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Abstract 
Autonomous mobile robotic solutions are increasingly being explored in precision agriculture to aid human workers in labour-intensive 
or repetitive tasks. Moreover, the emergence of foundation models in vision-based AI domain presents an opportunity to perform 
automated interpretation of in-field collected data. This study presents a cost-effective mobile robotic research platform designed for 
autonomous vineyard inspection: it integrates mission planning, real-world navigation and a post-processing pipeline of multimodal 
data. The system, based on the Leo rover, is equipped with LiDAR, RGB cameras and GNSS-visual-inertial positioning, ensuring 
reliable operation in GNSS-degraded vineyard environments. We propose a novel methodology for automating several stages of the 
workflow using various open and in-situ collected data. The robotic platform and processing pipeline were validated through simulation 
and field experiments, demonstrating its capability for autonomous navigation, 3D reconstruction, AI-based fruit detection and an 
initial plant health assessment through Large Multimodal Models (LMM). Results show that while 3D mapping provides high-
resolution spatial data, AI-driven object detection and vision models require further domain adaptation for reaching reliable and 
trustable operation. The study highlights the feasibility of cost-effective mobile robotic solutions in vineyard monitoring and the 
potential of integrating AI to enhance agricultural automation. 
 

1. Introduction 

The agricultural sector represents a highly promising domain for 
the deployment of mobile robotic systems, particularly due to the 
scale and repetitive nature of farming operations throughout the 
year (Gao et al., 2018; Hrabar et al, 2021). These characteristics 
create significant potential for reducing manual labour through 
autonomous robotic solutions. In many agricultural 
environments, with unobstructed sky, it is possible to boost 
automation with Unmanned Aerial Vehicles (UAVs) and ground-
based robots, that can fully rely on Global Navigation Satellite 
System (GNSS) positioning for navigation and task execution. 
Current robotic technologies already deliver robust solutions for 
applications such as e.g., precision plant spraying and large-scale 
remote sensing monitoring (Neupane and Baysal-Gurel, 2021; 
Hanif et al., 2022; Di Gennaro 2023; Wang et al., 2024).  
However, certain agricultural tasks, particularly those requiring 
close-proximity inspection, centimeter-level high spatial 
resolution data or physical interaction, demand higher levels of 
positioning precision and reliability (Liu and Liu, 2024). 
Achieving these capabilities often necessitates the integration of 
additional sensors to compensate for the limitations of GNSS-
based systems, particularly in complex environments. Such 
challenging conditions can be found in pergola or guyot vineyard 
cultivations, where dense grapevine foliage forms archways that 
degrade the quality of GNSS signals, making global positioning 
systems unreliable. 
At the same time, the production of high-quality wine grapes 
relies on frequent and detailed inspections to monitor plant 
growth and detect early signs of disease or damage. Timely and 
accurate detection is critical for maintaining crop health and 
ensuring optimal yield. Autonomous mobile robots capable of 
operating effectively in partially GNSS-denied, natural 
environments offer a compelling solution to this challenge 
(Fasiolo et al., 2023). By leveraging intelligent mission planning, 
3D mapping technologies and artificial intelligence (AI)-assisted 
image analysis (Mendes et al., 2022), robotics solutions can 
support efficient inspections and management of vineyards, 
addressing the precision requirements and adaptability needed 
for such tasks (Hrabar et al., 2021; Izquierdo-Bueno et al., 2024). 

