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Abstract 
 
In GNSS-denied environments such as indoor and underground locations, real-time mapping and navigation are paramount, especially 
for emergency response scenarios like search and rescue or building evacuations. First responders rely on accurate maps of entrances 
and exits to prevent disorientation. This research addresses the challenges posed by the absence of GNSS signals and the need for high-
performance data processing by developing a cost-effective multi-sensor system for real-time indoor mapping. The system incorporates 
consumer-grade technologies, including 2D LiDAR, RGB-D cameras, and MEMS-based IMU. It utilizes the Google Cartographer 
SLAM engine to generate real-time 2D raster maps and stream position and orientation data at 200 poses per second, ensuring 
continuous poses feed while minimizing latency. The resulting maps are continuously being optimized using a loop-closing algorithm 
to reduce drift and maintain the trajectory integrity. The system was validated in both real-time and post-processing configurations, 
the proposed system demonstrates promising consistency and repeatability according to the verification results furnished in this 
research paper. The data collection and processing times with this system are significantly reduced compared to static LiDAR systems, 
without the need for high-end computing resources. This research underscores the benefits of using inexpensive sensors and 
components, providing an efficient solution for indoor mapping and navigation in emergency scenarios. 
 

1. Introduction 

Indoor mapping presents unique challenges due to the absence or 
obstruction of GNSS signals. Existing indoor mobile mapping 
systems that operate in GNSS-denied environments often utilize 
low-cost sensors, such as MEMS-based IMUs, RGB-D cameras, 
and mapping- or industrial-grade LiDAR sensors (Chiang et al., 
2021). These sensors provide relatively lower accuracy than 
high-end sensors, which may not meet the accuracy requirements 
of specific applications but could be a good fit for underground 
environments, building navigation, and emergency response 
operations, which do not require high accuracy and precision. 

Therefore, there is a need to develop mobile mapping systems 
that address the challenges of high accuracy and precision 
outdoor mapping, as well as indoor mapping systems in GNSS-
denied environments with a necessity for real-time capabilities 
for some applications (Elhashash et al., 2022). These systems 
should be cost-effective, accessible, and capable of capturing 
geospatial data with the highest possible accuracy and precision, 
suitable for various applications. 

A key motivation for research in this area is the potential for 
mobile mapping systems to enhance the efficiency and 
effectiveness of various applications. For instance, real-time 
mapping in GNSS-denied environments, such as indoor spaces, 
can enable navigation and tracking in complex environments, 
improving emergency operations' response time and 
effectiveness. Furthermore, digital twin modelling involves 
creating virtual replicas of physical environments and can benefit 
from mobile mapping systems to capture accurate and up-to-date 
data for creating and updating digital twins in real-time. These 
digital twins can be used for various applications, such as urban 
planning, facility management, and disaster management, 
leading to more informed decision-making and improved 
outcomes (Xue et al., 2020). 

However, significant challenges in the development of mobile 
mapping systems need to be addressed. One of the main 
challenges is the cost associated with these systems, including the 
specialized sensors and technologies required for high accuracy 
and precision mapping. The cost factor often limits the 
accessibility of mobile mapping systems to a wide range of users 
and applications (Elhashash et al., 2022). Additionally, latency, 
or the time it takes for the system to process and display the 
collected data, can be challenging, especially in real-time 
applications like navigation, where even minor delays can be 
disruptive (Lv et al., 2020). Finally, the complexity of mobile 
mapping systems, with multiple components and technologies 
that need to be integrated and calibrated, poses challenges in 
system design and operation. 

The proposed system in this research contains two orthogonal 2D 
LiDAR sensors, a Microsoft Kinect camera, and an industrial-
grade IMU. The system sensors are all mounted on a moving cart. 
All the sensors are connected to a hosting computer that runs the 
Linux Ubuntu and hosts A Robotic Operating System (ROS) 
Melodic version (Quigley et al., 2009). Each sensor is connected 
to the hosting computer and streams its real-time data through a 
ROS driver that listens to the sensors’ stream and broadcasts the 
sensor data in a standard ROS message format.  

