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Abstract 

Change detection reveals the shifts in land-use distribution and composition over time, providing valuable insights for urban 
management and socioeconomic analysis. Previous studies have focused primarily on single-modal data like high-resolution remote 
sensing (RS) imagery, overlooking the role of social sensing characteristics in determining urban functional zones (UFZs). In this study, 
we propose a novel multimodal dual-branch change detection (MDB-CD) deep learning framework, for detecting UFZ changes by 
combining RS imagery and social sensing data. It includes the RS-branch and the mobile positioning (MP) branch. For the RS-branch, 
RS imagery provides detailed spatial information about urban transformations; for the MP-branch, MP data as a typical social sensing 
data captures temporal patterns in human mobility, offering insights into functional shifts in urban spaces. By fusing these two 
complementary modalities, our approach allows for a more nuanced detection of urban functional zone changes. Empirical results in 
Shenzhen, China demonstrate that the MDB-CD model significantly outperforms a baseline model trained only on imagery, achieving 
higher overall accuracy (OA) of 0.858 and Kappa coefficients of 0.818 across change detection. Specifically, the model generates an 
OA matrix of UFZ change detection transitions between 2017 and 2019, revealing 81 distinct transitions in UFZs. Notably, the 
integration of MP data proved instrumental in improving the model capturing subtle changes that RS imagery alone could not 
distinguish. An ablation study further highlights the significant accuracy improvements achieved by integrating RS imagery and MP 
data, emphasizing the value of a multimodal approach for detecting UFZ changes. This work highlights the value of incorporating 
social sensing data into urban change detection, offering a robust solution for dynamic urban planning and development.  

1. Introduction

Change detection identifies differences in land-use distribution 
and composition over time, which is crucial for urban 
management and socioeconomic assessment (Viana et al., 2019). 
Detecting changes in urban functional zones (UFZs) can guide 
infrastructure development, optimizing land use and 
environmental protection. With the continuous development of 
world economy and the accelerated pace of urbanization, a large 
amount of land has been continuously developed and 
expropriated, resulting in significant changes in the original land 
cover in a relatively short period of time. The rapid development 
of urbanization and economy has brought a huge demand for 
understanding which UFZs have changed (Rui et al., 2025). 
Therefore, effectively identifying UFZs changes is essential for 
effective urban dynamic management and sustainable 
development. 

Traditional UFZs change detection methods mostly rely on 
remote sensing (RS) imagery. For example, Liu et al. (2023) 
using RS images proposed an attention-based multiscale 
transformer network (AMTNet) that utilized a CNN-transformer 
structure to address the challenges of complex textures and 
seasonal variations. Basavaraju et al. (2022) using bi-temporal 
satellite imagery introduced an urban change detection network 
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(UCDNet) to effectively tackle the challenge of edge 
preservation in urban change detection. Peng et al. (2021) based 
on high-resolution RS datasets developed a novel 
semisupervised convolutional network for change detection 
(SemiCDNet) to mitigate the need for large amounts of labeled 
data. RS data provides valuable physical information about 
UFZs changes, but these single-modal data often fail to 
comprehensively characterize the complex nature of urban 
functional changes. It has limitations in capturing the social and 
mobility aspects of urban spaces change (Rui et al., 2020). 

Multimodal data fusion has shown great potential in various 
urban studies (Du et al., 2024). For instance, Dong et al. (2024) 
proposed a novel framework ChangeCLIP from image-text pairs 
to leverages robust semantic information for change detection. 
Su et al. (2024) combined satellite imagery with points of interest 
(POI) data to improve land use classification accuracy. Qiao et 
al. (2024) introduces an end-to-end deep learning-based 
multisource dynamic fusion network for UFZs identification on 
integrated POI, RS image and building footprint data. However, 
urban functional changes are gradual processes influenced by 
both spatial modifications and shifts in human behavior patterns. 
These studies primarily focus on static data, such as text, POI, 
and building footprint information, while overlooking the 
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influence of human mobility on dynamic transitions in urban 
functions (Fang et al., 2024).  
 
To address these limitations, this study proposes a multimodal 
fusion framework to detect UFZs changes by integrating RS 
images and social sensing data. The framework learns deep 
features from images at the pixel scale while extracting mobility 
change patterns of UFZs through social sensing data at the 
human mobility scale. 
 