 
1 https://www.leorover.tech/ 

In recent years, mobile robotics applications specifically 
targeting ground-based applications in the vineyards started to 
appear, showing growing affordability and feasibility of 
employing autonomous solutions in these settings. Many of these 
scientific works leveraged the advantages of AI methods and 3D 
measurements. A study by Roure et al. (2018) presented a mobile 
robot designed to distribute pheromone dispensers in the spring 
across the vineyard, focusing also on a low-cost positioning 
solutions dedicated for the vineyard setting. Their lesson learnt 
reported the importance of dense 3D reconstruction of grapevines 
(Roure et al., 2020). Similarly, Williams et al. (2023) investigated 
stereo-based 3D reconstruction of plants in a vineyard, jointly 
with deep learning methods for panoptic segmentation, to 
perform autonomous cane pruning. Iberraken et al. (2022) 
presented a high-resolution 3D digitization of a real vineyard, 
acting as a very realistic simulation environment in Gazebo to 
develop and test a novel navigation approach for vineyard 
monitoring robots. Lastly, Stavridis et al. (2024) proposed two 
separate mobile robotic platforms, enabling autonomous 
execution of tasks related to inspection or harvesting, 
respectively. Although presenting impressive abilities, such 
advanced and complex solution required on-board employment 
costly hardware, like manipulators and hyperspectral cameras, 
limiting its applicability on a large scale. 
 
1.1 Aim of the work 

In this work, we present an in-house assembled ground mobile 
robotic platform, based on the Leo rover1, for autonomous 3D 
mapping and AI-assisted inspection of vineyards. We focus on 
automation capabilities in different stages of the proposed 
framework: from the mission planning (before entering the field), 
through verification in the simulation, to autonomous mission in 
real outdoor conditions and post-processing of the acquired 
image and LiDAR data. Our aim is to demonstrate how, and to 
what extent, current state-of-the-art methods from robotics, 
computer science and geomatics communities are ready to be 
integrated into a unique and reliable framework able to: 
• support the planning, testing and deployment of a robotic 

platform in real use-case scenarios for 3D mapping purposes; 
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• enable periodic autonomous monitoring of agricultural 
environments; 

• provide AI-based data interpretation to support human experts 
in automatically identifying relevant location with potential 
issues (e.g. diseases). 

We propose a cost-effective framework to support these 
challenging tasks and we demonstrated it in a test site in Trento, 
Italy. With respect to the literature, our work presents: 
• a technology integration on a low-cost robotic platform, 

including real-time navigation and obstacle avoidance;  
• tests of AI components on autonomously acquired data in the 

field to support decision-making. 
Therefore this study exhibits a range of robotic and AI-driven 
solutions with potential applications in vineyard management, 
including fruit detection and mapping, 3D digital twin creation 
and vision-based inspection. The ultimate goal of the proposed 
framework is not to replace qualified human experts in the field 
but to optimize and support their workflow by automating non-
critical, repetitive tasks, in an effort to finally enhance efficiency 
in vineyard monitoring and management. 
 

2. Multi-sensor mobile robotic research platform  

The proposed robotic solution is based on a wheeled rover Leo, 
equipped with sensors selected specifically for such task (Figure 
1). The small size of the robot (a footprint of approx. 0.5 x 0.5 m) 
allows it to traverse the field with minimal impact on the 
surroundings and manoeuvre easily even in narrow lanes, still 
allowing a good payload.  The sensors carried by the rover 
includes: a MandEye device (3D Livox LiDAR with an 
integrated IMU; Będkowski, 2024), a 2D laser scanner RPLidar 
A2, two RGB cameras, a RGB-D Intel RealSense D435i sensor 
and a Fixposition Vision-RTK22 global positioning system 
(internally fusing GNSS, inertial and visual data). 
 

  
Figure 1. The FBK-3DOM mobile robot Leo in the field with 
its sensors. 

 
These sensors enable acquiring different types of data for various, 
dedicated purposes, optimizing the needs of the mission and the 
limited real-time computational capability. Namely, the 3D 
LiDAR data is used only in post-processing for obtaining a dense 
point cloud of the surveyed site, as the Fixposition sensor already 
provides a reliable positioning solution for real-time navigation. 
On the other hand, the 2D laser scanner and depth camera are 
used for onboard real-time obstacle avoidance as they are less 
suitable for high-quality 3D mapping (and their data are not 
stored on the robot). Finally, images from the two RGB cameras 
pointing forward are used in the post-processing stage for object 
detection and Large Multimodal Models (LMM) queries.  
 