Google Cartographer is used for SLAMing the LiDAR data and 
generating the best trajectory estimate and 3D point clouds. The 
package includes several ROS nodes, each performing a specific 
task in the SLAM pipeline. For example, there is a node for 
subscribing to point cloud and IMU data, a node for performing 
loop closure detection, and a node for generating the final map 
(Xu et al., 2017). One important challenge in LiDAR SLAM is 
drift, the error that accumulates over time as the LiDAR sensor 
moves through the environment. This error can cause the map to 
become distorted and less accurate, making it difficult to use it 
for navigation or other tasks.  
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Researchers and developers have developed various techniques 
and algorithms to address the drift problem in LiDAR SLAM 
[103] (Di Filippo et al., 2018). These include methods for 
filtering and smoothing the LiDAR data to reduce noise and 
errors, as well as algorithms for tracking the motion of the 
LiDAR sensor more accurately, called motion compensation in 
literature (Lv et al., 2020). 

The novelty of this system is built on multiple facts against the 
other comparable state-of-the-art industrial systems, and it 
outperformed them in terms of cost and handiness. First, the 
sensors used are extraordinarily inexpensive and not intended by 
their manufacturers to be used in localization and mapping. 
Secondly, the system uses a combination of sensors that was not 
presented in previous research. Thirdly, the system is relatively 
lightweight and compact, allowing room to be used in emergency 
response applications such as search and rescue operations by 
attaching the system to the first responder's suit or helmet. 

2. System Components 

The overall system hardware design is shown in Figure 1. The 
system consists of two 2D RPLiDAR Sensors placed 
orthogonally to each other, one oriented to the horizontal plane 
and parallel to the ground, and the second plane makes a 90-
degree angle with the horizontal plane. Moreover, the system is 
equipped with a basic PhidgetSpatial IMU. It is tightly fixed 
underneath the horizontal LiDAR to allow the system to 
determine the levelling angles for the Horizontal LiDAR and 
shorten the SLAM convergence time by providing an initial 
approximation for the orientation angles.  
 
The two LiDAR sensors and the IMU are both fixed on a custom-
made monopod to keep them all rigidly coupled all the time. In 
addition to the RPLiDAR sensors, this system is equipped with 
an MS Kinect v1 depth camera, mainly used to enrich the point 
cloud with further dense points. It is mounted on a plate vertically 
separated by 124 cm from the horizontal LiDAR, facing forward 
to the direction of movement. All the sensors are mounted on a 
moving cart with omnidirectional wheels for smooth 
manoeuvrability in tight spaces.  
 
The only sensor that requires an external power supply is the 
Kinect. That is why a battery is attached to the cart to power up 
the Kinect depth camera. In contrast, RPLiDAR and 
PhidsgetSpatial sensors get the required power from the 
operating computer USB ports. Finally, the screen faces 
backward to give a good viewpoint to the system operator to 
monitor the data streams and the real-time mapping processes 
during the data acquisition time. 

 

Figure 1. The Overall System Design 
 
The overall software architecture for the system is shown in 
Figure 2. The software design does not require any external time 
synchronization. Every sensor gets its data time-stamped by the 
operating system as soon as it is acknowledged on the 
communication interface of ROS.  
 
A dedicated driver is pre-installed on ROS to establish 
communication with every sensor and stream the data within 
ROS in a standard message format. 

 
Figure 2. The Overall Software Architecture  

 
Every standard message is broadcasted on ROS on a unique topic 
to ease the process of receiving those messages from the listeners. 
The listeners are software packages or ROS nodes waiting for the 
sensor data to implement their routines and perform real-time 
processing. One of the critical listeners in this system is Google 
Cartographer, the software package responsible for gathering the 
sensor data and implementing the SLAM method in real time to 
estimate the position and orientation, AKA—pose of the sensors 
and the moving platform.  
 
