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Abstract

Accurate detection and measurement of building elements are essential for efficient automated inspection and quality assessment in
construction. This study evaluates the effectiveness of the Segment Anything Model (SAM) for pipe segmentation using a Mixed
Reality-based dataset and introduces an automated method for pipe 3D centreline reconstruction and diameter estimation. The
impact of the input point prompt distribution and number on segmentation accuracy is analyzed, identifying optimal configurations
for improved performance. Using depth data and pose information from the MR device, the proposed approach reconstructs the
3D centreline and estimates pipe diameters with high reliability. The method is evaluated in a real experimental pipe network. The
results indicate that the use of five-point prompts in a uniform distribution achieves approximately 90% precision and recall for pipe
segmentation, with median position and diameter errors of 33 mm and 10 mm, respectively. The findings highlight the ability of the
MR system to achieve accurate pipe positioning and diameter estimation, particularly in pipe networks with moderate complexity
and fewer thin pipes, where segmentation and measurement challenges are minimized.

1. Introduction

In recent years, the rapid advancement of automation technolo-
gies has revolutionized the construction sector, significantly im-
proving the efficiency and quality of construction work (Zhang
et al., 2019). One area that can particularly benefit from this
transformation is the inspection of building Mechanical, Elec-
trical and Plumbing (MEP) systems including pipes. Pipe in-
spection involves a precise assessment of the geometric char-
acteristics of the pipes such as their position and size after in-
stallation to ensure proper functioning and integration with the
other building elements as well as compliance with regulations
(Einizinab et al., 2023).

Non-contact sensing methods, including photogrammetry and
laser scanning, have advanced MEP inspections by capturing
precise 3D geometric data; however, these technologies face
limitations due to their high computational requirements and
the non-simultaneous nature of data acquisition and inspection
processes, limiting their applicability for real-time inspection
tasks (Becker et al., 2023). Mixed Reality (MR) offers a more
efficient approach by seamlessly integrating virtual and phys-
ical elements to enable precise real-time inspections (Einizinab
et al., 2023). MR systems equipped with an RGB camera, depth
sensor, and inertial measurement unit allow inspectors not only
to visualize Building Information Models (BIM) overlaid on
real-world structures, enabling effective comparisons between
as-built and as-designed models, but also to perform geomet-
ric measurements directly within the mixed reality environment
(Radanovic et al., 2023).

Despite the advanced capabilities of MR systems, the inspec-
tion process relies on manual measurements through the MR
device and visual confirmation by the inspectors, which lim-
its efficiency and increases the risk of human error (Einiz-
inab et al., 2023). Leveraging state-of-the-art image segmenta-
tion techniques, such as the Segment Anything Model (SAM)
(Kirillov et al., 2023) and multiple sensors integrated into

MR devices presents an opportunity to automate the geometric
measurement process within MR, reducing the need for manual
input while enhancing both accuracy and efficiency. SAM, a
promptable vision-language model, can segment objects in im-
ages without additional training, making it highly suitable for
geometric pipe measurement using MR (Wang et al., 2024).
Among the available input prompts for SAM, i.e., points, boxes,
and their combinations, point-based prompts stand out in MR-
based automated measurements due to their ease of use.

To effectively leverage SAM for automated MR measurements,
two critical questions need to be addressed. First, what is the
optimal number and distribution of input point prompts required
to achieve accurate segmentation of target pipes? Determin-
ing this will be crucial to improve the reliability and efficiency
of MR-based inspection workflows. Second, after isolating the
pipes using the optimal point prompt strategy, how accurately
can the MR system position the pipes and measure their size,
such as diameter? Addressing these questions will provide in-
sights into improving the integration of SAM with MR systems
for precise and automated geometric measurements.

To address these questions, we applied the SAM segmentation
method to RGB images captured by an MR device and exper-
imented with varying numbers and distributions of input point
prompts to identify the optimal configuration for accurate pipe
segmentation. Based on the results, we propose an automated
method for reconstructing pipe positions and measuring pipe
diameters. In this method, the 2D segmented pipes generated
by SAM are used to create a centreline in the image space. Us-
ing depth data from the MR device’s built-in camera and the
device’s position and orientation (pose) obtained from the Sim-
ultaneous Localization and Mapping (SLAM) technique, a 3D
representation of the pipe’s centreline is reconstructed and its
diameter is estimated. The proposed method is evaluated on a
dense pipe system in a real-world scenario by comparing the re-
constructed results with ground-truth values obtained from the
corresponding BIM model.
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Figure 1. Overview of the proposed method.