3. Methodology for autonomous vineyard inspection 

3.1 Mission planning 

In general, mobile inspection tasks are expected to be repeatable 
to allow capturing the data in a similar manner, in turn helping to 

 
2 https://www.fixposition.com/pages/our-product  

establish the data associations between different epochs (Maset 
et al., 2022). Due to that, the mission trajectory should be planned 
beforehand, in contrast to free autonomous exploration approach, 
to yield more predictable, consistent results and optimize the 
execution time. Moreover, the planning phase can be 
automatized, utilizing remote sensing data.  
Because of that, we extended and modified the method of 
Hassanein et al. (2019) for crop row detection in UAV imagery. 
The proposed method is used to compute a general path that goes 
across all the vineyard lanes in the geofenced area. For the robot, 
this path, consisting of waypoints defined by geographical 
coordinates, will constitute a global plan, that it is supposed to 
roughly follow. During the mission execution, the local planner 
is used to actively control the short-term robot motion, detecting 
obstacles in the vicinity of the robot.  
The described mission planning method is designed to work well 
on a wide range of typical vineyard layouts. As input data, we use 
a georeferenced RGBI aerial orthoimage of the area, in addition 
to the user-defined geofence of the field. The first step is the 
detection of the average azimuthal angle of the lanes in the image. 
A small vertical section of the image, of a width similar to the 
expected row width, is rotated and analysed for every candidate 
angle; a step of 0.25° was empirically found to yield good results 
for vineyards with an area below ca. 10 km2. 
For every section, a Principal Component Analysis (PCA) of the 
raster values is performed on the greyscale image strip to identify 
the optimal rotation angle through calculating two first principal 
components. Several PCA strategies were considered. The sum 
of the principal components was found to be the strongest 
indicator for a cross-section not representing a line; the variance 
is excessively noisy on some fields. The second principal 
component often manifests sinusoidal shapes that conflicts with 
the peaks at the row inclination angle. Thus, the angle with the 
lowest sum of principal components is taken as the main azimuth 
of the grapevine rows. An example comparison of those 
indicators is presented in Figure 2. 
 

 
Figure 2. Different variance indicators in the data for detecting 
the field image rotation angle. The minimum of the sum of 
principal components is shown as a red vertical line. 

 
The next step involves detecting grapevine rows’ locations. 
Using the computed azimuthal angle, the image is rotated to align 
the plant rows to appear vertical in the rotated image. Then, for 
every column, a mean NDVI value is computed. In this step, we 
use an NDVI raster, calculated using an RGBI orthophoto, as it 
gave clearer results across different tested vineyards designs and 
inclinations. Furthermore, to increase the robustness of the 
method, a two-step refinement procedure is carried out to reduce 
the probability of detecting wrong, doubled lanes, and missing 
correct ones. The peaks above a certain prominence threshold of 
the NVDI are chosen and passed through a simple outlier filter 
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(see Table 1). The filter creates a distribution of all distances 
between rows detected up to the analyzed row. Given this 
distribution, a standard score of the newly calculated distance is 
computed. If it is higher than a predefined threshold (e.g., 2σ), 
the lane position is substituted by the position of the previous lane 
shifted by the median distance between the lanes. Then, the 
empty spaces between the lanes are identified, selecting the 
distances higher than two times the median multiplied by a 
tolerance factor (<1). Those gaps are filled with a lane with a 
distance to the previous one equal to the median distance between 
the lanes. This step is carried out in both directions. In the end, 
the duplicates are removed considering as duplicate lanes the 
ones that have a distance lower than the median distance 
multiplied by the tolerance factor. The process is repeated 
iteratively until no more changes can be made. 
Finally, having obtained the georeferenced line equations, they 
are intersected with the geofencing polygon. The points of 
intersections, taken in an alternating way between northmost and 
southmost points for each subsequent line, define a global 
inspection path for the robot. 
 
