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Abstract

In the framework of sustainable development, the study of urban mobility networks is fundamental, in particular, the role of active
mobility and street networks. Active mobility is known to positively impact several Sustainable Development Goals (SDGs), which
makes its analysis fundamental to achieve sustainable transportation. Using a generalised and globally applicable methodology
that leverages the use of open and crowd-sourced data, we characterised walkability and bikeability of the urban areas of 16
medium and large cities around the world, spread in 8 geographical areas. The methodology employs a graph-based multimodal
and multiscale approach over driving, pedestrian, and biking street networks to calculate 20 indices and metrics (e.g., intersection
density, steepness, circuity, orientation entropy, etc.) that characterise walkability and bikeability. This study presents the results
and interpretation of the calculation of multiple walkability and bikeability metrics for the selected cities, as well as a discussion on
the limitations of using global and crowd-sourced data for the calculation of active mobility indices.

1. Introduction

Every city has its personality. Some cities have narrow and pic-
turesque alleys that tell countless stories, some are gigantic met-
ropolises where millions of souls interact in a daily basis mov-
ing through intricate networks of every type of traffic. Some cit-
ies are gargantuan car-centric urban areas with immense high-
ways that every day mobilise millions of people, while others
require having a bicycle as an immediate necessity. What makes
every city unique is its people and their movements, dictated
by the spatial arrangement of their mobility networks and the
means of transportation that traverse them.

In urban contexts, mobility refers to the movement or trans-
portation that occurs within urban areas. In the framework of
sustainable development, the study and optimization of urban
mobility networks is fundamental. Within sustainable mobil-
ity, the role of active transportation, which comprises human-
powered mobility such as biking or walking, is of major im-
portance. It has been studied that encouraging active transport-
ation options and providing infrastructure for alternative types
of mobility is beneficial for cities, contributing towards multiple
Sustainable Development Goals (SDGs). Active mobility pos-
itively impacts, health –SDG 3: Good health and wellbeing–,
citizen participation and social capital –SDG 16: Peace, justice
and strong institutions–, and sustainable transportation –SDG
11: Sustainable cities and communities–.

This study focuses on the usage of multimodal and multiscale
street networks to calculate the level and quality of active mo-
bility of urban areas through the calculation of quantitative met-
rics and indicators that characterise walkability and bikeability.
Using the crowd-sourced dataset OpenStreetMap (OSM) as our
data source, we intend to provide a methodology that can be
applied to any urban area in the world.

This paper is organized as follows: section 2 presents the con-
cepts and theoretical basis of the study as a contextualisation,
section 3 describes the proposed methodology, and section 4
presents the results of applying our methodology to 16 cities

around the world with a discussion on some of the results and
its limitations.

2. Theoretical Framework

2.1 Street Networks and OpenStreetMap

A street network is the system that models the roads of an area
as a set of interconnected points and lines. It is the basis for
network analysis and is widely used in urban planning. Mo-
bility flows through street networks, and a street network can
represent one or more means of transportation, such as cars,
pedestrians, public transportation, or bikes.

OpenStreetMap is a collaborative, free, and open-source map-
ping project. It provides the street networks for most places of
the world with, overall, high quality (Boeing, 2017), making it
ideal for both local and global analyses. One particularly useful
tool for street network analysis with OSM is the library OSMnx
(Boeing, 2017), which is a python open-source library based on
Networkx to download and manage street networks from OSM
as graphs. This library has been extensively used for street net-
work analysis studies (Ma et al., 2024, Wu et al., 2024).

When a street network contains spatial properties (i.e., the geo-
metries of intersections and street segments), it is called a spa-
tial network (Rodrigue, 2024). Spatial networks are easily visu-
alised in GIS software by storing nodes as points and the edges
as lines (Figure 1).