2. Study Area and Datasets  

2.1 Study Area 

The study was conducted in Shenzhen, located in southern 
Guangdong Province, China. As the nation's first special 
economic zone, Shenzhen has undergone rapid development 
over the past three decades and now covers approximately 
2,020.5 km²  with a permanent resident population of 17.79 
million. The city was chosen as the study area due to its 
characteristics as a high-density urban environment with 
complex functional zoning, making it an ideal case study for 
examining UFZs dynamics change. The study area is shown in 
Figure 1. 
 

 
Figure 1. Map of the study area 

2.2 Datasets 

The study utilized high-resolution RS imagery from the Gaofen-
2 satellite for 2017 and 2019, with a spatial resolution of 0.9 
meter. These images were labeled and classified according to the 
second national land survey ground truth data into nine 
categories: Water, Agriculture, Greenland, Commercial, 
Industry, Residential, Public, Education, and Transportation. 
The mobile positioning (MP) data provided by China Unicom is 
used to capture human mobility in Shenzhen. This dataset 
captures over 163 thousand records of mobile phone users each 
day for the years 2017 and 2019. The data were sampled at one-
hour intervals, ensuring a fine-grained temporal resolution. Each 
record comprises key attributes, including an anonymized user 
ID, geographic coordinates, and a timestamp. It's worth noting 
that personal information is not recorded to protect private 
privacy. 
 

3. Methods 

The study proposed a novel multimodal dual-branch change 
detection (MDB-CD) deep learning framework, for detecting 
UFZs changes by combining RS imagery and social sensing data. 
The framework consists of a dual-branch architecture that 

processes both the visual and social feature of urban areas. The 
workflow begins with two temporal branch network and each 
network integrates multimodal branches. RS-branch using RS 
imagery provides detailed spatial information and extract visual 
semantic features that represent the physical changes about urban 
transformations. MP-branch using mobile positioning (MP) data 
- a typical social sensing data - captures temporal mobility 
patterns in human mobility, offering insights into functional 
shifts in urban spaces. These two complementary branches are 
then fused to provide a comprehensive characterization of UFZs 
changes. The framework enables a more nuanced understanding 
of urban functional transitions by combining physical spatial 
modifications with dynamic human mobility patterns. This 
integrated approach aims to overcome the limitations of 
traditional single-modal methods and static data. 
 
3.1 Spatial Grid Generation 

To analyze UFZs changes, we conduct a grid-based approach 
using a 500-meter spatial resolution. This grid size is selected to 
balance the granularity of analysis with the characteristics of 
both RS and mobility data. The RS images are first clipped 
according to these 500-meter grid cells, establishing the basic 
spatial units for our analysis. For consistency in data integration, 
we process the MP data using the same spatial grid structure. 
Within each grid cell, we generate statistical summaries of 
human mobility patterns. The processed MP data is stored in a 7-
day, 24-hour, 6-week format, allowing for a comprehensive 
understanding of mobility patterns within each grid. Then the 
MP data records stored in NPY format for efficient data handling 
and subsequent analysis. Through this process, we obtained two 
datasets including 6824 labeled images and mobility records of 
each grid in 2017 and 2019. All of these data categorized into 
one of 9 scene categories for both time periods.  
 
3.2 Multimodal Dual-Branch Fusion 

3.2.1 RS-branch：The study uses the SE-ResNeXt101 structure 
in RS-branch, which excels at extracting detailed visual features 
from RS images (He et al., 2016; Hu et al., 2018). The SE-
ResNeXt101 combines the powerful split-transform-merge 
strategy of ResNeXt with Squeeze-and-Excitation (SE) blocks, 
enabling the model to capture multi-scale spatial patterns and 
contextual information. The SE blocks adaptively recalibrate 
channel-wise feature responses, enhancing the model's ability to 
focus on the most relevant visual changes in the RS imagery. 
This architecture is particularly effective in detecting changes in 
urban environments, where subtle variations in land cover can be 
crucial for understanding urban dynamics. 
 
Initially, the RS images pass through the convolutional layers of 
the pre-trained network, which extract low-level features like 
edges, textures, and shapes. As the network deepens, more 
complex features are captured, such as building outlines, road 
networks, and vegetation patterns. To tailor the network to the 
specific task of RS image analysis, we replace the original 1000-
class classification layer with a custom fully connected layer. 
This layer reduces the dimensionality of the extracted features to 
256. To ensure a consistent input size for the fully connected 
layer, Adaptive Average Pooling is applied to downsample the 
feature maps, making them compatible with the network's final 
layers.  
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Figure 2. Workflow of the proposed multimodal framework. 