3.2 In-field inspection 

Preparing the complete software stack for an autonomous mobile 
robot, despite utilizing many off-the-shelf components available 
in the Robot Operating System (ROS) environment, is a complex 
process that requires extensive testing, particularly time-
consuming when conducted in real-world environments. To limit 
the time spent in the field, the development and testing processes 
can be greatly simplified and speeded up with a faithful 
simulation of the use case environment. For this purpose, we 
adopted an open-source Gazebo world of a vineyard (Hroob et 
al., 2021) with our simulated Leo rover. 
Through this software and our configuration, all onboard sensors 
(excluding the 3D scanner, which acquires and stores the data 
independently) are simulated and seamlessly interact with the 
running robot software. The sensors output is computed in the 
simulation world and then modified adding some noise. Within 
the developed simulation environment, different algorithms and 
approaches for navigation and mapping were tested, to finally 
develop a use case specific robot configuration.  
This setup was specifically tailored to our needs, i.e. a mobile 
robot with low processing power that can navigate through 
uneven outdoor terrain. As the precise, large-scale consistent 3D 
mapping and navigation would greatly increase the complexity 
and require much more computational power, we decided it was 
not feasible to run it online on the rover. Thus, we exploited the 
features of the standard 2D ROS navigation stack to obtain 
a lightweight and simple yet effective setup. 
Leveraging the combination of precise 3D localization from the 
Vision-RTK2 sensor and 3D point clouds from the RealSense 
camera, a 3D obstacle map was created with a consistency and 
resolution enabling successful navigation. For this step, we used 
a spatio-temporal-voxel-layer (Macenski et al., 2020), as it is 
specifically designed to efficiently save 3D data and build a 2D 
map from them. Instead of using a full SLAM solution for the 
map refinement, we utilized only the pose from the Vision-RTK2 
as the single source of pose estimates. The spatio-temporal-
voxel-layer simply projects the point cloud data from the 2D laser 
scanner and the RealSense, filtered by height to remove the 
ground and the canopy ceiling, into the 3D space to create the 
obstacle map. This map is then used to generate a 2D cost-map 
by projecting occupied voxels onto a planar grid, with gradually 
inflating cost values towards the obstacle locations. 
Since the Vision-RTK2 provides a GNSS-based global 
positioning, rapid shifts can be expected in a situation when the 

high-quality satellite-based position is available after a period of 
dead reckoning based only on inertial and visual data. As this can 
cause issues for the robot control, a pose smoothing is applied to 
remove such sudden pose changes. Effectively, this is done by 
calculating the robot pose in two reference frames: one that 
provides a continuous, smooth trajectory, and its parent, that 
maintains a valid global positioning in relation to the ENU frame. 
The global planner then uses the planar projection of the spatio-
temporal-voxel-layer and the list of waypoints’ UTM coordinates 
as an input to provide a global plan. The plan is then realized by 
the local planner. We selected teb_local_planner (Rösmann et 
al., 2017) due to its suitability for car-like movements, in an 
Ackermann steering scheme. It is worth notice that such planner 
improves the robot performance in our scenario of carrying out 
an inspection mission in an uneven ground environment, as it 
avoids issues with sensor shaking, slippering or temporarily too 
high grip that can be experienced with differential drive planners.  
 