2.2 Representation of Street Networks

Street networks can be modelled and represented in multiple
ways (Marshall et al., 2018). The selection of model and rep-
resentation is tightly related to the usage that will be given to
the street network (e.g., cartography, topology, geocoding, rout-
ing, assignment) (Rodrigue, 2024). However, the most intuitive
way to model a network is through a graph, which manages to
capture its connectivity and topological aspects. Other network
models, e.g., rasterisation of the street network, allow to capture
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Figure 1. Example of spatial street network visualized in GIS
software.

other network properties. For example, networks represented as
rasters can be seamlessly integrated with other gridded data and
have been shown useful for spatial analysis (Dur et al., 2014).

A graph G = {V,E} is a data structure composed of a set of
nodes (also called vertices) V and a set of edges E. Nodes are
represented by points in the graph, while edges are the connec-
tions between them. In street networks, there are two widely
used graph representations:

- Primal graphs: In this representation, nodes represent road
junctions, while edges represent street segments (Porta et al.,
2006b). Primal graphs can be directed, in particular when used
for routing purposes – as the direction of streets is important; or
undirected, for urban topology analysis where direction is not
relevant.

- Dual graphs: Also called line graphs, are graphs where nodes
represent street segments and edges represent intersections
(Porta et al., 2006a). Dual graphs can represent different aspects
of the street network, such as connectivity, and are the basis of
the discipline of space syntax (Hillier et al., 1976).

Efficient and pertinent data representations, that reflect the in-
tended purpose of the network for their subsequent analysis, are
then required.

2.3 Multimodal Street Networks

In cities, multiple means of transportation interact with each
other. The main urban means of transportation include private
vehicles (also called private transportation), bicycles or micro-
mobility (e.g., scooter, skateboard), public transportation (e.g.,
bus, metro, tram), and walking.

Street networks of different modalities can be represented us-
ing multilayer networks (Kivelä et al., 2014). These networks
allow to study and analyse mobility in a holistic way as they
manage to take into account the different mobility aspects of
citizens. For example, combining multiple public transport net-
works to model urban transportation systems in multiple cities
(Aleta et al., 2017), and representing the combination of driv-
ing, pedestrian, biking, and public networks as multiplex net-
works (Orozco et al., 2020) .

Although multimodal representations have the advantage of
presenting the transportation system as a whole, they introduce
additional complexity to an already complex network.

2.4 Street Network Generalisation

Scale is a major conditional in the analysis of street networks.
Street networks get increasingly complex as the city size in-
creases. Small and medium cities may contain a couple thou-
sands of street segments, while big cities can reach up to hun-
dreds of thousands. Generally, graph calculations are complex
and require extensive processing power and time. Additionally,
storing the street networks of big cities pose a significant space
requirement. A multiscale approach is then obtained by setting
different levels of generalisation to a network, depending on the
scale of analysis.

The process of simplifying – or generalising – street networks
have been extensively studied (Pueyo et al., 2019). In graph-
based street networks generalisation is usually comprised of: i)
the removal of elements within the network based on certain
criteria (Chen et al., 2009, Pung et al., 2022); and ii) the com-
bination of elements of the network by perceived similarity (Ma
et al., 2024).

Proposed generalisation procedures includes an algorithm that
attempts to maintain topological properties of a street network
while removing certain patterns within the network such as loops,
dead-ends, and gridirons. Removed sections are then aggreg-
ated to adjacent nodes, so the overall properties of the network
are maintained (Pung et al., 2022). Other study proposed a nat-
ural street generalisation and removal to homogenise the num-
ber of nodes of a network in order use the resulting subgraph to
train a deep learning model (Ma et al., 2024). In fact, the cal-
culation of natural streets is already a generalisation of the net-
work, as it merges street segments based on their name and/or
their natural continuity (i.e., similar incidence angle).

2.5 Active Transportation and Sustainability

Active transportation comprises human-powered mobility. In
particular, we focused on walking and biking as active means
of transportation. In the framework of sustainable mobility, the
role of active transportation has been studied to improve health
(Rojas-Rueda et al., 2016), social capital (Kim and Yang, 2017,
Stroope, 2021), built environment (Rafiemanzelat et al., 2017),
and community engagement (Hassen and Kaufman, 2016).