 
3.2.2 MP-Branch：The study uses a simplified DPN-26 (Dual 
Path Network) structure in MP-branch, chosen for its ability to 
capture both temporal and spatial patterns in mobility data 
efficiently (Chen et al., 2017). The DPN-26 network leverages 
residual connections and dense connectivity, allowing for 
effective feature reuse and reduced computational costs. This 
branch processes aggregated mobility statistics from each grid 
cell, extracting patterns that reflect human activity and mobility. 
These mobility patterns are essential for detecting changes in 
how people interact with urban spaces, helping to identify shifts 
in functionality and land-use patterns in response to evolving 
human activities. 
 
The raw mobility data first traverses a series of convolutional 
layers that transform initial spatial-temporal traces into 
increasingly abstract representations. The network's innovative 
Bottleneck blocks, characterized by dense connectivity and 
residual connections, progressively distill complex mobility 
patterns across four hierarchical layers. Each convolutional block 
systematically reduces spatial dimensions while expanding 
feature depth, capturing nuanced aspects of human mobility and 
interaction within urban spaces. The initial convolutional layers 
extract basic mobility characteristics, such as mobility frequency 
and density, while deeper layers synthesize more complex 
behavioral patterns. Ultimately, global average pooling 
condenses the extracted features into a compact 64-dimensional 
representation, effectively capturing the essence of human 
mobility dynamics. 
 
3.2.3 Multimodal and Multitemporal Fusion：RS-branch and 
MP-branch independently processes its respective input data—
RS images and mobility data—capturing the learned features 
through the output feature maps. The fusion layer integrates 
multi-modal features from both 2017 and 2019, combining 
information from the RS-branch and MP-branch for each time 
period. This dual-temporal fusion enables the model to compare 
and contrast urban changes over time, with adaptive weighting 
applied to prioritize the most relevant data. By analyzing data 
from these two distinct timestamps, the layer enables 
comprehensive change detection through cross-modal and cross-
temporal integration. In areas with significant physical changes 
detected by RS images, the model gives higher importance to RS 
features, while in regions where mobility patterns shift but 

structural changes are minimal, it emphasizes MP features. This 
adaptive weighting ensures that the most relevant information 
from both data sources and time periods is effectively utilized for 
change detection. 
 
3.3 Evaluation Metric 

To evaluate the performance of MDB-CD model, we used five 
metrics: overall accuracy (OA), recall, F1 score (F1), and kappa 
coefficient (KAPPA). OA measures the precision of the model 
across all change categories (Congalton and Green, 2008). Recall 
quantifies the model's ability to identify true positives within 
each category (Powers, 2020). F1 averages precision and recall 
for each category (Rijsbergen, 1979). KAPPA assesses the 
consistency between the classification results and random 
classification (Cohen, 1960). Their specific formulas are as 
follows. 
 

OA =
TP

 TP +  TN +  FP +  FN (1) 

recall =
TP

TP + FN (2) 

F1 =
2 ∗ precision ∗ recall
(precision + recall)  (3) 

𝑝𝑝𝑒𝑒 =
𝑎𝑎1 ∗ 𝑏𝑏1 + 𝑎𝑎2 ∗ 𝑏𝑏2+. . . +𝑎𝑎𝑖𝑖 ∗ 𝑏𝑏𝑖𝑖

𝑛𝑛 ∗ 𝑛𝑛  (4) 

𝐾𝐾𝑎𝑎𝑝𝑝𝑝𝑝𝑎𝑎 =
𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

 (5) 

 
where  TP = True Positives (correctly classified as positive) 
 TN = True Negatives (correctly classified as negative) 
 FP = False Positives (incorrectly classified as positive) 
 FN = False Negatives (incorrectly classified as negative) 
 𝑝𝑝𝑜𝑜 = Overall classification accuracy 
 𝑎𝑎1, 𝑎𝑎2, ...  𝑎𝑎𝑖𝑖 = True samples in category 𝑖𝑖 
 𝑏𝑏1, 𝑏𝑏2, ...  𝑏𝑏𝑖𝑖 = Predicted samples in category 𝑖𝑖 
 𝑛𝑛 = Total number of samples 
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4. Result and Analysis 

This study presents the results of the MDB-CD model for 
detecting UFZ changes, including the OA matrix for 81 transition 
pairs from 2017 to 2019. It also shows three typical scenes in 
Shenzhen to demonstrate the model's performance. Ablation 
experiments highlight the importance of data fusion and attention 
mechanisms for accurately classifying UFZ changes in complex 
urban environments.  
 
4.1 UFZs Transition Result Based on MDB-CD Model 

The MDB-CD model achieves an overall test accuracy of 0.858 
and a Kappa value of 0.818, demonstrating its ability to 
effectively capture nuanced features from both the physical and 
social dimensions of urban environments. Figure 3 shows the OA 
matrix of the 81 types of UFZs change detection transition pair 
from 2017 to 2019.  
 