3.3 Data post-processing 

Part of the data collected during the autonomous mission is not 
processed in real-time for the autonomous navigation and 
execution of the mission presented in the previous sections. This 
data is, however, crucial to provide qualitative and quantitative 
insights about the vineyard through AI-assisted methods, and it 
is collected and stored to allow some aspects of the inspection to 
be carried out in post-processing.  
First, the data acquired with MandEye LiDAR sensor are 
processed with a LiDAR-inertial SLAM method, described in 
Trybała et al. (2023). The pose graph-based approach generates 
a dense 3D representation of the vineyard, enabling for example 
volumetric calculations and 3D change detection. Although not 
providing georeferenced results directly, thanks to the time 
synchronization of all sensors on the robot, the trajectory is 
indirectly georeferenced through alignment with the 
georeferenced trajectory generated by Vision-RTK2. Since both 
sensors estimate the robot pose with a high frequency, in metric 
reference frames, the consistency and coherence of positioning 
provided by them is evaluated. As in our experiments no ground 
truth trajectory is available, the deviations in global trajectory and 
relative poses (i.e., differences in subsequent poses reported by 
both systems at the same time) computed independently with 
both devices were analyzed. 
Next, image analysis and object detection methods are 
investigated to identify and localize the fruit growth in the field 
for purposes of inventory and monitoring. YOLO (Redmon et al., 
2016) was employed as one of the state-of-the-art neural 
networks for object detection and capable to achieve both high 
precision and speed in various object detection tasks. Despite its 
age, continuous developments of new YOLO models keep it one 
of the currently best performing methods. For our use case of 
grape detection, we used YOLOv8 (Jocher, 2023). Since in the 
originally released pretrained model grape class does not exist, 
we leveraged transfer learning on our dataset to adapt it for our 
needs. The retraining was performed only on a limited sample of 
the images, captured by the robot in the vineyard with the 
forward-looking cameras. The dataset was then split into train, 
validation and test sets, and the performance evaluation was 
performed only using a dedicated test subset.  
Finally, we deployed a suit of state-of-the-art LMMs on a Jetson 
Orin Nano Super (8GB VRAM) to test the feasibility of using 
them in real time for detecting clues of unhealthy growth of 
grapevines based on the images collected by the robot.   
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Vineyard 
# 

Cropped RGBI 
orthomosaic 

Peaks of mean NVDI values 
per a raster section 

Row width σ 
before 

refinement [m] 

Row width σ 
after 

refinement [m] 

Generated  
mission plan 

1 

 
 

0.97 0.32 

 

2 

  

2.66 0.35 

 

3 

 

 

0.66 0.11 

 
Table 1. The three test cases used to evaluate the proposed mission planning method: employed orthoimage, identified vineyard lanes 
and generated inspection plan. 
 
These clues could include discoloured leaves, dried out fruits, or 
other visual signs of plants’ distress or disease. Due to the 
limitations of the image resolution, the low ground sampling 
distance (GSD) on the grapes and the use of only the general 
knowledge of the models (i.e., employing them as zero-shot 
solutions), only clearly identifiable symptoms were taken into 
account. From a full image sequence in the field, 12 images of 2 
MP resolution were manually selected: 4 without any noticeable 
issues, and 8 with some worrying symptoms. However, due to 
overall good health status of the vineyard, it was not possible to 
test the ability to recognize severe diseases or damages. Thanks 
to the synchronization of the two RGB cameras with the 
continuously geolocalized robot, the LMM solutions have the 
potential to directly provide geographic locations of detected 
signs of degraded plant’s health. Nevertheless, these should 
always be only an indication for a human expert to investigate 
the issues by themselves and make the final verdict.  
In the evaluation phase, different LMMs were evaluated, 
instructing them to detect the issues described above. We finally 
used ollama3, an open-source and user-friendly platform for 
running large language or multimodal models (LLMs/LMMs) 
directly on a local machine. We used low model temperature 
whenever possible (to make the model’s output more 
deterministic and repetitive) and forcing the output to be in JSON 
format with a Boolean classification result. Not significant 
changes to the prompts had to be made to adapt it to specific 
requirements of some models. We ran the inference 10 
independent times for each considered image to take into account 

 
3 https://ollama.com/ 

the randomness of the models. Additionally, we used selected 
commercial, closed-source models to test if there is a noticeable 
difference when offloading the task to a much more complex 
model in an offline manner. These tests, however, were not 
repeated multiple times, thus constitute only a rough indication 
of their performance.  
 