Additionally, some studies address role of the street network
configuration to measure active mobility, such as (Bielik et al.,
2018), and (Hassen and Kaufman, 2016). However, it is worth
mentioning that most of the studies are oriented towards walkab-
ility, while biking and micromobility get less attention.

2.6 Measuring Walkability and Bikeability as Indices of
the Street Network

To characterise and compare street networks, the calculation
of indices and metrics has been widely studied (Zhang et al.,
2023). Among the different ways to characterise street net-
works, graph-based measurements are used to interpret the net-
work topology or urban form, which is the way in which a net-
work is organized. For example, network centrality has been as
an index to locate key portions of the urban area (Agryzkov et
al., 2019), and, similarly, graph centrality measurements have
been used to characterise accessibility (Ahmadzai et al., 2019).

Analysing the edge and node-wise properties of the network has
also been used to characterise street networks. For example, a
study calculated multiple metrics for thousands of urban centres
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(e.g., intersection density, elevation, orientation entropy, etc.)
for analysing urban street network form (Boeing, 2019). In
Malaysia, a study characterised land use changes through prox-
imity measurements (among other indices) using street networks
and distance to roads (Abdullahi and Pradhan, 2018).

Finally, composite indicators comprise the use of multiple met-
rics to measure specific properties. Composite indices are single
values composed of the combination of normalised and weighted
metrics. For example, a composite index was used to study
the relationship between land use and transportation integration
(Dur et al., 2014), and a second example shows how graph-
based metrics, combined with demographic information, were
used to compose a neighbourhood walkability index (Cowie et
al., 2016).

By contextualising network indicators into the framework of
active mobility, it is possible to interpret those metrics and cal-
culate which cities are more or less walkable or bikeable. As ex-
amples, composite indices were used to calculates the walkab-
ility and bikeability in four Chinese using edge and node-wise
street network characteristics (Gu et al., 2018), graph-based
measures were used to characterise walkability and accessibil-
ity in the city of Weimar (Bielik et al., 2018), and neighbourhood-
level walkability in Norwegian cities was calculated by analys-
ing infrastructure, street network, urbanity, surroundings and
activities (Knapskog et al., 2019) .

3. Methodology

The goal of this study is to propose and test a general meth-
odology for measuring walkability and bikeability at the city
level from a topological perspective. It means to characterise,
through different metrics, the level of bikeability and walkabil-
ity of whole urban areas.

Our workflow (section 3.1) is divided into data extraction (sec-
tion 3.2), data preparation (section 3.4), and the calculation of
indices and metrics (section 3.4).

3.1 Workflow

Our methodology is composed of the following steps: i) the ex-
traction of driving, walking, and bike street networks; ii) data
preparation for each of the extracted street networks; and iii)
the calculation of metrics using a multimodal (i.e., combining
networks), and multiscale (i.e., performing generalization pro-
cedures) approach. Our workflow is depicted in figure 2.

3.2 Data Extraction

The initial step for the data extraction procedure is to select
an area of interest, represented as a polygon. Then, using the
OSMnx library (Boeing, 2017), we extract three street networks
from the area of interest, namely the driving, pedestrian, and
biking networks. OSMNx downloads OSM data using pre-
defined filters that target specific street segments for each of
the networks, however, we produced specific filters for pedes-
trian and biking networks. In particular, the pedestrian filter
leaves out segments that specify non-accessible streets, as well
as segments that have sidewalks mapped separately, avoiding
duplicated pedestrian paths. The biking filter eliminate streets
that specify non-accessibility and that are mapped as no-bicycle
streets, as well as eliminating pedestrian-only paths.

Figure 2. Workflow of the proposed methodology for calculating
walkability and bikeability using a multimodal and multiscale

approach through city-level indices and metrics.

3.3 Data Preparation

The data preparation step takes each of the downloaded net-
works and perform additional filtering based in properties of
the network. In addition, one node property and two edge prop-
erties are calculated and added to each of the networks. The
properties that are added to the network are node elevation, edge
inclination or grade, and edge orientation.