Google Cartographer broadcasts the pose of the sensors and a 2D 
map in real-time on three topics in the red dotted box named 
“output topics” in Figure 2. A real-time map viewer listens to 
those output topics to instantly display the map and trajectory. 
This map viewer is a built-in software package in ROS called 
Rviz. To further process the data offline and produce a complete 
3D map which is the Point cloud, all the raw sensor data are saved 
in a particular file format named Bag file, where ROS can store 
a massive amount of sensor data and access them efficiently at 
any time.  
 
In addition, all the poses are exported at the end of the SLAM 
process in a PBStream format to be used in georeferencing the 
sensor data and building the final point cloud data. 
 

3. Frames of Reference 

This section illustrates the georeferencing through Equation 1 
and Equation 2 for the two Lidar sensors. Any vector in this 
equation system represents a 3D coordinate in one of the frames 
of reference. Any vector with a subscript only represents 3D 
coordinates in a particular frame defined by the subscript. Any 
vector with both superscript and subscript represents a shift from 
the subscript frame to the superscript frame. Any Rotation matrix 
(R) is a right-handed rotation matric from the subscript frame to 
the superscript frame (Velas et al., 2019). 
 
The system includes five sensors and nine frames of reference, as 
shown in Figure 3. The base_link is the reference frame, a virtual 
static frame attached to the moving platform where the x-axis 
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looks forward, the y-axis is to the left, and the z-axis is in the up 
direction. laser0 is coaligned with base_link, and all the 
transformation parameters between laser0 and the reference 
frame are set to zero. 
 

 
Figure 3. Frames of References 

 
The laser0, imu_link, and camera_link frames are all related to 
the base_link frame by applying the measured transformation 
parameters, including translation in the reference frame in the x, 
y, and z directions. Also, it includes the rotation angles, roll, 
pitch, and yaw to rotate every child frame to the parent frame. 
 
Table 1 illustrates all the translation and rotation parameters to 
transform from one frame to the other. Kinect OpenNI ROS 
driver publishes the transformation parameters for 
camera_depth_frame, camera_rgb_frame, 
camera_optical_depth_frame, and camera_optical_rgb_frame, 
which are provided by the sensor manufacturer and never change 
since they represent the internal architecture of the sensors. In 
contrast, all the other frames' transformation parameters are 
measured and adjusted by co-registering the sensor data and 
trying and co-aligning the different sensors' data. 

 
Table 1. System Translation and Rotation Parameters 

 

 
Equation 1. Georeferencing of Horizontal Lidar 

 
Equation 2. Georeferencing of Vertical Lidar 

 
4. System Validation Methodology 

To implement the system validation, the developed workflow 
shown in Figure 4 was followed. 

 
Figure 4. System Validation Workflow 

 
First, Google Cartographer used the configuration file to receive 
a stream of the horizontal LiDAR scans and the IMU raw 
measurements during the data acquisition time. The proposed 
Google Cartographer workflow is used to generate the SLAM 
trajectory, including the platform sensors' position and 
orientation. In the post-processing phase, all the range data, 
including those generated from the LiDAR sensors and the data 
from Microsoft Kinect, were georeferenced. Once the final point 
cloud is generated from the Google Cartographer asset writer 
routine, the validation and verification process can be initiated 
(Sammartano and Spanò, 2018).  
 
A reference LiDAR data is compared with the system point cloud 
and evaluates the system's LiDAR data outcomes. To begin the 
comparison process, survey-grade TLS LiDAR equipment 
manufactured by Teledyne Optech, namely “Polaris,” was used 
to collect multiple static LiDAR scans at different locations in the 
selected site for validation. Then the TLS scans were precisely 
registered starting with a feature-based registration followed by 
an ICP registration and bundle adjustment (Pomerleau et al., 
2013). 
 
The output of the TLS scan registration is a single reference point 
cloud that will be used as benchmark data with the proposed 
system output point cloud. The reference LiDAR data and the 
proposed system point cloud must be georeferenced to the same 
coordinate system. Once the data is aligned correctly, the next 
step is to evaluate the differences between the two point clouds. 
 