2. Related works

The segmentation of pipes in images is a critical aspect of
automated, non-contact inspection workflows, as it facilitates
the accurate identification and delineation of pipe compon-
ents. Image segmentation is a core task in computer vision,
with wide-ranging applications across various domains (Wang
et al., 2024). It enables precise object detection and localization
within images, which is essential for analyzing and interpreting
visual data. Traditional semantic segmentation techniques rely
on feature extraction methods such as Histograms of Oriented
Gradient (HOG) and Scale-Invariant Feature Transform (SIFT)
descriptors to identify significant features (Hussein et al., 2023).
This approach involves dividing the image into small patches,
which are subsequently classified using local classifiers such as
random decision forests or support vector machines (Thoma,
2016). However, the use of small spatial windows often leads
to noisy predictions and substantial computational overhead, as
each patch must be individually processed.

Recent developments in deep learning have led to the emer-
gence of advanced semantic segmentation techniques, such as
U-Net (Ronneberger et al., 2015), Faster R-CNN (Ren et al.,
2016), Mask R-CNN (He et al., 2017), DeepLab (Chen et al.,
2017), and Pyramid Scene Parsing Network (PSPNet) (Zhao et
al., 2017). U-Net employs an encoder-decoder structure to de-
liver highly accurate segmentation results. Mask R-CNN, an
extension of the Faster R-CNN model for object detection, in-
corporates instance segmentation capabilities. DeepLab utilizes
atrous convolutions and fully connected conditional random
fields to improve semantic segmentation performance in nat-
ural images. Similarly, PSPNet addresses scene parsing tasks
by employing pyramid pooling to capture global contextual in-
formation and enhance segmentation accuracy. Despite their ef-
fectiveness, these models typically require training dataset and
are not designed for general-purpose segmentation across a di-
verse range of applications (Wang et al., 2024).

SAM (Kirillov et al., 2023), one of the first foundational mod-
els in computer vision, addresses this limitation by offering a
promptable framework for general image segmentation. SAM
can segment a variety of objects across different types of images
without the need for retraining, making it particularly suitable
for pipe detection tasks. Its versatility, combined with its com-
putational efficiency and adaptability, underscores its potential
for use in MR applications, especially in building pipe inspec-
tions where accurate and flexible segmentation is essential.

Although SAM has introduced significant advancements in im-

age segmentation, its effectiveness in MR-based real-world ap-
plications remains to be thoroughly evaluated. Acknowledging
the prior studies (Zhang et al., 2023, Wang et al., 2024, Ying et
al., 2025) that have examined SAM’s capabilities in segmenta-
tion tasks, this study addresses two key challenges: the number
of input point prompts and their spatial distribution within the
scene for MR-based pipe inspection tasks. Furthermore, this
study evaluates the performance of SAM-based pipe segment-
ation for subsequent 3D centreline reconstruction and diameter
estimation of pipes using an MR device.

3. Method

The proposed method includes three main steps: data capture
by the MR device, segmentation using SAM, and geometric re-
construction of the centreline and diameter estimation of the
pipes (Figure 1).

3.1 Pipe segmentation using SAM

SAM is utilized to identify and segment pipes from the RGB
images. SAM is composed of three key components: an image
encoder, a prompt encoder (based on points in this study), and a
mask decoder (Kirillov et al., 2023). The image encoder is built
on a pre-trained Vision Transformer (ViT), which is specific-
ally adapted to handle high-resolution images. After the image
and prompt data are encoded, the mask decoder processes the
data using a modified transformer decoder. This decoder en-
ables bidirectional cross-attention between the prompts and the
image features, enhancing the model’s ability to focus on rel-
evant areas. Finally, an upsampling followed by a multi-layer
perceptron calculates the mask’s foreground probability, produ-
cing a segmentation of the pipe structures.