The additional filters applied to each of the networks are the
following:

- Driving: No additional filters were applied, as OSM is de-
signed around driving streets and the downloaded street net-
works were of good quality.

- Biking: An additional filter based on street type was per-
formed to eliminate inaccessible streets and other types of streets,
such as parking aisles. However, it is important to mention that
biking networks, as they share a large portion of the driving
network, are generally well mapped in OSM.

- Pedestrian: Given the freedom of pedestrian movement, ped-
estrian networks are complex to map, in particular for side-
walks. OSM specifes certain rules for mapping sidewalks sep-
arately to streets. Moreover, streets must specify if they have a
separately mapped sidewalk. This practice allows more gran-
ularity, but not all cities around the world have the same level
of detail and, even in well-mapped cities, not all sidewalks are
mapped separately to driving streets. This makes pedestrian
networks a composition of most of the driving street network
plus the separately mapped network of sidewalks and pedes-
trian paths. In the case that a sidewalk is mapped separately to
the street, but the street does not specify that is has a separate
sidewalk, redundancy is created in the pedestrian network. To
overcome this, we compared the 2D slope (i.e., slope m of a
linear regression of the street segment points) of each sidewalk
with the slope of every street in a network radius of 8 (i.e., an in-
duced subgraph of depth 8), and their proximity as the distance
between their centroids. If a sidewalk and a street share sim-
ilar slopes and are closer than a threshold of around 20 meters,
the street is eliminated. Figure 3 shows the results of this pro-
cedure for the city of Milan. The red lines shown on the figure
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Figure 3. Pedestrian network before and after elimination of
driving streets with separately mapped sidewalks.

are streets that were eliminated after the filter, while the blue
lines represent the resulting pedestrian network. This filter is
not perfectly accurate, but is able to eliminate most of the re-
dundant streets with mapped sidewalks effectively, and reduce
the amount of edges in the network.

After filtering, the additional properties of node elevation, edge
inclination, and edge orientation were added to each of the street
networks. Node elevations were interpolated from the global
Digital Elevation Model NASADEM (NASA-JPL, 2020). This
dataset provides global elevation data with a 30-meter resolu-
tion. Having the elevation for the nodes of the network, the
inclination of each street segment was calculated as the angle
of inclination with respect to a flat surface. Finally, compass
bearings are calculated for each edge as proposed in (Boeing,
2017).

3.4 Calculation of Indices and Metrics

For index calculation, the driving, biking, and walking graphs
were loaded and merged into a multimodal representation. Each
index requires a specific network representation (and/or sub-
sequent generalisation) that provides the best trade-off between
pertinency and accuracy.

The multimodal representation is simply a combination of edges
that share common nodes among the network. For the multiscale
representation, two generalisation methods were implemented:
i) natural streets simplification, where streets with the same
name or good continuity were merged (Ma et al., 2024), and
the topological-preservation generalisation (Pung et al., 2022),
where loops, dead-ends, and gridiron structures, are iteratively
eliminated until convergence, while maintaining topological prop-
erties.

The selected indices and metrics were extracted or derived from
academic literature and are composed of multiple graph-based
metrics, node and edge properties, and composite indices. Each
index is calculated for walkability and bikeability, as the net-
works used to address each of them are different. Indices were
selected to reflect walkability and bikeability from a network
topology perspective. The selected indices are the following:

3.4.1 Average Circuity: Measures the curvature of street
segments. It is the ratio of the real-world length of each street
segment with respect to the great-arch distance between the
nodes of the segment. Lower circuity (values closer to 1) has
been related to more efficient street networks (Cubukcu, 2021).

3.4.2 Orientation Entropy: Calculated as the Shannon En-
tropy of the edge bearings of the street network. It refers to how
”organised” a street network is (Boeing, 2017). In particular,
the edge bearings are classified into 36 bins, each of 10 degrees.
The Shannon entropy is then calculated on the classified values,
with a theoretical higher value of loge(36) = 3.5835. Lower
entropy values represent less variability in angles between streets
of the network, referring to more uniform cities that present a
higher amount of organized structures, such as gridirons.