The selected site for the system validation is the 3rd floor of the 
Monetary Times building at Toronto Metropolitan University. 
Figure 5 depicts the validation site with the locations of the TLS- 
stations to collect the reference dataset. The overlap between the 
terrestrial LiDAR stations refers to the extent to which the 
measurements taken at different stations cover the same area on 
the ground. This overlap is significant because it creates a more 
detailed and accurate reference point cloud to be compared with 
the proposed system’s point cloud 
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Figure 5. Margin settings for A4 size paper 
 
Teledyne AtlaScan is a powerful software suite that processes 
and analyzes LiDAR survey data collected by the Teledyne 
Optech Polaris TLS. This research work leverages AtlaScan 
based on (Li et al., 2021) to carry out the following processing 
tasks to register the TLS scan precisely and establish a single 
reference point cloud:  
 

i. Preprocessing: filters noise, removes outliers, and 
computes normal vectors. 
 
ii. Coarse Registration: computes a rough alignment between 
the imported models. 
 
iii. ICP Registration: refines the alignment between any two 
point clouds  
 
iv. Bundle Adjustment: refines the alignment between all the 
point clouds The ICP algorithm works by iteratively 
minimizing the difference between two point clouds to find 
the best alignment of the point clouds.  

 
The algorithm then uses corresponding points to compute a 
transformation that aligns the two point clouds as depicted in 
Figure 6. 

 
Figure 6. Point Clouds Registration 

To collect a system validation dataset, the system platform was 
moved slowly and steadily to scan the whole 3rd-floor hallways 
of the Monetary Times Building, and took 12 minutes to cover 
two hallways one is 27 meters and the other is 7 meters long, and 
both hallways width is 3 meters width. A one-long loop trajectory 
was materialized, and then the cart was held standstill at the loop 
closure point to let the system optimize the trajectory and the 
submaps using the Global SLAM optimization algorithm of 
Google Cartographer. 
 

 
Figure 7. Real-time Generated 2D SLAM Map 

Figure 7 depicts the real-time generated 2D map of the collected 
data of the horizontal sensor along with the trajectory and the 
origin of each submap. The optimized trajectory has to be 
exported in a standard Google Cartographer PBStream file to be 
combined with the raw sensor data and generate the final 
georeferenced point cloud. 
 

5. Experimental Setup and Results 

5.1 The Georeferenced System Data 

The final point cloud was built using the adjusted trajectory 
information and the raw sensor data. It was also claimed that the 
primary purpose of MS Kinect is to densify the point cloud and 
fill any gaps in the Lidar data. To visually interpret the added 
value of using MS Kinect, the final point cloud was generated 
once without Kinect data, shown in Figure 8; and another point 
cloud was generated with Kinect data included, as shown in 
Figure 9. 
 

 
Figure 8. System Point Cloud without Kinect Data 

 
Figure 9. System Point Cloud with Kinect Data 

 
 
5.2 Preparing the Reference TLS Scans for Validation 

To generate a single referenced point cloud to benchmark the 
system, seven TLS scans have been collected using Teledyne 
Optech Polaris at different locations to cover the entire 3rd floor 
of the MON building at TMU. Figure 10 depicts the individual 
scans collected and viewed by the reflected intensity of the 
returned signals; most importantly, these scans must be 
overlapped to ensure the success of the registration process. 
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Figure 10. Individual TLS Reference Scans 

Once the bundle adjustment process is done on Atlascan 
software, the adjusted relative position and orientation of each 
TLS scan are saved and appended to each scan metadata, as 
shown in Table  
 

 
Table 2. Adjusted Position and Orientation of TLS scans 

After tuning the necessary translation and rotation transformation 
parameters to co-register each scan with the reference scan, the 
individual scans were transformed and georeferenced relative to 
the coordinate system of the reference scan. The outcome of this 
process is a homogeneous, consistent reference point cloud 
where the registration error did not exceed 4 mm across the seven 
TLS scans.  
 