3.2 Pipe geometry measurements

The SLAM algorithm built in MR devices integrates sensor data
to track the device’s position and orientation in real-time. It
extracts environmental features and registers consecutive depth
images to build a spatial map and estimate the pose of the depth
camera in a global coordinate system, with the origin being the
point where the first depth image is captured. In this global
system, the poses of both the RGB camera and the depth sensor
are known, which enables the transformation of each RGB pixel
to align with its corresponding depth pixel. In other words, for
every pixel in the RGB image, an exact corresponding depth
value or an interpolated depth value from the neighboring pixels
will be determined.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-417-2025 | © Author(s) 2025. CC BY 4.0 License.

 
418



Figure 2. Schematic representation of the distribution scenarios with four input point prompts (yellow dots): Uniform distribution
(left), Clustered distribution (middle), and Boundary distribution (right).

After segmenting pipes from the RGB images using SAM, the
resulting binary image is pre-processed with morphological op-
erations to ensure continuous pipe structures. A skeletonization
algorithm (Zhang and Suen, 1984) is then applied to extract the
centreline of the pipes, reducing them to a single-pixel-wide
line.

A distance transform is used to calculate the distance from each
centreline pixel to the nearest pipe boundary, which represents
the pipe’s radius in pixels. These pixel-based radius values
are converted to real-world measurements using depth inform-
ation, pose values, and the camera’s intrinsic parameters. The
radius is then doubled to determine the pipe diameter at each
centreline pixel.

The centreline image contains the pixel-wise diameters, and the
depth image provides the distance to the pipe’s surface. Using
the camera’s intrinsic parameters and depth values, pixel co-
ordinates are transformed into 3D coordinates within the MR
camera’s local frame. The pre-calculated radius of the pipe is
added to the depth value to calculate the 3D coordinates of the
pipe’s centreline, rather than the surface centreline of the pipe.
The 3D coordinates are then converted from the camera’s local
frame to the global coordinate system using the MR camera
poses generated by the SLAM algorithm.

3.3 Evaluation

The performance of SAM with varying numbers and distribu-
tions of input point prompts for pipe segmentation is evaluated
using standard image segmentation metrics, including Intersec-
tion over Union (IoU), recall, and precision. Ground-truth an-
notations of pipes are created in multiple sample images to sup-
port this evaluation.

For evaluation of SAM segmentation, the primary goal is to
identify the optimal number and distribution of input point
prompts. We define three distinct point distributions and, for
each distribution scenario, we assess SAM performance by
varying the number of input point prompts from 1 to 5 and
calculate the resulting segmentation metrics. Furthermore, in
each distribution scenario, for different numbers of input point
prompts, we ensure that the points are selected in similar loca-
tions across all cases to maintain a consistent distribution pat-
tern. The three distribution scenarios are as follows:

1. Uniform distribution: Points are evenly distributed across
the entire image, centered on the pipes.

2. Clustered distribution: Points are concentrated within a
specific region of the image.

3. Boundary distribution: Points are uniformly distributed
along the edges or boundaries of the pipe.

Figure 3. Case study environment (left) and its corresponding
BIM model (right).

Figure 2 illustrates the schematic representation of the distribu-
tion scenarios with four input point prompts. In the uniform and
boundary distributions, the points are evenly distributed across
the image, but their positions on the pipes differ: one set of
points is placed at the center of the pipes, while the other set
is located at the edges. In the clustered distribution, points are
selected either at the center or the edge of the pipes, but all
the points are located within a specific region of the image. In
all scenarios, we assign the point prompts to the entire image,
leaving some pipes without prompts. This choice influences the
segmentation results and allows us to assess the ability of SAM
to identify unselected pipes within the image.

The accuracy of pipe diameter and 3D centreline is then as-
sessed by comparing the MR-derived measurements with the
corresponding pre-aligned BIM pipe data. The analysis is lim-
ited to scenarios where the pipes are accurately segmented by
SAM, minimizing the impact of segmentation inaccuracies.

