specified storage area. The 

data processing system employs dynamic file handling 

approaches to detect and handle new download files while 

preventing unnecessary repetition of processes. 

 

A system referred to as Continuous Data Processing and 

Prediction functions through auto detection of new records to 

initiate real-time normalizing and cleaning of data with 

imputation steps. During preprocessing the module converts 

timestamps into a single datetime structure while applying KNN 

imputation techniques to replace missing values along with 

normalizing all column formats. The deep learning models 

receive processed data immediately after preprocessing 

completes so they can make a seven-day air quality forecast 

which prepares instant analysis opportunities for decision-

making. 

 

3.4.2.   Dashboard and Alert System: The decision-making 

support mechanism integrates Historical and Forecast Data 

through a single dashboard that combines past trends with future 

analytical predictions. Historical trends can be compared with 

predicted AQI values, allowing for an evaluation of the likely 

effect of air pollution and encouraging the adoption of pre-

emptive action where required. 

 

The Alerting and Dashboard Integration mechanism facilitates 

the efficient distribution of real-time air quality analysis. The 

system arranges forecast and processed information in structure 

directories which enables visualization tools to retrieve them. 

The system has an automated warning procedure which organizes 

future air quality index (AQI) predictions into clearly defined 

templates from "Good" to "Hazardous" according to established 

health risk categories. Each alert group displays its respective 

information according to the AQI category to provide immediate 

health risk assessments. 

 

The Inverse Distance Weighting (IDW) interpolation method 

predicts AQI values for points which do not receive direct 

monitoring station measurements. Through the search interface a 

user can specify a position, and the system calculates a forecasted 

AQI value from weighted sensor measurements of the nearest 

monitoring stations. Such methodology enhances air quality 

prediction resolution across territorial domains, so the entire area 

achieves accurate coverage. 

 

3.4.3.   AI-Powered Chatbot Integration: This platform uses an 

AI-trained chatbot interface which allows users to interact by 

asking questions about the air quality data and forecasting 

information. The chatbot system creates easy system-access by 

using natural language command queries which enhances 

accessibility to users of all backgrounds. Users receive proactive 

guidance and recommendations from the chatbot system beside 

its basic questioning capability. Progressively the AI system will 

locate major air quality incidents while giving users explanations 

about observed trends and prevention advice based on pollution 

level forecasts. 

 

4. Results and Discussion 

4.1. Model Performance: GRU vs. Transformer 

The deep learning model performances for air quality prediction 

were evaluated by monitoring training and validation loss curves 

as well as Mean Absolute Error (MAE) from various air quality 

monitoring stations for both Gated Recurrent Units (GRU) and 

Transformer models. The main goal was to determine how well 

the models generalized to new unseen data and how well they 

captured temporal dependencies in concentrations. 

 

4.1.1.   GRU Model Performance: The validation loss outcome 

and the MAE for the GRU Model demonstrates a variable 

behaviour in air quality data. The training loss decreased steadily 

but the validation loss presented significant variations according 

to Figure 3. 

 

Such oscillations in the performance suggest that the GRU model 

has excessive sensitivity to variation in air quality data which 

leads to overfitting during training while reducing its ability to 

maintain consistent results across different stations. The model 

demonstrates competency in capturing air quality dynamics 

through its low loss values even though its generalization 

capability remains limited. 

 

 
Figure 3. GRU Model’s training and validation loss and MAE 

 

4.1.2.   Transformer Model Performance: The Transformer 

model maintains higher stability when evaluating training along 

with validation loss. Generalization performance improves 

according to the validation MAE curves since Figure 4 shows 

significantly less fluctuations than the GRU model. The self-

attention mechanism of Transformers enhances model 

performance by effectively capturing long air quality patterns and 

thus improves its noise-resilience properties. 
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Figure 4. Transformer Model’s training and validation loss and 

MAE 

 

Station Loss MAE Validation 

Loss 

Validation 

MAE 

Ruwais 0.0059 0.0495 0.0029 0.0398 

Al Mafraq 0.0206 0.1027 0.0125 0.0982 

Al Quaa 0.0057 0.049 0.0029 0.0328 

Habshan 0.0043 0.0422 0.0059 0.0549 

Zakher 0.0033 0.0352 0.0033 0.0381 

School 

Sweihan 0.0061 0.0505 0.0057 0.0607 

Bain Al 

Jessrain 0.0079 0.0574 0.0054 0.0519 

Al Tawia 0.0063 0.0505 0.0037 0.0383 

Dubai US 

Embassy 0.004 0.0416 0.009 0.0509 

Station 

Mussafah 0.0113 0.075 0.005 0.0509 

Islamic 

Institute Al 

Ain 0.0072 0.0544 0.0058 0.0575 

US 

Embassy 0.0054 0.048 0.0041 0.0437 

AVERAGE 0.0073 0.055 0.0055 0.051 

Table 4. Numerical values of Training and Validation Loss and 

MAE for each station 

4.1.3. Comparative Analysis and Implications: The 

Transformer produces smooth loss curves during training which 

demonstrates a more stable learning procedure thus making it the 

better choice for real-world air quality prediction applications. 

