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Abstract 

In the observation of architectural objects, the point cloud is constantly gaining popularity as a tool for quantitative analysis and 
visualization. Photogrammetric technologies are used to capture and create a point cloud for the object in a digital environment. A 
large part of the objects is created by human activity with a regular shape and structure with clearly distinguishable edges. These edges 
can be perceived as structural elements in the digital representation of the captured object. Their determination is a basic task in the 
vectorization of the resulting point clouds. The article proposes a method for isolating the part of the point cloud representing the 
structural elements of the object. For this purpose, based on the photogrammetrically captured images and predefined and automated 
processing, masks are created that isolate only the contours and edges. Thus, during the alignment of the images and the formation of 
the spatial model, only key points belonging to the corresponding structural elements are identified. To create the masks, the 
radiometric parameters of the images are modified, and a contour detector is applied to identify the projections of the structural elements 
in each image. The masks are saved as binary images, while the degree of the contours is refined so that enough points in the cloud are 
calculated to represent the structures of the object. To evaluate the results, direct measurements of some elements of the object are 
made. The experiments also show good results when validating with the point cloud for the whole object. 

1. Introduction

In recent years, automation has enabled the rapid acquisition of 
loads of digital data for the documentation of cultural heritage 
objects, be they immovable or movable, large, or small. These 
data are characterized by high accuracy and reliability and offer 
a lot of possibilities to experts for the thorough documentation of 
cultural heritage objects. However, processing of the acquired 
data requires expertise, specialized software, powerful hardware 
and, most importantly, time. On average, the ratio of the required 
processing time to the time needed for the acquisition of the data 
is 15:1, based on our extensive experience with complex 
architectural monuments presenting high level of detail and 
requiring large-scale surveys (Dolapsaki, et al., 2021). Also, each 
object that will be photographed and a 3D point cloud will be 
created has its own specificity and features. Some objects have a 
complex spatial structure and homogeneous texture. Others have 
homogeneous geometry but with diverse colour ornaments. This 
requires a specific approach to data processing and analysis of 
colour and geometric characteristics. 
Point cloud generation from photogrammetric data is a crucial 
step in 3D reconstruction, widely applied in architecture, 
geospatial analysis, and engineering. 

2. Mask creation

In this section, we present our workflow for pre-selection of 
points from the 3D cloud belonging to structural and 
characteristic elements of the object. The methodology of the 
study is shown in Figure 1. First, we used automated processing 
of the radiometric features of the images and the application of a 
Sobel or Canny contour detector, calculating and analyzing the 
gradient for each pixel. We use the Canny edge detector who is 
an advanced edge detection algorithm that provides better results. 
It operates in multiple stages. Color inversion and brightness 
addition were used with the use of a Gaussian filter to expand the 

area around the detected gradient threshold values. Radiometric 
processing was applied to refine the range of contour zones and 
convert them into a binary image. 

Figure 1. Technological scheme for creating masks. 

2.1 Noise Reduction 

Applies Gaussian smoothing to the image to reduce noise: 

G(x,y) =
ଵ

ଶగఙమ
eି

౮మశ౯మ

మ഑మ (1) 

where x and y are pixel coordinates, and σ is the standard 
deviation controlling the smoothing. The following actions were 
taken: 
The Gaussian mask is generated, using the above function (1) to 
determine the mask values. 

Radiometric conversions and binarization

Segmentation to separate contours Binarization

Edge detection

Contour detector Color inversion Increasing the brightness 
of the contours

Radiometric pre-processing

Saturation correction Histogram stretching Contrast enhancement
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Then we convolved the kernel with the images: 
 
 𝐼௦௠௢௢௧ = I ∗ G   (2) 
 
A 5x5 kernel and σ = 1.0 were used to achieve a balance between 
smoothing and preserving details. With stronger smoothing there 
is a risk of losing details.  
The results of the smoothing are presented in Figure 2 and Figure 
3. For better results, the processing was performed on the 
individual RGB channels without first switching to grayscale. 
 

 
Figure 2. Gaussian mask used for grayscale. 

 

 
Figure 3. Gradient parameters calculated for grayscale. 