 
Figure 3. The overall accuracy (OA) matrix of UFZs change 

detection transition pair from 2017 to 2019 
 

Some UFZs transitions exhibit relatively high OA, particularly 
along the diagonal of the matrix, indicating changes within the 
same category. These values remain stable, reflecting minimal 
misclassification within each category. For example, the OA of 
Greenland to Greenland is exceptionally high at 0.93, suggesting 
that Greenland has remained largely stable over the two-year 
period, with few errors in classification. This stability in certain 
categories reflects the persistence of UFZs types like Greenland, 
which experience fewer alterations in urban environments. 
 
The transitions between the Education, Public, and Commercial 
categories show relatively low OA values. Specifically, the OA 
from Education to Public and Commercial is 0.4 and 0.65, from 
Public to Commercial and Education is 0.44 and 0.57, and from 
Commercial to Education is 0.59. These low values suggest 
challenges in accurately classifying transitions between these 
categories. One reason could be the small sample size of these 
UFZs types, which limits the model’s ability to learn their 
distinctive features. Another reason is the similarity in spatial 
characteristics of Education, Public, and Commercial scenes, 

making it difficult to distinguish them in high-density urban areas. 
The overlap in features, combined with the dynamic nature of 
urban development, complicates accurate classification and 
transition detection.  
 
Notably, the transitions from Greenland to Commercial and from 
Transportation to Commercial both have an OA of 1, indicating 
perfect classification and suggesting that the MDB-CD model 
was able to accurately detect and classify these changes. This 
accuracy underscores the significant role of MP data in the MDB-
CD model’s ability to distinguish between different UFZs 
categories, particularly in dynamic urban environments. The 
inclusion of MP data helps capture human mobility features, 
which are essential for identifying subtle shifts between urban 
landscapes and built-up areas. In cases where traditional remote 
sensing (RS) data alone may struggle to differentiate between 
such categories—due to similarities in spatial characteristics or 
ambiguous UFZs types—MP data provides crucial contextual 
information that allows the model to resolve these ambiguities. 
 
4.2 UFZs Change Detection Based on MDB-CD Model 

To demonstrate the results of the MDB-CD model, we present 
three scenes in Shenzhen in Figure 4(a). The yellow boxes mark 
the positions of the detected scene image scenes in Shenzhen. 
These locations represent typical examples of newly developed 
or transformed UFZs. 
 
Figure 4.1 illustrates the transition of a public facility which was 
under construction in 2017 and completed before 2019. The 
MDB-CD model successfully detected the entire building within 
its grid. This location corresponds to the Shenzhen World 
Exhibition and Convention Center. However, one grid, which 
included part of the convention halls, was misclassified as a 
Public. This misclassification highlights the influence of human 
mobility patterns captured by MP data, which obscured the 
classification features presented in the RS images.  
 
Figure 4.2 captures the development of a commercial center 
featuring the CITIC Financial Center and China Merchants Bank 
Headquarters, occupying two grid cells in the lower right corner. 
The change detection accurately tracked their construction 
progress from 2017 to 2019, successfully identifying the UFZs 
classification changes associated with landmark buildings. The 
combination of RS and MP data effectively captures category 
changes in the presence of significant building transformations.  
 
Figure 4.3 depicts the development of a logistics hub in Shenzhen. 
Specifically, it refers to the Pinghu National Logistics Hub, 
located in Longgang District, which was among the first 23 
national logistics hubs designated in China in 2019. This result 
highlights the critical role of MP data in identifying land-use 
changes. The RS imagery alone might suggest this area belongs 
to categories such as Greenland or Agricultural. However, the 
inclusion of MP data during the early construction phase allowed 
the MDB-CD model to correctly classify it as Transportation. 
In conclusion, the MDB-CD model has demonstrated robust 
detection capabilities across various types of land-use changes, 
showing significant improvement over traditional RS-only 
methods. However, the results indicate that the model still faces 
some limitations in mixed-use areas with complex human 
mobility, suggesting the need for integration with additional data 
sources for further refinement. 
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Figure 4. Representative urban scenes. a) locations of scenes; b) RS Images, Ground Truth Change and Predicted Change of UFZs in 
2017 and 2019 