Figure 11 illustrates the registered TLS scans in a single 
consolidated reference scan. Each scan was given a unique colour 
to give a better visual interpretation. 
 

 
Figure 11. Co-registered TLS Reference Scans 

 
5.3 Registration of the System Point Cloud to the Reference 
Scan Data 

The final step before validating and comparing the system data 
versus the reference data is to coregister both data in the same 
coordinate system. Teledyne Optech AtlaScan was used again to 
do the job through the ICP registration process to resolve the best 
estimate for translation and rotation to transform the system scan 
in the reference scan’s coordinate system. The ICP results 
showed a mean registration error between the point pairs of 2 cm. 

 
6. Experimental Results 

The system benchmarking was performed by analysing the point 
density, accuracy, distribution, and point cloud data profiling. 
Although the TLS reference scans are very consistent and were 
precisely registered, it is essential to note that the reference data 
has some data gaps in circular shapes, as shown in Figure 12 (a).  
 
This is because the reference TLS LiDAR sensor cannot detect 
targets closer than 1.5 meters from the sensor head due to the 
saturation of the optical detector. Additionally, the system's point 
cloud shown in Figure 12 (b) exhibits a fixed pattern of points in 
light blue due to the presence of a computer shelf on the moving 
platform in the field of view of the LiDAR sensors during the 
entire data collection period. This results in the point cloud 
having an almost aligned pattern with the entire dataset's 
trajectory. 
 

 
Figure 12. Margin settings for A4 size paper 

The point distribution refers to the pattern in which the laser 
pulses are emitted and how they are distributed across the area 
being scanned. A consistent point distribution ensures that the 
resulting point cloud is dense and has a uniform coverage of 
points across the entire area, ensuring that no areas are missed or 
under-sampled.  
 
The reference point cloud data was found to be very consistent 
and well distributed except for the circular gaps in the data due 
to the sensor characteristics. On the other side, the system point 
cloud is well-distributed across the environment and does not 
show any data gaps; however, due to the nature of a typical 
mobile mapping system, the density is not as consistent as in the 
reference dataset. 
The second aspect of benchmarking is built on interpreting the 
system data resolution. In general, higher-resolution LiDAR data 
has a more significant number of points and a higher level of 
detail, while lower-resolution LiDAR data has fewer points and 
less detail. Figure 13 (a) shows the data resolution obtained from 
one of the walls, and it depicts all the texture and features on the 
wall, including windows and doors, and all the bare spots look 
consistent and homogeneous.  
 
Figure 13 (b) illustrates the resolution obtained from the system 
data. The level of detail is very close to the reference data, so all 
the features are clear enough to be distinguished. However, the 
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sharpness of the features is weaker than the reference data 
because the reference data features higher density and collects 
more points per square unit.  

 
Figure 13. System versus Reference Data Resolution 

The third aspect of benchmarking and validating the system data 
is a comparison based on the data density. Intuitively, the 
reference data features a higher point density than the reference 
data since it combines static scans. In each static scan, the LiDAR 
sensor is placed on a tripod and slowly rotates 360 degrees 
around its vertical axis while collecting data. This process takes 
a few minutes to complete and results in a high density of points 
in the point cloud, which is more than any mobile system could 
collect by scanning the same environment. 
 
Figure 14 compares the system and reference data in terms of 
density. The system data has a maximum point density of 14,000 
points per square meter, while the reference data has a maximum 
point density of 916,000 points per square meter. The reference 
data exhibits high-density metrics in red on almost all the walls. 
That contrasts the system data, which has only a few red spots 
and the remaining points in the yellow to blue shade, indicating 
a lower point density. These results show that the reference data 
has a much higher point density and more accurate environment 
representation than the system data. 
 
 
 

 
 

 
Figure 14. System and Reference Data Density Comparison 

 
The fourth aspect of benchmarking involved a comparative 
analysis of cross-sections derived from the system data and 
reference data. In total, five cross-section lines were drawn across 
the corridor of the testing data using the Quick Terrain Modeler 
visualization tool. Exemplary cross-sections are presented in 
Figure 15. The examination of these cross-sections revealed that 
the ground and ceiling alignment was consistent, with an average 
misclosure of only 2.5 cm observed across the entire dataset.  
 