 
2.2 Gradient Calculation 

Gradients are used to define the direction and intensity of 
changes, which helps to bring out the edges in the image. 
Partial derivative calculation. Gradients are calculated along the 
two main axes – horizontal (Gx) and vertical (Gy) – using filters. 
They are based on convolution with kernels that measure the 
change in brightness: 
 

 𝐺௫ = 𝐼 ∗ 𝐾௫;  𝐺௬ = 𝐼 ∗ 𝐾௬  (3) 
 

Where:  
I is the image intensity, 
Kx and Ky are the kernels for the horizontal and vertical gradients. 
Example of Sobel kernels: 
 

 𝐾௫ = ൥
−1 0 1
−2 0 2
−1 0 1

൩ ; 𝐾௬ = ൥
−1 −2 −1
0 0 0
1 2 1

൩ (4) 

 
Like a Sobel, gradients Gx and Gy are calculated. Gradient 
magnitude and direction are computed as: 
 

 𝐺 = ට𝐺௫
ଶ + 𝐺௬

ଶ,  𝜃 = tanିଵ ቀ
ீ೤

ீೣ
ቁ   (5) 

 
In the example we are considering, horizontal and vertical 
contours are clearly distinguished. The presence of vertical and 
horizontal construction lines is characteristic of most buildings 

and engineering structures. For this purpose, the study is based 
on a thorough study of the characteristics of the gradient. 
X-direction gradient shows the horizontal changes in the image, 
highlighting vertical lines and structures. 
Y-direction gradient shows the vertical changes, highlighting 
horizontal lines. 
Gradient magnitude represents the intensity of the change in each 
pixel, which helps to identify edges and structures. 
Gradient direction (in radians) determines the orientation of the 
edges, which we use for analyzing and classifying contours. 
 
If the contours are due to changes in brightness (regardless of 
color), using contour detectors with only gray levels will 
probably be sufficient. If the contours depend on color 
transitions, working on individual channels will be more 
efficient, especially if colors play a key role in the image. For 
images with rich color transitions and complex textures (like our 
example with architectural decorations), working on individual 
channels will give better results because it will capture the edges 
that are specific to each color. This allows us to analyze the 
intensity changes in each channel and identify contours specific 
to a given color component. 
We adopted the following approach to image processing. 
We separated the images into the three channels (R, G, B). And 
we applied Gaussian smoothing to each of the channels. 
We calculated the gradients by applying a Sobel operator to 
compute the gradients Gx and Gy for each channel (Figure 4). 
 

 
Figure 4. Gradient parameters calculated for RGB 

 
Then we determined the magnitude and direction of the gradient 
by calculating the magnitude (∣G∣) and direction (θ) for each 
channel.  

 
Figure 5. Combined gradient magnitude 
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The combined gradient map is presented, created by taking the 
maximum value of the gradients from each channel (red, green, 
blue) for each pixel. 
The result shows an image of the most significant edges and color 
intensity changes, combining the information from all color 
channels (Figure 5). 
 

2.3 Non-maximum Suppression 

We precise out edges to retain only local maxima along the 
gradient direction: 
 

𝐺(𝑥, 𝑦) = ቄ
𝐺(𝑥, 𝑦), 𝑖𝑓𝐺(𝑥, 𝑦) > neighbors in gradient 

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

 
Edges are refined by retaining only local maxima along the 
gradient direction. This significantly cleans up the image and 
makes contours more accurate. 
 

2.4 Double Thresholding 

Double Thresholding applies two thresholds to classify edges. 
It helps classify edges into strong, weak, and non-edge pixels 
based on their intensity values. This step ensures that only 
significant edges are preserved while reducing noise. 
After applying Non-Maximum Suppression, the resulting edge 
image contains pixels with varying intensity values. Some of 
these edges are well-defined, while others are weak and may be 
caused by noise or small variations in intensity. We use Double 
thresholding to keep the strong edges that are part of the contours. 
To identify weak edges that might be connected to strong edges. 
And to remove non-relevant edges (noise or isolated weak 
edges). 
At first, we define two threshold values: 

 High Threshold (TH) – Pixels with intensities above 
this value are considered strong edges. 

 Low Threshold (TL) – Pixels with intensities between 
TL and TH are considered weak edges. 

 
When we define threshold values we Classify pixels into three 
categories: 

 Strong edges: Pixels with intensity I(x,y)≥TH. 

 Weak edges: Pixels where TL≤I(x,y)<TH. 

 Non-edges: Pixels where I(x,y)<TL. 