3.4.3 Road Density: Calculated as the amount of street net-
work segments per square kilometre (km2) of built-up area.
Higher values of road density refer to more packed and compact
cities, which is usually an indicator of more walkable cities.

3.4.4 Average Steepness: Calculated as the average inclin-
ation of the edges of the street network. Higher values of steep-
ness indicate hillier streets. Cycling is particularly harder on
steep streets, while it does not greatly affect walkability.

3.4.5 Average Street Length: Calculated as the average length
of the street segments of the network. Shorter values indic-
ate more compact and walkable street segments, while larger
values indicate car-centric cities with highways or longer street
segments.

3.4.6 Intersection Density: A intersection is a junction that
is shared by three or more street segments. The intersection
density is calculated as the amount of intersections by km2 of
built-up area, and is a measure of connectivity of the network.
It is higher for urban areas with gridiron patterns and lower for
curvilinear street networks with long block lengths. High val-
ues of intersection density, when combined with shorter street
segments, indicate high network connectivity and are, together,
an indicator of high walkability and bikeability (Cowie et al.,
2016).

3.4.7 Walking and Driving Street Segments Ratio: Cal-
culated as the ratio of the number of pedestrian street networks
and the number of driving streets. It indicates how many walk-
ing streets are mapped in OSM with respect to the driving net-
work. Higher values indicate better pedestrian infrastructure,
but may also indicate more detailed mapping in OSM.

3.4.8 Biking and Driving Street Segments Ratio: Similar
to the above, but calculated with respect to the biking street
network.

3.4.9 Average Biking Score: Composite index roughly based
on the Levels of Traffic Stress (LTS) (Furth et al., 2016) and
other properties of the biking street network that affect bike-
ability such as street inclination. It takes into the street speed
limit, the existence of separate cycling infrastructure, road type,
and the street inclination to score each street segment in a scale
from 0 to 5. The city biking score is then reported as the average
biking score of all street segments.

3.4.10 Average Walking Score: Similarly to the biking score,
the walking score is a composite index roughly based on the
Levels of Traffic Stress (LTS). However it takes into account
the street speed limit, the existence of pedestrian infrastructure
(e.g., sidewalks or walking paths), and the road type. The city
walking score is then reported as the average walking score of
all street segments.
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3.4.11 Connectivity: Calculated from the natural streets of
the biking and walking network, it measures the connectivity of
entire streets as its number of intersections. Natural streets are a
generalisation of the street network where street segments with
the same name and/or good continuation are merged. It is also
an indicator of street importance, as streets with more intersec-
tions are more connected, and thus, are more important. The
average connectivity and the standard deviation is reported for
this metric. Higher values of connectivity, when complemented
with lower standard deviation, indicate car-centric cities with
mainly long, connected avenues, while high variation may in-
dicate cities with long highways that connect smaller and walk-
able areas. Low values of connectivity may indicate shorter
streets with dense and disordered patterns.

4. Results

In this section, we present the results of the calculation of the
indices and metrics described in section 3.4 for the urban areas
of 16 cities. The results are intended to characterise the cities’
walkability and bikeability, more than to serve as a direct com-
parison. A discussion of some of the results of the calculations
are also presented in this section, along with some insights of
the limitations of working with crowdsourced and global data.

4.1 Selected Cities for Analysis

A total of 16 cities were selected for this study. The cities are
all from different countries and geographical areas to provide
variability. Eight geographical areas were chosen, and two cit-
ies from each area were selected. The selected cities range from
middle to large, and do not follow a specific pattern. Some of
them are the primate cities of their respective countries (e.g.,
Port Moresby - Papua New Guinea, Bogota - Colombia), others
represent the countries’ second largest city (e.g., Alexandria,
Egypy), while others are capital cities (e.g., Ottawa, Canada,
Wellington, New Zealand).