Furthermore, additional analysis based on the cross-sections. 
While the reference data featured a wall thickness of 
approximately 1 cm for the data points, the system data depicted 
the same wall with a thickness ranging from 9 to 10 cm. This 
observation suggests that the system data, while relatively 
accurate and detailed, may not match the precision and level of 
detail present in the reference data. In a separate investigation, 
another cross-section of the data was examined. The wall 
thickness, and the system data exhibited variations ranging from 
2.5 to 7 cm while the reference system wall thickness remains the 
same at 1 cm thickness. To conclude, the comparative analysis of 
cross-sections between the system and reference data provides 
insights into the relative accuracy of the system when it is 
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compared to the reference dataset. While the ground and ceiling 
are aligned with a little misclosure, differences in wall 
thicknesses indicate that the reference data, with its higher point 
density, is likely to be more precise and detailed 
 

 
 

 
Figure 15. System and reference Data Cross-sections 

Comparison 
 

7. Discussion 

The results highlighted the impact of MS Kinect data on point 
cloud generation. While the inclusion of MS Kinect data helped 
densify the point cloud, it also introduced noise and mechanical 
instability, affecting the quality of the resulting point cloud. The 
decision to conduct benchmarking and analysis using the point 
cloud generated solely from dual Lidar sensors is a pragmatic 
choice given these factors.  
 
The reference TLS scans served as a vital reference dataset for 
benchmarking. The registration of these scans was successful, as 
evidenced by the low RMSE errors. This consistent reference 
point cloud was used as a baseline for comparison with the 
system-generated point cloud. The coregistration of the system 
and reference data was accomplished through the ICP registration 
process, which resulted in a mean registration error of 2 cm. This 
suggests an accurate coregistration process.  
 
The examination of point distribution revealed that the reference 
data exhibited a consistent and well-distributed pattern, except 
for circular gaps caused by sensor limitations. In contrast, the 
proposed system point cloud did not show data gaps, but its 
density was less consistent compared to the reference dataset. 
Regarding data resolution, both the system and reference data 
exhibited clear features and details. However, the reference data, 
with its higher point density, provided sharper features. 
 
One of the significant findings was related to data density. The 
reference data boasted significantly higher point density 
compared to the system data. This high point density in the 

reference data is vital for creating detailed 3D models and 
analysing small features or details in the environment.  
 
The cross-section analysis revealed consistent ground and ceiling 
alignment with minimal misclosure. However, the system data 
exhibited variations in wall thickness compared to the reference 
data. This observation suggests that while the system data is 
relatively accurate and detailed, it may not match the precision 
and level of detail present in the reference data. 
 
To sum up, the results demonstrate that proposed system can 
generate a point cloud suitable for various applications. The 
choice between using the system-generated data may depend on 
the specific project requirements. It's essential to consider the 
quality and characteristics of the data source when conducting 
geospatial data analysis and mapping tasks. Due to the low-cost 
sensors' accuracy and the noise inherited in those sensors, the 
system is recommended to be used in some applications that 
don’t require high accuracy but require prompt and instant data 
generation such as emergency response applications and disaster 
management. 
 
A comprehensive comparison of the developed low-cost indoor 
mapping system against existing solutions available is presented. 
The objective is to evaluate the unique features and advantages 
of the developed system, particularly in the context of its 
lightweight, compact design, instant real-time processing 
capability, cost-effectiveness, and suitability for mass production 
for applications such as first responders and other emergency and 
commercial uses. 
 
Lightweight and Compact Design: The developed system boasts 
a lightweight and compact design, ensuring easy integration into 
various vehicles and equipment. This feature enhances its 
portability and versatility, making it suitable for a wide range of 
applications such as underground/indoor search and rescue. 
While some market competitors may offer compact solutions, the 
developed system's emphasis on lightweight design sets it apart, 
allowing for deployment and operation in smaller, more agile 
vehicles and tight indoor spaces.  
 