For each point in the MR-derived centrelines, the nearest neigh-
bor in the BIM pipe centrelines is identified, and an error metric
is calculated as the distance between corresponding points. This
error is evaluated in two aspects: spatial error, which measures
the deviation in 3D positions, and diameter error, which quan-
tifies the difference between the estimated and actual pipe dia-
meters, which is extracted from the BIM. The average 3D pos-
itioning and diameter errors of the points for each pipe element
are used to determine the accuracies for that particular pipe.

4. Experimental results and analysis

4.1 Experiment design

We utilized an experimental pipe network with a dense layout
located on the ground floor of the Melbourne Connect building
at the Department of Infrastructure Engineering, University of
Melbourne. The network consists of numerous pipe segments
ranging in diameters from 15 to 150 mm and pipe spacings
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Distribution Uniform Clustered Boundary
Prompt No. 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Precision 0.98 0.72 0.84 0.84 0.89 0.98 0.97 0.96 0.96 0.96 0.98 0.76 0.86 0.74 0.76

Recall 0.13 0.86 0.86 0.92 0.91 0.13 0.19 0.13 0.17 0.16 0.18 0.69 0.88 0.94 0.92
IoU 0.13 0.64 0.74 0.79 0.82 0.13 0.19 0.13 0.17 0.16 0.18 0.56 0.77 0.70 0.71

Table 1. Evaluation metrics for SAM-based pipe segmentation across three distribution scenarios with varying numbers of input point
prompts.

Figure 4. Distribution of errors in 3D centreline reconstruction
and diameter estimation of pipes.

varying between 10 mm and higher. The pipe network layout
includes numerous intersecting segments, with some areas hav-
ing pipes positioned so closely that distinguishing them in dis-
tant scans might pose a challenge for segmentation. The evalu-
ation focuses on SAM’s segmentation capability under varying
distributions and number of input point prompts, as well as 3D
centreline reconstruction and diameter estimation of the well-
segmented pipes.

Data from the pipe system were collected using Microsoft
HoloLens 2. For segmentation evaluation, 15 RGB images and
their corresponding depth images, captured at distances ranging
from 1 to 2.5 meters from the pipes, were used. The images
were annotated using the online tool V7 Darwin (V7Labs, n.d.),
with each annotated image converted into a binary mask where
pipe pixels were labeled as ‘1’. The annotated images serve as
the ground-truth for segmentation evaluation.

Regarding the SAM architecture and inputs, we employed the
ViT-H image encoder and the model was implemented on a
laptop equipped with a NVIDIA(R) GeForce(R) RTX(TM)
4070 GPU, and 64GB (2×32GB) RAM.

Additionally, ground-truth data for 3D reconstruction and dia-
meter measurements were derived from a BIM model of the
environment. A terrestrial laser scanner was used to capture 3D
point cloud representations of the space, which were then pro-
cessed in Autodesk Revit 2023 to generate the BIM model. For
evaluation, the BIM model was aligned with the real-world en-
vironment, ensuring that each real pipe object had a correspond-
ing virtual object from the aligned BIM. Figure 3 illustrates the
experimental environment and its corresponding BIM model.

4.2 Results

Table 1 presents the results of SAM-based pipe segmentation
in three distribution scenarios: uniform, clustered, and bound-
ary—using varying numbers of input point prompts from 1 to
5. The results demonstrate that the model consistently achieves
high precision in majority of the scenarios, indicating that the

most of detected pipe pixels are accurately classified, with
minimal false positives, even though some pipes lack point
prompts. This suggests strong performance in pipe identific-
ation. Figure 5 illustrates a sample RGB image of the pipe lay-
out, along with its ground-truth annotated mask image and the
pipes segmented using SAM.

However, recall and IoU values show a clear dependency on
the number of input point prompts across all distribution scen-
arios. In the uniform and boundary distributions, increasing the
number of input point prompts leads to a steady improvement in
recall and IoU values, reaching high values when more than one
point prompt is used. The high recall and IoU in this scenario
indicate that the model is able to detect a large proportion of the
true pipe pixels, with a good overlap between the predicted and
ground-truth pipe regions.