The area of each city was extracted from the GHS Urban Centre
Database 2025: GHS-UCDB R2024A, produced by the European
Comission’s Joint Research Centre (JRC) (Rivero et al., 2024).
This dataset contains information about more than 11.000 urban
areas, such as population, gross domestic product (GDP), and
built-up area, and their polygons at a resolution of 1km2.

Table 1 presents the city name, country, geographical area, total
area, and built-up area, as extracted from the GHS-UCDB R2024A
dataset.

4.2 Results of Indices and Metrics Calculations

After applying the methodology proposed in section 3 with the
areas of each of the 16 selected cities, the results for walkab-
ility indices are presented in table 2, and the results for bike-
ability indices are presented in table 3. Indices for both mod-
alities are reported in different tables as they were calculated
using different networks. While the walkability indices utilised
the pedestrian and driving network, the bikeability indices were
calculated on the biking and driving network, yielding different
results.

4.3 Results Discussion

Multiple interesting observations can be derived from the res-
ulting calculations. Starting with the Average Walk and Bike

City Country Geo.
Area

Area
(km2)

Built-up
Area
(km2)

Buenos
Aires

Argentina SA 2186 673.0

Bogota Colombia SA 534 152.0
Chicago USA NA 2046 524.0
Ottawa Canada NA 208 39.6
Panama
City

Panama CA 277 62.0

Havana Cuba CA 321 56.1
Milan Italy EU 785 176.4
Athens Greece EU 412 115.2
Shanghai China AS 3128 718.0
Hanoi Vietnam AS 925 161.9
Dubai UAE ME 854 197.8
Doha Qatar ME 392 107.8
Wellington New Zea-

land
OC 64 13.9

Port
Moresby

P. New
Guinea

OC 72 8.4

Lagos Nigeria AF 1199 415.9
Alexandria Egypt AF 439 81.7

Table 1. Selected cities, their areas, and built-up areas in km2.
Geographical areas: South America (SA), North America (NA),

Central America (CA), Europe (EU), Asia (AS), Middle East
(ME), Oceania (OC), and Africa (AF).

scores (AWS and ABS), we see most of the values between 3
and 4. A bar plot of the AWS and ABS values per city is de-
picted in figure 4, showing in green the average walk scores, in
blue the average bike scores, and in black the combination of
both as the formula (walk score + bike score)/2. According
to this metric the streets of, Chicago, Milan, and Bogotá are the
most walkable and bikeable, while Oceania cities (Wellington
and Port Moresby) are the less walkable and bikeable. Inter-
estingly, the Bogota walk score is significantly higher than the
bike score, mainly due to higher steepness (0.44 against 0.22
of Chicago and 0.29 of Milan), which greatly affect bikeability.
Port Moresby, the least walkable and bikeable city according to
the indices, has been included in multiple list of least liveable
cities and suffers from deficient infrastructure, which is reflec-
ted in this results.

Observing the connectivity (ACO and SCO), and the average
street length (ASL) of the walkability metrics, Shanghai and
Chicago are at the top of the chart. However, the large variabil-
ity in connectivity and the long ASL in Shanghai suggests that
the city is composed of long avenues covering large areas and
connecting smaller neighbourhoods containing long and curved
streets. As of Chicago, the high connectivity and variability
suggest something similar, but shorter ASL also suggests that
connected neighbourhoods have a different, more compact con-
figuration, making them more walkable. Chicago is well known
for its grid-like design, which is also evident from its low Ori-
entation Entropy (ORE) value.

Finally, by observing the results of the calculation of biking in-
dices in the cities of cities of Buenos Aires and Lagos, we can
conclude that both are car-centric, but Buenos Aires has bet-
ter infrastructure and topology for bikeability. Both cities have
low intersection density (3nd and 2rd lower values, respect-
ively), present large average street length (3nd and 4th larger
values, respectively), and low biking road density (3nd and 2rd

lower values, respectively), suggesting long streets with few in-
tersections. However, circuity and orientation entropy are sig-
nificantly lower in Buenos Aires, suggesting a more organized,
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City POP CIR ORE RDE AST ASL IND WDR AWS ACO SCO
Buenos
Aires

