
Comparative Analysis of YOLO-Based Algorithms for Vehicle Detection in Aerial Imagery

Amin Dustali1, Mahdi Hasanlou1,∗, Seyed Majid Azimi2

1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
{amin.doustali; hasanlou}@ut.ac.ir

2 Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
seyedmajid.azimi@dlr.de

Keywords: YOLO, Vehicle Detection, Real-time object detection, Edge Computing, Deep Learning, Aerial Imagery.

Abstract

Real-time object detection has become an essential tool in applications such as traffic surveillance, autonomous vehicles, and
industrial monitoring. Among various algorithms, the You Only Look Once (YOLO) series has garnered significant attention for its
balance between speed and accuracy. Since its introduction in 2016, YOLO has seen significant advancements and it has been widely
adopted due to its ability to provide fast and accurate real-time detection. Over the years, different versions, including YOLO-v1 to
YOLO-v11, have introduced improvements in both accuracy and speed. This paper presents a comparative analysis of four recent
versions of YOLO-v8-n, YOLO-v9-t, YOLO-v10-n, and YOLO-v11-n focusing on evaluating their detection accuracy and speed in
aerial imagery using the EAGLE dataset. Each version incorporates specific advancements aimed at improving performance under
different conditions. The study examines the models using a standardized dataset of aerial images with varying illumination and
weather conditions. Key performance metrics, such as inference time and Average Precision (AP), are used to evaluate how each
model performs in the vehicle detection task in challenging environments. The results provide valuable insights into the suitability
of these YOLO models for real-world applications, particularly in dynamic urban environments and areas where traditional camera
systems may be less effective. This study aims to identify the fastest and most accurate YOLO model for vehicle detection in aerial
imagery using embedded GPU board of Nvidia Jetson AGX Xavier, contributing to the performance enhancement in real-time
surveillance and monitoring systems.

1. Introduction

Object detection models have evolved significantly over the
years, and they can be broadly categorized into two main
groups: one-stage models and two-stage models. One-stage
models, such as YOLO (Redmon et al., 2016) (real-time ob-
ject detection with versions, ranging from YOLO-v1 to YOLO-
v11), SSD (Liu et al., 2016) (a small and popular model that
uses multi-scale techniques for better accuracy in detecting
small objects), RetinaNet (Lin et al., 2017b) (an optimized
model for handling imbalanced datasets with a new loss func-
tion and Feature Pyramid Network (FPN)(Lin et al., 2017a)),
and LADet (Zhou et al., 2019) (a lightweight and adaptable
model designed for multi-scale object detection), quickly ex-
tract image features and provide accurate results. These mod-
els are highly efficient for real-time object detection, partic-
ularly when the detection process needs to be completed in
a single pass (Vijayakumar and Vairavasundaram, 2024). On
the other hand, two-stage models include RCNN (Girshick et
al., 2015) (which involves region extraction, feature extrac-
tion with Convolutional Neural Network (CNN), and classific-
ation using Support Vector Machines (SVM)), SPP (He et al.,
2015) (an improved version of RCNN using a pyramid struc-
ture for better multi-scale feature extraction), Fast RCNN (Gir-
shick et al., 2015) (which improves accuracy and speed by us-
ing a Region proposal Network (RPN) and refining bound-
ing boxes), and Faster RCNN (Ren et al., 2015) (which in-
creases detection speed using anchor boxes and the sliding win-
dow technique). Mask RCNN (He et al., 2017), built upon
Faster RCNN, not only detects objects but also performs in-
stance segmentation by predicting pixel-level masks for ob-
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jects within predefined Region of Interest Network (ROI). In
recent years Vision Transformers have shown exceptional per-
formance and have exceeded the performance of CNN-based
algorithms by far. Algorithms such as (Carion et al., 2020)
are based on transformer-based model. Traditionally, two-stage
or transformer-based algorithms have had better accuracy than
YOLO-based algorithms at the cost of slower inference time.
Recently, there have been works to close this gap by making
DETR-based algorithms as fast as or even faster YOLO-based
algorithms (Peng et al., 2024), (Zhao et al., 2024).