 
4.3 Model Ablation Analysis 

To verify the effectiveness of the proposed MDB-CD model in 
fusing two data sources, we conducted ablation experiments with 
single data sources. Table 1 presents the performance results for 
multiple models. The ResNet-based model utilizing RS imagery 
demonstrated substantially superior performance, achieving a 
test OA of 0.806 and a Kappa coefficient of 0.746. Notably, the 
DPN model using MP data alone exhibited lower performance, 
with a test OA of 0.545 and a Kappa coefficient of 0.412. 
Although this type of data offers valuable insights into human 
mobility and population distribution, the raw MP data alone is 
insufficient to capture the intricate changes in UFZs due to its 
limited spatial and contextual resolution. Highly populated areas 
such as Residential, Commercial, or Public zones often exhibit 
similar patterns in human mobility, which can complicate the 
identification of distinct urban functional changes. This 
underscores the importance of combining RS imagery and MP 
data to leverage their complementary strengths in accurately 
detecting urban functional changes. 
 

Model RS MP OA Kappa 

1. ResNet √  0.806 0.746 

2. DPN  √ 0.545 0.412 

3. ResNet &DPN √ √ 0.821 0.774 

4. MDB-CD  

(SE-ResNet &DPN) 
√ √ 0.858 0.818 

Table 1. Performance of all models on the dataset. Models 1–2: 
Single data; Models 3: Two-data fusion; Models 4: MDB-CD 
(proposed method) 
 
Compared to classification based on single data, data fusion 
further significantly improves accuracy. Model 3, combining RS 
images and MP data without attention mechanisms, already 
surpasses single-data models, demonstrating the complementary 
nature of these data sources. Model 4 (MDB-CD), which 
integrates SE-ResNet and DPN with attention mechanisms, 
achieves the best results, improving the OA by 6.5% over the RS-

only model and by 57.5% over the MP-only model. This 
highlights the model's capability to effectively weigh and extract 
features from heterogeneous data. Ablation experiments further 
validate the importance of each component in the MDB-CD 
model. The attention mechanisms, in particular, allow the model 
to dynamically focus on the most informative aspects of the data, 
prioritizing relevant features that are crucial for accurately 
detecting urban functional zone changes. As a result, the model 
not only improves the precision of predictions but also enhances 
its robustness in dealing with the complexities of urban 
environments. 
 
In conclusion, the ablation experiments confirm the effectiveness 
of the MDB-CD model in integrating multi-source data for UFZ 
change detection. By leveraging the complementary strengths of 
RS images and MP data, and incorporating attention mechanisms 
to enhance feature extraction, the MDB-CD model significantly 
improves change detection performance. These results 
demonstrate the potential of fusing multimodal data for complex 
urban analysis tasks. 
 

5. Conclusion 

This study presents a novel multimodal dual-branch deep 
learning framework, MDB-CD, for change detection in UFZs by 
integrating RS imagery and social sensing data. The MDB-CD 
framework enhances the model's ability to detect changes in 
urban environments by combining physical spatial modifications 
and dynamic social behavior patterns. The dual-branch 
architecture processes the data through two distinct pathways. 
The RS-branch focuses on RS imagery to extract semantic 
features related to urban landscapes, such as building density, 
land cover changes, and infrastructure development. Meanwhile, 
the MP-branch analyzes MP data to capture temporal variations 
in human activity, reflecting shifts in social behavior and urban 
functionality. The MDB-CD framework is able to detect and 
understand both physical changes and social dynamics by fusing 
these two complementary modalities, offering a more 
comprehensive view of UFZs transitions over time. The model 
shows high OA of 0.858 and a Kappa coefficient of 0.818 across 
urban change detection. Specifically, the model generates an OA 
matrix of 81 distinct UFZs change detection transitions from 
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2017 to 2019. Notably, the integration of MP data proved 
instrumental in improving the model capturing subtle changes 
that RS imagery alone could not distinguish. Also, the study 
conducts an ablation analysis to highlights the significant 
accuracy improvements achieved by integrating RS imagery and 
MP data, emphasizing the value of a multimodal approach for 
detecting UFZs changes. 
 
The proposed method demonstrates significant improvements in 
detecting UFZs changes, but several limitations remain. One 
limitation is the inherent imbalance in the data samples, which 
may affect the model's robustness. Exploring transfer learning 
and few-shot learning approaches could help mitigate the 
challenges of data sample imbalance. Also, the current approach 
of integrating RS imagery with MP data offers a promising 
foundation, but there is significant potential to expand the 
research scope by incorporating additional data sources. Future 
work will focus on explore the integration of high-resolution 
street-level imagery, infrastructure network data and other urban 
multiple data to create a more comprehensive understanding of 
UFZs dynamics.  
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