14’179,912 1.018 3.286 51368 0.028 86.345 326.446 0.771 3.429 8.005 10.826

Bogota 10’419,360 1.047 3.552 79835 0.048 50.608 877.276 1.405 3.863 9.242 15.193
Chicago 5’318,734 1.059 2.457 94108 0.026 54.389 929.989 3.579 3.830 29.217 59.412
Ottawa 604,618 1.062 3.366 144617 0.033 41.004 1936.544 5.263 3.594 18.898 29.599
Panama
City

1’612,439 1.080 3.569 57909 0.046 72.213 431.537 1.032 3.482 7.029 10.316

Havana 1’632,771 1.049 3.555 72756 0.032 77.953 510.156 1.058 3.111 6.534 8.540
Milan 3’135,553 1.068 3.544 84354 0.035 49.257 959.704 2.576 3.805 12.988 23.377
Athens 3’166,757 1.031 3.550 86771 0.060 56.686 875.439 1.086 3.519 7.072 10.051
Shanghai 30’678,616 1.049 3.424 33536 0.027 157.808 115.765 1.184 3.140 173.804 251.134
Hanoi 4’965,520 1.059 3.574 88463 0.029 65.535 754.677 1.288 3.573 7.804 12.690
Dubai 4’565,477 1.068 3.467 77426 0.063 56.313 807.691 1.985 3.548 12.381 26.379
Doha 1’980,416 1.079 3.452 61697 0.031 66.596 541.642 1.143 3.586 6.367 8.934
Wellington 154,120 1.120 3.523 67009 0.078 52.959 676.056 3.139 3.278 6.140 11.008
Port
Moresby

442,164 1.119 3.569 72745 0.046 109.971 355.963 1.023 2.947 4.267 4.417

Lagos 12’846,045 1.055 3.556 34911 0.030 100.951 196.758 0.635 3.635 6.058 9.316
Alexandria 6’931,368 1.032 3.458 74548 0.048 59.070 744.167 0.648 3.724 7.081 12.288

Table 2. Results for the calculation of walkability indices and metrics. Legend: POP: Population; CIR: Circuity; ORE: Orientation
Entropy; RDE: Road Density; AST: Average Steepness; ASL: Average Street Length; IND: Intersection Density; WDR: Walk-Drive

Ratio; AWS: Average Walk Score; ACO: Average Connectivity; SCO: Connectivity Standard Deviation

City POP CIR ORE RDE AST ASL IND BDR ABS ACO SCO
Buenos
Aires

14’179,912 1.015 3.203 49065 0.024 98.394 270.367 0.647 3.748 8.470 12.275

Bogota 10’419,360 1.048 3.551 61504 0.044 68.100 489.618 0.804 3.404 13.838 30.991
Chicago 5’318,734 1.068 2.584 66791 0.022 75.839 453.967 1.822 3.753 6.686 14.144
Ottawa 604,618 1.072 3.377 82081 0.029 64.928 586.625 1.886 3.598 8.877 16.510
Panama
City

1’612,439 1.072 3.567 51913 0.044 80.275 335.305 0.832 3.300 8.974 15.316

Havana 1’632,771 1.047 3.558 64816 0.030 92.278 378.058 0.796 3.604 6.335 9.373
Milan 3’135,553 1.061 3.526 61513 0.029 70.245 461.082 1.317 3.670 51.332 86.602
Athens 3’166,757 1.028 3.546 79947 0.055 64.170 701.697 0.884 3.070 7.769 13.745
Shanghai 30’678,616 1.047 3.403 32356 0.024 176.601 98.481 1.021 3.724 78.621 128.654
Hanoi 4’965,520 1.056 3.577 80389 0.026 74.563 602.049 1.029 3.647 8.199 14.826
Dubai 4’565,477 1.070 3.454 66863 0.059 70.321 547.156 1.373 3.195 50.727 95.572
Doha 1’980,416 1.077 3.440 63745 0.030 77.212 473.217 1.018 3.579 53.867 87.018
Wellington 154,120 1.112 3.514 52335 0.069 61.568 417.051 2.109 2.901 4.219 6.099
Port
Moresby