Object detection algorithms, particularly the YOLO family,
have seen significant advancements since its introduction.
YOLO has gained widespread use in various applications,
such as traffic surveillance, security systems, and autonomous
vehicles, due to its high speed and suitable accuracy for the real-
time object detection. Since the release of YOLO-v1, which
is a single-stage model for object detection, several advanced
versions, including YOLO-v2, YOLO-v3, and more recently
YOLO-v11, have introduced new features that improve the al-
gorithm’s accuracy, speed, and flexibility.

YOLO-v1 (Redmon et al., 2016) is developed in 2016 by
Joseph Redmon and his colleagues, and it is the first real-time
object detection system using a single-stage approach. This
model predicts both bounding boxes and class probabilities in
one pass, offering higher speed and accuracy compared to tra-
ditional methods like Faster RCNN .Then, YOLO-v2 (Redmon
and Farhadi, 2017) is released in the same year and renamed
YOLO9000. This version improved speed and accuracy by
using Darknet-19 (a faster architecture than VGGNet) and al-
lowed the detection of over 9000 object categories. New fea-
tures like anchor boxes and batch normalization are added to
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YOLO-v2 to improve detection accuracy for objects of various
sizes. In 2018, YOLO-v3 (Redmon and Farhadi, 2018) is intro-
duced, adding skip connections and FPN to address the vanish-
ing gradient problem and improve object detection at different
scales. This version also used anchor box clustering to improve
bounding box prediction accuracy. . Two years later, in 2020,
YOLO-v4 (Bochkovskiy et al., 2020) is released, focusing on
improving both speed and accuracy. This version incorporated
features like Bag of Specials (BoS), Bag of Freebies (BoF), and
Self-adversarial Training (SAT) to increase the model’s robust-
ness to input variations. It also used CSPDarknet-53 (Wang and
Wang, 2021) as its CNN backbone, which is more efficient in
feature extraction. In the same year, YOLO-v5 (Zhang et al.,
2022) is introduced using PyTorch instead of Darknet. This
version leveraged features like Autoanchor and Genetic Evolu-
tion (GE) for anchor box optimization, as well as augmentation
techniques like mosaic and copy-paste to improve accuracy.
YOLO-v5 includes five different versions (YOLO-v5n, s, m,
l, x), each varying in depth and width of the convolutional lay-
ers. YOLO-v6 (Li et al., 2022) is released in September 2022,
focusing on industrial applications with high-speed and high-
accuracy detection across various hardware. This version uses
anchor-free techniques and features like Rep-PAN and Efficien-
tRep for backbone and neck optimization. YOLO-v6 also util-
izes Varifocal Loss (Zhang et al., 2021) and Distribution Focal
Loss to improve detection accuracy. Finally, YOLO-v7 (Wang
et al., 2023) is released in 2022, aiming to increase detection
speed and accuracy by using E-ELAN architecture for better
gradient flow and model scaling to support various model sizes.
YOLO-v7 also introduced RepConv for convolution optimiz-
ation and a dual-head architecture for improved training and
prediction.

This study compares the performance of four recent YOLO
versions: YOLO-v8-n, YOLO-v9-t, YOLO-v10-n, and YOLO-
v11-n. Each version has its own specific features and advance-
ments that make it suitable for different applications. Specific-
ally, YOLO-v8 (Terven et al., 2023) is one of the successful
versions of this model, which improves feature extraction and
increases object detection accuracy by utilizing an advanced ar-
chitecture in the Backbone and Neck sections. Additionally, the
use of the Anchor-free head in YOLO-v8 increases processing
speed and provides significant improvements in both accuracy
and efficiency. Another standout feature of YOLO-v8 is its
optimal balance between accuracy and speed, making it ideal
for real-time applications. Figure 1 illustrates the architecture
of YOLO-v8. Furthermore, the variety of pretrained models
tailored for different needs makes this version more flexible, al-
lowing users to select a model suited to their specific task. In
YOLO-v9-t (Ambali Parambil et al., 2024) shown in Figure 2.
new technologies like PGI (Programmable Gradient Informa-
tion) and GELAN (Generalized Efficient Layer Aggregation
Network) are proposed, resulting in significant improvements
in performance and accuracy. PGI is used to preserve essen-
tial data in the deeper layers of the network, ensuring that in-
formation is retained throughout the learning process, which en-
hances model performance. This feature is particularly effect-
ive in lightweight models, which use fewer parameters. Along-
side that, GELAN optimizes the use of parameters and com-
putational efficiency, making it a strategic advancement in the
YOLO-v9 architecture. This version also addresses information
loss challenges in deep neural networks and, by introducing in-
verse functions, helps the network fully preserve information
Next, YOLO-v10 (Mao et al., 2024) as illustrated in Figure 3
adds new features like non-maximum suppression (NMS)-free

Figure 1. The architecture of YOLO-v8 with RepBLOCKs.