Real-Time Processing: A notable highlight of the proposed 
system is its capacity to perform real-time data processing, 
delivering instantaneous positioning and mapping outcomes. 
This feature proves particularly in scenarios where rapid 
decisionmaking is of utmost importance. Only a limited subset of 
existing systems provides real-time data acquisition capabilities. 
However, these solutions often demand substantial 
computational resources, whereas the developed system achieves 
realtime functionality with standard computer processing 
capacity. 
 
Cost-Effectiveness and Mass Production: The proposed system 
is designed with cost effectiveness in mind, making it an 
attractive choice for mass production. This affordability factor is 
especially significant for applications involving first responders 
and commercial uses, where cost considerations play a crucial 
role. Some existing systems in the market can be cost-prohibitive 
due to their high-end features and pricing structures. The 
developed system's affordability and scalability position it 
favourably for widespread adoption and deployment.  
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8. Conclusion 

This low-cost indoor mapping system was devised to tackle the 
challenges associated with capturing precise and comprehensive 
spatial data within intricate and confined indoor environments. 
The significance of the system lies in its lightweight and compact 
design, real-time data processing capabilities, and cost-
effectiveness. These features distinguish it from existing 
solutions and position it as a compelling choice for situations 
where expeditious decision-making is of paramount importance. 
 
The system's capability to gather spatial data in confined spaces 
holds immense value, particularly for applications in first 
responder scenarios, where rapid decision-making is imperative. 
As technology continues to progress, the compactness of the 
proposed system is anticipated to evolve further, enhancing its 
practicality for field tests across diverse scenarios. The real-time 
data processing capabilities constitute another critical feature. 
These capabilities bolster its appeal for scenarios where 
expeditious data acquisition and decision support are necessary.  
 
In emergency response situations, first responders rely on real-
time information to make critical decisions that can impact lives 
and property. The real-time processing capacity positions as an 
invaluable tool in such contexts. While acknowledging the 
strengths of the system it is equally imperative to recognize its 
limitations. The system's performance may exhibit variability 
across different indoor environments, prompting a 
recommendation for further evaluation in diverse settings as part 
of future work.  
 
Ongoing advancements in sensor technology may influence the 
system's capabilities and cost-effectiveness, necessitating 
continual updates and enhancements. The systematic evaluation 
of the proposed system as detailed through the comprehensive 
benchmarking and analysis, provides valuable insights into the 
system's performance and the implications for geospatial data 
applications.  
 
Nevertheless, the reference data in this research, boasting 
superior point density, yielded sharper and more precise feature 
representations. Of note, the research highlighted the significant 
disparity in point density between the reference data with a 
maximum density of 916,000 points per square meter and the 
system data with a maximum density of 14,000 points per square 
meter, with the former substantially outperforming the latter in 
this regard.  
 
The reference stations collected from a static LiDAR and the time 
taken to collect and process the data is almost 10 times the time 
taken to collect and process the data by the proposed system. The 
Cross-sectional Analysis: It revealed that ground and ceiling 
alignment between the system and reference data was 
commendably consistent, with minimal misclosure, averaging 
only 2.5 cm. However, variability in wall thickness was observed 
in the system data when compared to the reference data, 
potentially signifying discrepancies in precision and level of 
detail.  
 
In essence, this research underscores the importance of 
considering sensor integration and data quality in geospatial data 
acquisition. By shedding light on the trade-offs between different 
sensor configurations and their impact on data quality. Also, this 
research contributes to a deeper understanding of the choices 
available when selecting technology for specific applications. It 
underscores that achieving the right balance between cost, data 
quality, and real-time capabilities is essential for the successful 

deployment of geospatial systems. As technology advances, the 
prospects for geospatial data acquisition are boundless. The tools 
and methodologies developed here serve as a testament to the 
potential for innovation and the pursuit of efficiency in this 
critical field. 
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