4. Results 

All components were deployed in a single vineyard: from the 
phase of mission planning, through verification in the simulation, 
to mission execution in the field and offline data post-processing. 
The outdoor tests were performed in September 2024.  
Additionally, we validated the mission planning (Section 3.1) on 
two other vineyards of different size and characteristics. 
 
4.1 Mission Planning 

The robot path plan generation was tested on 3 distinct vineyards 
(Table 1) in the Italian Trentino region, where RGBI 
orthoimagery with a 10 cm/px resolution is available4. The first 
analyzed vineyard was selected as a test site for executing the 
actual inspection mission. The second and third cases are 
examples of vineyards of greater size and row width (the former) 
or located on steeper hills and not aligned well with the image 
axes (the latter).  
The proposed method produces consistent and accurate results in 
all examined vineyards with different layouts and sizes. The final 

4 https://www.comune.trento.it/Aree-tematiche/Cartografia 
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refinement enables robustly producing high quality outputs even 
from problematic intermediate results, like the second case study 
in Table 1. Although the refinement step consistently reduces the 
variability of the estimated row widths (i.e., change in standard 
deviation σ values), its effect is most evident in this case, 
reducing the standard deviation over 7 times and adding most of 
the rows missed by the NDVI peak detection process.  
The other noticeable problems are experienced on steep 
vineyards with low sun angle (#3, Table 1), where the path 
between the lanes is too dark. In some cases, the plant rows can 
be confused with the space between them by the algorithm, 
outputting a path that follows the vines instead of the space 
between them. Using this path in an actual mission might not be 
a critical problem, as the robot’s local planner should adapt the 
actual rover goal trajectory considering actual obstacles, still 
following the inspection pattern. Nevertheless, some of the lanes 
can be skipped and in the worst case only half of the inter-rows 
could be explored. Thus, a further work is needed in 
identification of such cases to correctly disambiguate plant rows 
and inter-row spacing.  
 
4.2 Simulation tests 

The simulated mission was performed in Gazebo environment, 
mimicking the expected real mission procedure. It was especially 
useful for designing and building the ROS transformation frame 
system to ensure reliable positioning and navigation. It involves 
a global geographic reference frame and two navigation reference 
frames, and depending on the node some of them uses one or the 
other. To implement this, we publish the waypoints using UTM 
coordinates. Another node, that stands in between the Vision-
RTK2 driver and the navigation stack, translates the poses from 
the ECEF coordinate system (as provided directly by the Vision-
RTK2), smooths out the pose shifts, and publishes the 
transformations between the frames. 
Simulations proved to be essential for a fast integration testing on 
the different robot modules, especially to select and tune the local 
planner and the cost map layer creation process. The 
visualizations of the simulated mission are presented in Figure 3: 
a) and c) depict the realistic simulation view in Gazebo, b) and d) 
show the actual perception of the rover with the cost-maps and 
the travelled trajectory. 
 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 3. Inspection simulation: Gazebo environment (a) and the 
live data view (global voxel cost-map in grey, its planar 
projection in colors from pink to violet) (b). Corresponding top 
views of the Gazebo environment (c) and the cost-map, with a 
trajectory in red (d). 
 
4.3 Test mission execution 

The simulated robot configuration (sensors and algorithms) was 
then deployed in the field. The study site is a vineyard with long 

(approx. 100 m) and wide (approx. 4 m) lanes, located on a 
slightly inclined hill in Trento, Northern Italy. The mission was 
performed in bright and covered sky conditions, with relatively 
low grass and with mature grapes on the vines. The vineyard 
canopy reached ca. 3 m height, creating arches and severely 
covering the lanes from the top, hence significantly obstructing 
satellite view for the GNSS receivers. 
The test mission plan was prepared to inspect 4 lanes of the 
grapevines of approximately 100 m length and was executed 
autonomously by the robot, which correctly executed it and 
returned to the starting point after finishing the plan. Some local 
path deviations were observed, when the robot properly avoided 
small obstacles, such as tall grass patches. The rover maintained 
the expected average speed of around 30 cm/s (with its maximal 
achievable 50 cm/s). Due to this low speed, the full mission 
execution took around 30 minutes. 
 