Figure 2. YOLO-v9 architecture introduces PGI (Programmable
Gradient Information) and GELAN (Generalized Efficient Layer
Aggregation Network), enhancing performance and accuracy.

training and Dual-Assignment Learning. This model helps re-
duce inference latency and optimizes processing speed by com-
bining one-to-many and one-to-one strategies during training,
improving the quality of predictions. Additionally, Large Ker-
nel Convolutions and Partial Self-Attention Modules improve
the model’s performance without significantly increasing com-
putational cost. Finally, YOLO-v11 (Sapkota et al., 2024) with
the architecture shown in Figure 4, with its enhanced Back-
bone and Neck structures, improves the ability to extract fea-
tures and increases object detection accuracy. This version also
reduces the number of parameters by 22% compared to YOLO-
v8m, achieving higher accuracy on the COCO dataset (Lin et
al., 2014), making it a more computationally efficient model.
YOLO-v11 is capable of running in various environments, in-
cluding edge devices, cloud platforms, and systems supporting
NVIDIA GPUs, offering flexibility to use the model in differ-
ent scenarios. Additionally, YOLO-v11 supports a wide range
of computer vision tasks, including object detection, instance
segmentation, pose estimation, and object detection with Ori-
ented Bounding Boxes (OBB) This study is conducted using
the EAGLE Dataset, and the goal is to compare the accuracy
and speed of these four models in vehicle detection within aer-
ial images. Using a standardized dataset, this research evaluates
the performance of each version under various conditions and
aims to select the lightest model with the highest accuracy in
the vehicle detection task using the EAGLE (Azimi et al., 2020)
dataset of aerial images on Nvidia Jetson AGX Xavier.
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Figure 3. YOLO-v10 architecture with NMS-free training and
dual-assignment learning reduces inference latency and improves
prediction quality.

Figure 4. YOLO-v11 architecture, featuring enhanced Backbone
and Neck structures, improves feature extraction and detection
accuracy.

2. Data and Methods

2.1 Data Preprocessing of EAGLE dataset

The (Azimi et al., 2020) dataset is comprised of aerial images
with two different sizes such as 5616 × 3744px which are ac-
quired at different time of day/year, illumination, weather, cam-
era angle and altitudes between 300m and 3000m, leading to a
range of , as known as spatial resolution, from 5to 45per each
pixel. We combine both classes of large-vehicle and small-
vehicle in this dataset to handle this task as a binary object de-
tection task.

Before training the models, the aerial images from the EAGLE
dataset are cropped into 1024×1024px tiles and resized during
training and inference to 416 × 416px in order to ensure uni-
formity across all input images. Data augmentation techniques
such as random rotations, flipping are applied to increase the ro-
bustness of the models. The dataset is split into training (23,001
tiles) and validation (7,682 tiles) sets. Additionally, the data is
augmented to prevent overfitting and improve model generaliz-
ation.

2.2 Model Training

We fine-tune four different versions of YOLO — YOLO-v8-n,
YOLO-v9-t, YOLO-v10-n, and YOLO-v11-n—on the EAGLE
dataset. The models are trained for 10 epochs with a batch size
of 8. The AdamW optimizer with a learning rate of 0.001 and
momentum of 0.9 is used for model optimization. Pre-trained
weights are utilized as the starting point for each model to speed
up convergence and improve performance. The training is con-
ducted using PyTorch.

(a) (b)

(c) (d)

Figure 5. Comparison of vehicle detection results for YOLO
models with pre-trained models on MS-COCO dataset, tested on
the EAGLE dataset: (a) YOLO-v8-n, (b) YOLO-v9-t, (c) YOLO-
v10-n, (d) YOLO-v11-n. Red bounding boxes: false positives,
blue: false negatives, green: true positives.