In contrast, the clustered distribution scenario yields relatively
low recall and IoU values, regardless of the number of input
point prompts. This suggests that concentrating the input point
prompts in a specific region of the image limits the segment-
ation accuracy, as the model struggles to generalize across the
entire scene.

The uniform distribution, where input points are evenly distrib-
uted across the scene, proves to be the most effective strategy
for improving segmentation accuracy. When points are selected
along the centreline of the pipes, the accuracy increases signi-
ficantly compared to selecting points along the edges or bound-
aries.

Among the assessed scenarios, uniform and boundary distribu-
tions with more than three input point prompts exhibit similarly
high performance. However, the uniform distribution shows a
slight advantage, making it the most reliable choice to achieve
optimal segmentation accuracy, particularly as the number of
input point prompts increases. Furthermore, the capability of
SAM is evident in its ability to accurately isolate pipes even
without assigned point prompts among numerous pipes in the
image, as shown in Figure 5.

Figure 4 demonstrates the accuracy of the 3D centreline recon-
struction and diameter estimation for the detected pipes through
SAM. For 3D centreline positioning, the overall range of errors
indicates a noticeable spread, with values extending from nearly
0 to 60 mm. The median value, located near the middle of
this range, suggests that the majority of errors are concentrated
around this central value. The interquartile range is relatively
smaller, indicating that most positioning errors fall within a nar-
rower range (25-43 mm). However, the broader range between
the minimum and maximum highlights a few instances of sig-
nificant discrepancies, reflecting outliers in the results.

In terms of diameter estimation, the overall error range is also
wide, with the minimum error being close to 0 and the max-
imum error up to 40 mm. The median value, placed towards the
lower end of the distribution, suggests that most of the diameter
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Figure 5. A sample RGB image of the pipe layout, its ground-truth annotated mask image, SAM-segmented pipes, and the aligned 3D
pipe centreline from the BIM model overlaid on the reconstructed 3D pipe centreline extracted from MR image.

estimation errors are relatively small. The interquartile range
for diameter errors is more compact, indicating that the major-
ity of the diameter estimates are concentrated within a certain
range (5-18 mm). Similar to the 3D reconstruction, there are
some larger errors in diameter estimation, though these outliers
are less frequent and do not represent the majority of cases.
In both 3D centreline reconstruction and diameter estimation,
greater uncertainties arise in the more complex sections of the
pipe layout, particularly where pipes are closely spaced and
thinner.

Together, these findings show that while the accuracy for both
3D centreline reconstruction and diameter estimation is gener-
ally high, there are occasional outliers in both cases that intro-
duce larger errors. Nonetheless, most of the errors are within a
moderate range, suggesting reasonable overall performance in
terms of pipe inspection tasks using MR devices. This asser-
tion is supported by the fact that the pipe layout in this study
is highly complex and features numerous thin pipes and tightly
spaced sections.

It is noteworthy that the accuracy of BIM alignment within the
MR visualization directly impacts reconstruction and diameter
estimation, as the BIM model serves as the ground-truth for
measurement accuracies.

The results demonstrate the reliability of MR-based reconstruc-
tion and diameter estimation for pipe elements, highlighting
the potential for automated MR-based measurements in build-
ing inspection tasks. By implementing the proposed method,
automatic detection of pipe positions and diameters within the
MR environment and comparison with pre-aligned BIM ob-
jects, automatic pipe inspection becomes feasible. However,
the actual size and spacing of the pipe network play a crucial
role. Given the current reconstruction and diameter estimation
accuracy, distinguishing closely spaced and thin pipes remains
challenging, making precise measurements in dense pipe lay-
outs more complex. Conversely, for moderate and simpler pipe
networks, the method proves to be highly reliable. Figure 5
displays a schematic view of the aligned 3D pipe centreline ex-
tracted from the BIM model, overlaid on the reconstructed 3D
pipe centreline extracted from the MR data.

5. Conclusion and Future Works

In this paper, we evaluated the segmentation capabilities of
SAM in identifying pipe elements within images captured by
an MR device, focusing on the number and distribution of in-
put point prompts. In addition, we introduced an approach for
automated measurement and positioning of pipe elements us-
ing MR. By selecting the optimal number and distribution of

input point prompts, the method successfully isolated pipes, re-
constructed their 3D centrelines, and estimated their diameters
using pose values and depth data from the MR device.