4.4 Post-processing results 

4.4.1 SLAM-based 3D reconstruction 
The LiDAR-inertial sequence was collected by the MandEye 
sensor, attached to the robot for the autonomously performed 
mission, and processed later in an offline mode. The results 
contained 10 610 frames of the dense pose graph, corresponding 
to a final point cloud size of 81.8M points (Figure 4a). 
A noticeable quality of the produced data is the correlation of 
foliage and fruits locations with the laser beam return intensity 
(Figure 4b), which potentially could later alleviate the 
complexity of their identification in the process of point cloud 
segmentation. 
 

a) 

 

b) 

 
Figure 4. 3D point cloud of the vineyard obtained from a LiDAR-
inertial SLAM: a view from the top, with trajectory in white (a); 
a perspective view with points coloured by laser intensity (b). 
 
In the next step, the trajectory obtained from LiDAR-inertial 
SLAM and Vision-RTK2 systems were compared. Because the 
latter provides georeferenced poses, the LiDAR data was aligned 
to its global coordinate system. A threshold of 0.1s of time 
difference was set for pose timestamp matching. The differences 
of absolute and relative poses were calculated and the 
visualizations of the results are plotted in Figures 5 and 6. As seen 
in Figure 6, both systems provided reliable and highly coherent 
trajectories. The highest deviations were obtained for the spaces 
in the middle of the vine rows, as expected due to the weak 
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quality of GNSS signal, affecting Vision-RTK2, and high 
repeatability and linearity of structures seen by the LiDAR. 
Nonetheless, neither the mean average difference of absolute 
poses equal to 29 cm nor the mean relative pose difference of 
5 cm negatively impacted the reliability of robot’s positioning or 
the quality of the provided 3D data. 
 

 
Figure 5. Top view of the trajectory from LiDAR-inertial 
SLAM (colored by the relative pose deviation) compared 
to GNSS-visual-inertial solution of Fixposition (grey, 
dashed line). 

 

a) 

 

b) 

 
Figure 6. Absolute and relative pose differences between 
LiDAR-inertial SLAM and Vision-RTK2, plotted in time (a) and 
as distributions (b). 
 
4.4.2 Object detection 
The retrained YOLOv8 model was used to detect the location of 
grape bunches. All the data used for the model adaptation was 
collected by the robot during the autonomous mission. Initially, 
we annotated 128 images, that, after data augmentation, 
increased to a total of 236 images. Brightness and rotation were 

applied during the augmentation process. The dataset was split as 
follows: 69% for training, 9% for validation, and 22% for testing. 
The best performance was achieved at 200 epochs of training, 
with a recall of 55.2%, precision of 51.1%, and a mean average 
precision (mAP) of 57.3%. According to the testing results 
(Figure 7), the model demonstrated higher accuracy in detecting 
grapes at closer distances compared to those farther away. 
Qualitatively judging the detection results, the object detection in 
the foreground worked to a satisfactory extent. Therefore, we 
plan to further address this issue in future studies, using 
a dedicated, higher resolution camera for grape detection and 
monitoring. 
 

a) 

 

b) 

 
Figure 7. YOLO-based model detections of grape bunches (in 
blue, with confidence scores). 
 

a) 

 

b) 