2.3 Evaluation Metrics

The models are evaluated using key performance metrics in-
cluding inference time and AP. Inference time is measured to
assess the real-time performance of the models. AP is used to
evaluate the detection accuracy, particularly in complex scen-
arios with varying illumination and weather conditions based
on Table 1. Additionally, F1-Score is calculated to combine
precision and recall, particularly in the cases of class imbal-
ance.

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Table 1. Confusion matrix illustrating the performance of the
model, showing true positive, true negative, false positive, and

false negative values across different classes.

Precision (P) and Recall (R) rates are calculated using the equa-
tions:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

where TP stands for the True Positives, FN for the False Negat-
ives and FP for the False Positives. These metrics depend on the
confidence threshold required to count as a detection and can be
plotted against each other for every confidence threshold, the
so-called Precision-Recall curve. The area under this curve for
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(a) (b)

(c) (d)

Figure 6. Comparison of fine-tuned vehicle detection results for
YOLO models fine-tuned and tested using the EAGLE dataset:
(a) YOLO-v8-n, (b) YOLO-v9-t, (c) YOLO-v10-n, (d) YOLO-
v11-n. Red bounding boxes: false positives, blue: false negatives,
green: true positives.

Models Inference Time (s) AP F1-Score
YOLO-v8-n 0.77 0.00 0.00
YOLO-v9-t 1.17 0.18 0.03

YOLO-v10-n 0.92 0.35 0.05
YOLO-v11-n 1.17 0.10 0.01

Table 2. Comparison of the performance among YOLO-v8-n,
YOLO-v9-t, YOLO-v10-n and YOLO-v11-n with pret-trained

models on the MS-COCO dataset.

each class is then calculated as AP.

AP =

∫ 1

0

P (R)dR (3)

F1 score is also calculated using the equation of:

F1 = 2 · Precision ·Recall

Precision+Recall
(4)

2.4 Environment and Tools

The models are trained using PyTorch with GPU for accelera-
tion.

3. Results

The performance of the four YOLO models — YOLO-v8-n,
YOLO-v9-t, YOLO-v10-n, and YOLO-v11-n — is summar-
ized in Table 2 when using the pretrained models on MS-COCO
dataset and the results of the algorithms finetuned on EAGLE
dataset are provided in Table 3. The inference on test images of
EAGLE has been carried out on Jetson AGX Xavier using the

Models Inference Time (s) AP F1-Score
YOLO-v8-n 4.14 0.63 0.94
YOLO-v9-t 4.53 0.62 0.96

YOLO-v10-n 4.00 0.61 0.92
YOLO-v11-n 4.15 0.63 0.95

Table 3. Comparison of the performance among YOLO-v8-n,
YOLO-v9-t, YOLO-v10-n and YOLO-v11-n after having
fine-tuned on the EAGLE dataset on Jetson AGX Xavier.

maximum performance mode with overclocking. The qualitat-
ive results are shown in Figure 5 for the pre-trained model of
MS-COCO and in Figure 6.

YOLO-v11-n demonstrates the best performance in comparison
with the other version on the AP factor, showing superior de-
tection results. This is likely due to its use of synthetic data
generation for training and its reduced number of parameters,
which allows it to handle complex environments with limited
real-world data. YOLO-v11-n also excels in terms of the F1-
Score, indicating a balanced performance between precision
and recall, particularly in complex detection tasks. YOLO-v10-
n achieves the fastest inference time, making it the most suit-
able model for real-time applications. This can be attributed
to its NMS-free training and spatial-channel decoupled down-
sampling, which optimize the model’s speed.

4. Discussion

The results indicate notable differences in how each version
of YOLO handles the vehicle detection task in aerial imagery,
offering valuable insights for selecting the most appropriate
model based on the use case. Qualitative results also reveals that
how much finetuning can improve the performance of the model
and what is the generalization of YOLO algorithms trained in
MS-COCO on different image modalities. For instance, Fig-
ure 5 clearly shows that YOLO algorithms have a very poor
performance on the vehicle detection in aerial imagery when
trained only on the MS-COCO dataset, while after being fine-
tuned, Figure 6 indicates the high jump in the performance.