A comprehensive evaluation with a complex pipe network lay-
out in various scenarios identified the best input point prompt
strategy for the SAM model. The method demonstrated reliable
diameter estimation and 3D centreline reconstruction, demon-
strating the potential of MR-based automation for pipe inspec-
tion tasks. The results indicate that the proposed automatic
method is well suited for inspecting pipe networks, particularly
those that are not highly intricate or contain thin pipe elements.

Future research can explore the accuracy of results concern-
ing the distance between objects and the MR device, as un-
derstanding this relationship is crucial for refining measure-
ments. Implementing automated measurements in real-world
pipe inspection scenarios is another key objective. Addition-
ally, fully integrating SAM-based pipe detection within an MR
device presents a promising direction for further development.

6. Acknowledgments

This research is supported by Building 4.0 CRC. The support
of the Commonwealth of Australia through the Cooperative Re-
search Center Program is acknowledged.

References

Becker, S., Einizinab, S., Radanovic, S., Khoshelham,
K., Mirzaei, K., Fang, Y., 2023. Reality capture methods
for remote inspection of building work. The International
Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 48, 275–281.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K.,
Yuille, A. L., 2017. Deeplab: Semantic image segmenta-
tion with deep convolutional nets, atrous convolution, and
fully connected CRFs. IEEE transactions on pattern ana-
lysis and machine intelligence, 40(4), 834–848.

Einizinab, S., Khoshelham, K., Winter, S., Christopher,
P., Fang, Y., Windholz, E., Radanovic, M., Hu, S., 2023.
Enabling technologies for remote and virtual inspection of
building work. Automation in Construction, 156, 105096.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask
R-CNN. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2961–2969.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-417-2025 | © Author(s) 2025. CC BY 4.0 License.

 
421



Hussein, G. S., Elseuofi, S., Dukhan, W. H., Ali, A. H.,
2023. A Novel Method for Banknote Recognition Using
a Combined Histogram of Oriented Gradients and Scale-
Invariant Feature Transform.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y. et al., 2023. Segment anything. Proceedings of the
IEEE/CVF International Conference on Computer Vision,
4015–4026.

Radanovic, M., Khoshelham, K., Fraser, C., 2023. Align-
ing the real and the virtual world: Mixed Reality localisa-
tion using learning-based 3D-3D model registration. Ad-
vanced Engineering Informatics, 56, 101960.

Ren, S., He, K., Girshick, R., Sun, J., 2016. Faster R-CNN:
Towards real-time object detection with region proposal
networks. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(6), 1137–1149.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net:
Convolutional networks for biomedical image segment-
ation. Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, Springer, 234–241.

Thoma, M., 2016. A survey of semantic segmentation.
arXiv preprint arXiv:1602.06541.

V7Labs, n.d. V7-AI data platform for ML teams. ht-
tps://www.v7labs.com/. Accessed on January 27, 2025.

Wang, Y., Zhao, Y., Petzold, L., 2024. An empirical study
on the robustness of the segment anything model (SAM).
Pattern Recognition, 110685.

Ying, W., Khoshelham, K., Kemp, J., 2025. Assessment
of stone decay in heritage sites using machine learning. In
Proceedings of ISPRS Geospatial Week 2025, Dubai, UAE.

Zhang, C., Zhang, C., Kang, T., Kim, D., Bae, S.-H.,
Kweon, I. S., 2023. Attack-SAM: Towards attacking seg-
ment anything model with adversarial examples. arXiv pre-
print arXiv:2305.00866.

Zhang, D., Zhang, J., Xiong, H., Cui, Z., Lu, D., 2019.
Taking advantage of collective intelligence and BIM-based
virtual reality in fire safety inspection for commercial and
public buildings. Applied Sciences, 9(23), 5068.

Zhang, T. Y., Suen, C. Y., 1984. A fast parallel algorithm
for thinning digital patterns. Communications of the ACM,
27(3), 236–239.

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid
scene parsing network. Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2881–
2890.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-417-2025 | © Author(s) 2025. CC BY 4.0 License.

 
422