 
Figure 8. Examples of LMM input images: with only healthy 
growth (a) and symptomatic plants, namely yellow and brown 
leaves (b). 
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4.4.3 LMM-based anomaly detection 
Using the same dataset of images as for the object detection, we 
performed the test of vision AI model capabilities at a higher 
abstraction level. We selected 4 open-source models for the tests: 
MiniCPM-V 2.6 (Yao et al., 2024), VILA1.5 8B (Lin et al., 
2024), Llava 7B (Liu et al., 2024) and Llama3.2-vision 11B 
(Meta, 2024). All models were fed by 12 images, selected as 
clearest examples of two classes: healthy and symptomatic 
plants. The models’ task was to identify any visible symptoms of 
possible improper grapevine growth, and flag images for which 
they were sure such symptoms are clearly present. Each image 
was processed independently 10 times to reduce the influence of 
model output randomness on the results. The example images 
from a negative and positive sample can be seen in Figure 8.  
The details of the results, shown in Figure 9, clearly indicate 
a high complexity of the task and generally inconsistent 
performance of all models. These are further backed by the 
statistics, outlined in Table 2. Although the feasibility of 
deploying these models locally, on the edge device directly on a 
mobile robot, is quite high. Apart from the largest tested model, 
llama3.2-vision, all models were able to process the image within 
a few seconds, generating more than 1 token per second. 
However, models often struggled to correctly follow the prompt 
and enforced output format. 
The final verdict on the accuracy of the symptomatic plant 
detection is inconclusive. MiniCPM-V 2.6 achieved the highest 
recall, but more frequently reported false positives. All other 
examined models obtained similar, low accuracy ca. 55%, with 
Llama3.2-vision obtaining distinctly higher precision, but lower 
recall. It is clear, that without domain adaptation and additional 
training on highly specific datasets, these models are not ready to 
be deployed in a zero-shot manner in the examined scenario. 
A control, single run of commercial models, resulted in mediocre 
results as well. Large flagship models of the market leaders, such 
as Google Gemini 2.0 Flash and OpenAI Chat-GPT 4o, reached 
accuracy of 75% (correctly classifying 3/4 healthy, 6/8 
symptomatic scenes), and poor 58% (only 1/4 healthy, 6/8 
symptomatic correct detections), respectively. The former can be 
seen as the current best-obtainable baseline of a zero-shot 
method: potentially useful but still leaving large room for 
improvements. 
 

 
Figure 9. Percentages of correct classifications of grapevine 
images by locally deployed LMMs.  

 

Model Precision Recall Accuracy Tokens 
per sec. 

MiniCPM-V 2.6 69% 88% 66% 4 
VILA1.5 8B 68% 60% 54% 16 
Llava 7B 67% 68% 56% 4 
Llama3.2-vision 11B 86% 39% 55% 1 

Table 2. Performance metrics of all tested local LMMs. 

5. Conclusions 

This research presented an approach for using cost-effective 
robotics and AI solutions for autonomous vineyard monitoring 
and inspection. We leveraged on various data sources and 
procedures to provide automated aid in the inspection mission 
plan generation, mission execution, 3D data generation and data 
interpretation. The reported field experiments prove that the 
proposed framework is suitable for successfully performing such 
a mission using a low-cost rover. In turn, it indicates that the 
adoption of such procedures could greatly democratize access to 
similar mobile robotic solutions as reliable and affordable 
platforms for vineyard monitoring. We foresee its applicability 
and readiness especially for application in automated high-
quality visual and 3D data collection. 
The maturity of the tested AI-based components (object detection 
and LMM) greatly varies. It is clear that learning-based methods 
applied in this study need dedicated retraining or other type of 
adaptations to yield results of quality adequate for daily-uses and 
significantly aiding human workers in the vineyard 
environments. However, some of the results show a potential to 
provide meaningful and more accurate output in the near future, 
given the rapid progress of foundation vision-AI models and 
LMMs in recent years, especially if more detailed, domain-
specific datasets would be exploited. An important aspect of our 
feasibility study was to reach good, close-to real-time 
performance of selected open-source LMMs on edge computing 
units, which was demonstrated as shown in Section 4.4.3. 
As future works, we plan to further work on improving accuracy 
and reliability of AI-based methods in the agricultural scenarios 
and with data acquired by a robot in the field. The possibilities of 
providing deeper insights into the vineyard status using 3D data, 
e.g., with semantic segmentation or joint 3D object detection and 
mapping, will be investigated. 
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