4.1 Inference Time

One of the most critical factors in real-time applications, such
as traffic monitoring or autonomous vehicles, is the speed of the
model. The results reveals that YOLO-v10-n outperforms the
other models in terms of inference time. Its ability to eliminate
redundant bounding boxes through NMS-free training and op-
timize inference speed via the spatial-channel decoupled down-
sampling contributes to its faster processing times, making it
an ideal candidate for real-time applications. This feature is
especially important for scenarios where low-latency perform-
ance is crucial. In contrast, YOLO-v9-t exhibits the slowest
inference time, which could limit its suitability for real-time
applications that require rapid decision-making. Although this
version showed improvements in feature retention through its
PGI and GELAN modules, which helps in the complex image
recognition task, the trade-off in speed may be a disadvantage
for some use cases.

4.2 Accuracy and Precision

In terms of detection accuracy, YOLO-v11-n emerges as the
best-performing model, achieving the highest AP. This is at-
tributed to its utilization of synthetic data generation during
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training, which allowed the model to better handle complex,
real-world scenarios with limited available data. By reducing
the model’s parameters by 22%, YOLO-v11-n also improves
its precision in detecting objects in cluttered or challenging en-
vironments, such as areas with occlusions or unusual angles.
This makes YOLO-v11-n particularly suitable for applications
where high accuracy is prioritized over speed, such as dis-
aster management or infrastructure monitoring in hard-to-reach
areas. On the other hand, YOLO-v8-n shows solid perform-
ance, but lags behind in comparison to YOLO-v11-n in terms
of AP. The novel loss function in YOLO-v8-n like Varifocal
Loss and CIoU Loss plays a significant role in its ability to
handle complex detection tasks, but it could not match the level
of precision seen in YOLO-v11-n.

4.3 F1-Score and Balance Between Precision and Recall

The F1-Score —a metric that combines precision and recall—
is highest in YOLO-v11-n, indicating that it provides a good
balance between true positive and false negative rates, even in
challenging environments. This makes YOLO-v11-n the most
well-rounded model, excelling both in detection accuracy and
in maintaining a good balance between precision and recall. In
contrast, YOLO-v9-t, despite its slower inference time, demon-
strates solid F1-Score results, showing that its ability to retain
important features across layers helps mitigate the challenges of
imbalanced classes. However, the slower inference time limits
its real-time applicability.

4.4 Implications for Real-World Applications

While YOLO-v10-n excels in speed, making it ideal for real-
time use cases, YOLO-v11-n proves to be the most accurate
and reliable model for tasks where precision is more import-
ant than processing speed. For instance, in aerial imagery used
for disaster management or search and rescue, where the en-
vironment can be complex and unpredictable, YOLO-v11-n is
the preferable choice, due to its ability to detect objects accur-
ately even in challenging conditions. Conversely, if the applic-
ation demands fast decision-making and real-time monitoring,
such as in traffic surveillance or autonomous driving, YOLO-
v10-n would be the most appropriate model. Its speed, coupled
with relatively high accuracy, allows it to process aerial images
quickly while maintaining a reasonable level of precision.

4.5 Limitations and Future Work

Despite the impressive results of YOLO-v11-n, one limitation is
its reliance on synthetic data generation, which might not fully
replicate the diversity and complexity of real-world scenarios.
Future work could focus on improving the model’s ability to
handle diverse environmental factors, such as varying weather
conditions, different light intensities, and dynamic objects like
moving vehicles or pedestrians.

Moreover, the real-time inference of YOLO-10-n could be
further optimized by reducing its computational complexity
without sacrificing accuracy. Techniques such as knowledge
distillation or model pruning could be explored to improve the
efficiency of these models for edge devices.

In addition with the rise of new object detection algorithms
based on vision transformers and the closing gap between the
performance of two difference between DETR and YOLO-
based algorithms, future works could be on how to leverage the
advantages of each design architecture for different use cases
whether speed, accuracy or a speed-accuracy trade-off is re-
quired on the application side defined by the end user.

5. Conclusion

In conclusion, the study demonstrates that each YOLO version
has its unique strengths, making them suitable for different use
cases in edge computing using embedded processors. Given
the limited amount of computing power as well as memory on
embedded devices, efficient vehicle detection algorithms are re-
quired. YOLO-v10-n stands out for its speed, making it ideal
for real-time applications, while YOLO-v11-n excels in accur-
acy, making it the best choice for complex, data-scarce envir-
onments. Understanding the strengths and weaknesses of these
models helps in selecting the most appropriate version based
on the specific requirements of the task, whether it’s real-time
object detection or high-precision vehicle identification in chal-
lenging conditions.
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