442,164 1.112 3.569 70391 0.047 111.711 334.182 0.974 2.246 4.344 4.416

Lagos 12’846,045 1.054 3.556 34729 0.030 101.862 193.692 0.626 3.590 6.605 8.622
Alexandria 6’931,368 1.032 3.449 73675 0.046 62.419 694.789 0.606 2.966 8.266 16.057

Table 3. Results for the calculation of bikeability indices and metrics. Legend: POP: Population; CIR: Circuity; ORE: Orientation
Entropy; RDE: Road Density; AST: Average Steepness; ASL: Average Street Length; IND: Intersection Density; BDR: Bike-Drive

Ratio; ABS: Average Bike Score; ACO: Average Connectivity; SCO: Connectivity Standard Deviation

Figure 4. Plot of average bike score (blue) and average walk
score (green) ordered from highest to lowest by the combined

score (black).

grid-like structure in their streets, which is a sign of improved
bikeability. Moreover, steepness is lower in Buenos Aires, as it
is mostly flat city, and its average bike score is higher than that
of Lagos, implying improved cycling infrastructure.

4.4 Limitations

Being a generic methodology, it is not exempt to limitations.
To obtain useful information, we rely on the completeness and
the quality of OSM, which is public and crowd-sourced data.
Abnormal data from OSM can degrade the calculated indices,
as it is the case for the city of Ottawa. The value of the ra-
tio of walking and driving street segments is abnormally high
at 5.263, while the second highest is Wellington with 3.139.
After observing the resulting pedestrian network (Figure 5), we
realised that Ottawa is particularly well mapped with respect
to pedestrian infrastructure, even in residential zones, meaning
that most streets have sidewalks mapped separately, crossings,
and pedestrian paths. Such inconsistency, with respect to other
cities, affects other metrics such as intersection density, road
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Figure 5. Ottawa pedestrian street network showing redundancy
in sidewalks and residential streets.

density and connectivity, which yields values higher than ex-
pected.

Other point of failure is the usage of global DEM data for cal-
culating altitude in the street networks. Although it is useful,
the accuracy of a global DEM is not completely reliable. As
an example, the city of Dubai presents abnormally high values
of steepness, despite being a coastal city that lies mostly at sea
level. Its steepness (0.063 for the walking network and 0.059
for the biking) is comparable to the one of the city of Athens
(0.060 for the walking network and 0.055 for the biking net-
work), which is known to be a hilly city.

As a final remark, this study does not take into consideration
other fundamental factors of walkability and bikeability such
as proximity to points of interest, urban greenery, or environ-
mental conditions (e.g., weather, air quality, etc), and is an ef-
fort to understand active mobility in a quantitative way from the
topology of street networks.

5. Conclusion and Future Work

In this paper we proposed a generic methodology for calculat-
ing walkability and bikeability at the city level using global,
crowd-sourced, open data. Our methodology consists of the ex-
traction of street network data from OpenStreetMap, followed
by a data preparation procedure where further processing is per-
formed to each of the extracted networks, and the posterior cal-
culation of indices and metrics to characterise active mobility,
in particular walkability and bikeability. We selected 20 indices
from academic literature that helped us characterise active mo-
bility in urban areas, which aligns with multiple sustainable de-
velopment goals. Using a combination of driving, pedestrian,
and biking street networks at different scale levels using gen-
eralisation algorithms, we calculated bikeablity and walkabil-
ity indices for 16 cities worldwide, spanning every continent.
From the results, we were able to observe certain urban pat-
ters and compare similarities among cities with respect to act-
ive mobility, as well as understand the limitations of a generic
methodology, as it depends on global and crowdsourced data.

Further efforts for improving the methodology will be pursued,
as improving the generalisation algorithms, multimodal repres-
entations, data extraction, and filtering. In addition, the imple-
mentation of indices based on proximity to points of interest,
greenery, and environmental conditions will be implemented to
the methodology, as they are fundamental for active mobility.
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