The GRU model produces high levels of instability which 

suggests that deployment issues could affect the quality of air 

quality warning predictions. The Transformer model should be 

chosen for practical applications needing consistent results 

instead of GRU. 

 

4.2. Dashboard Functionality and User Experience 

The air quality monitoring dashboard provides users with an 

interactive system featuring real-time as well as historical data 

analysis coupled with easy-to-use interfaces. The platform 

provides multiple integral features including real-time AQI 

reporting, air quality warning notifications, location-targeted 

searches, prediction projections and automated AI chat support 

functions. The system delivers better accessibility while 

supporting improved decision-making capabilities to general 

users combined with parties who work with air pollution and 

environmental health issues. 

 

One of the key highlights of the dashboard is the real-time air 

quality monitoring and alert system, which enables users to see 

AQI values for various locations at a glance. The main dashboard 

gives a holistic overview of air pollution levels for several 

monitoring stations, offering insights into pollutant 

concentrations, as seen in Figure 5. Whenever a user clicks on a 

specific location, an alert pop-up is activated with more detailed 

information regarding pollutant concentrations and 

corresponding health implications. Further, a specialized "Air 

Quality Alerts" tab consolidates current alerts, allowing users to 

follow pollution episodes effectively and remain updated on 

dangerous air quality conditions. 

 

The main interface displays complete air pollution information 

across multiple monitoring sites through figures like the one 

presented in Figure 5. A user can trigger an alert box that shows 

pollution measurements and their medical effects by selecting 

any particular location on the interface. Users can monitor 

pollution episodes more effectively through the "Air Quality 

Alerts" tab because it presents all current alerts in one location. 

 

 

 

Figure 5: BREATHE Air Quality Prediction Dashboard’s a) 

Home page b) Alert pop-up. 

The dashboard's user experience is improved through its 

location-based search function (Figure 6). Users can benefit from 

this feature since it lets them type in any desired location to 

receive instantaneous updated readings about AQI and pollutant 

concentrations. 

 

Figure 6: Location Search Option Demonstration. 
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The dashboard provides real-time monitoring capabilities 

through its "Insights" tab in Figure 7 which provides current and 

projected air quality information. User-selected air quality 

stations give them access to historical pollution data alongside 

model-based predictions of pollutant levels through deep 

learning algorithms. This capability serves researchers and 

policymakers and health practitioners who seek environmental 

planning evidence and public health intervention support based 

on data evidence. 

 

Figure 7: Historical and Predicted Values Graph Display. 

The dashboard enhances user experience by adding an interactive 

chatbot accessible in Figure 8 which provides air quality 

information together with pollutant details as well as health-

based advice. 

 

Figure 8: Chatbot Demonstration. 

The dashboard serves as an interactive system that combines 

current environment monitoring with data visualizations of 

historical data alongside analysis predictions. Users experience a 

smooth interface because of diverse interactive elements which 

allows them to stay updated about air quality and make informed 

health-related decisions for outdoor activities. Future 

development ought to focus on implementing meteorological 

data and pollutant dispersion models into the system to develop 

more precise prediction capabilities for a comprehensive analysis 

of air pollution variations. 

 

5. Conclusion 

This research investigated air quality in the UAE across different 

monitoring stations ranging from urban to industrial stations and 

rural and desert sites. Air pollution patterns across the country 

were accurately depicted through the selection of monitoring 

stations which spanned throughout the three major regions Abu 

Dhabi Emirate and Al Ain Region and Dubai Emirate. The data 

was extracted from the World Air Quality Index Project, ranging 

from 2015 to 2025, allowing strong monitoring of air quality 

trends. 

 

The research utilized KNN imputation as part of its predictive 

enhancements through the implementation of Gated Recurrent 

Units and Transformer models. The real-world air quality 

prediction system showed better stability and generalization from 

Transformer models making them the most dependable tool for 

air quality prediction. The developed air quality forecasting 

system contained four major components which consisted of data 

acquisition, preprocessing, prediction and output integration 

modules to deliver real-time monitoring, automated alerts, 

location-based search functionality, historical trend visualization 

and an AI-powered chatbot to users. These technological 

advancements enabled better decision-making opportunities for 

researchers together with policymakers and members of the 

public. 

 

This research is of great use for air quality control, helping to 

implement preventive pollution reduction strategies. Future 

developments may include predictive model refinement, sensor 

network extension, and incorporation of other environmental 

parameters to increase forecast precision and user interaction 

even more. 
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