The main point in edge formation is the connection of individual 
pixels belonging to strong contours and the interpretation of weak 
contours. Good results are obtained by observing the following 
rules: 
• If a weak edge is connected to a strong edge, it is preserved as 
part of the edge. 
• If a weak edge is isolated, it is suppressed and removed. 
 
In this case, the overall gradient is low, so the global contrast of 
the image is increased before the gradient calculation. In some 
cases, adaptive double thresholding is applied, where the 
threshold values are calculated dynamically based on the 
statistics of the gradient map. 
 

2.5 Edge Tracking by Hysteresis 

After Double Thresholding, three types of pixels in the image 
with identified edges are grouped: 
- High intensity pixels (above the upper threshold). 
- Pixels with intensity between the low and high thresholds. 

- Pixels with intensity below the lower threshold (rejected). 
Not all weak edges are noise - some may be part of real contours. 
Edge tracking using hysteresis helps determine which weak 
edges should be retained. 
The membership of neighboring pixels and their state are 
examined. Pixels belonging to the interval between the threshold 
values that are adjacent to pixels with a value above the upper 
threshold are retained, while rejecting those pixels below the 
lower threshold value. 
  

2.6 Expanding the range of contours and binarization 
of the mask 

To create a mask that will limit the creation of a point cloud 
concentrated mainly on the edges in the studied object, it is 
necessary to expand the range of contours, since they are quite 
fine. This allows the photogrammetric software algorithm to 
detect a sufficient number of points belonging to the spatial 
contours. 
Have we considered two approaches to expanding the range of 
contours. 
- Expanding the contours using segmentation. A threshold value 
of the intensity suitable for segmenting the results obtained from 
the applied contour detectors is defined. A geometric expansion 
of the segments of the order of 4 to 8 pixels is used, depending 
on the spatial resolution of the images. The intensity values of the 
pixels in the segment are equalized /for example, a value of 255/, 
after which the images are binarized. 
- A smoothing Gaussian filter is applied to expand the contours, 
with the degree of expansion determined by the blur kernel. The 
intensity of the resulting result is determined by the standard 
deviation. After applying the filter, the images can be binarized 
by determining an appropriate threshold value for the pixel 
intensity to distinguish between white and black. 
 

3. 3D point cloud - approach to creating 

After we have finished the process of creating masks for each 
image, we have a mask that is used to build the 3D point cloud of 
the object. 
A classic approach of close-range photogrammetry is used to 
align the images and restore the spatial model. In our case, we 
use masks to limit the detection of key points only within the 
range of the identified structural elements in the images. In this 
way, the connecting points are identified only on the contours and 
edges. To improve the accuracy, the camera parameters are 
optimized. The point cloud is filtered and only those points 
determined with the highest confidence are selected. 
 

 
Figure 6. Contour defined point cloud. 

This study presents the point cloud processing workflow in 
Agisoft Metashape, covering data acquisition, camera 
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calibration, dense cloud generation, and quality assessment. The 
analysis is based on a dataset including 76 images and 76 masks 
covering an area of 3.18 m². The selected object is part of an 
indoor space with simple planar geometry with a characteristic 
color structure and ornaments. Two point clouds were created 
with identical data processing settings. The first point cloud was 
formed using all 76 images and all 76 masks were applied, 
focusing point detection and cloud formation on the detected 
edge areas. The second point cloud was formed without applying 
masks and the resulting points were evenly distributed over the 
object. Control distances on the object were marked and 
measured to improve the accuracy of the obtained results Figure 
6. 
 

3.1 Data Acquisition and Preprocessing 
 
The dataset consists of 76 images captured using a Sony ILCE-
7RM4A camera with a 24mm focal length. The ground sampling 
distance (GSD) was 0.563 mm/pix, ensuring high-resolution 
spatial data. 
Camera Calibration: 

 Focal Length: 24 mm 
 Sensor Pixel Size: 5.77 × 5.77 μm 
 Distortion Parameters: K1-K4 adjusted during 

calibration 
 

Results from the first point cloud with masks applied: 
 Total tie points: 69,678 
 Total projections: 307,087 
 Reprojection Error: 1.09 pix 

Total points: 10,466,783 
 

Label Distance (m) Error (m) 
Scale bar 1 1.25 2.22e-14 

Total  2.22e-14 
Table 1. Control scale bar – point cloud with mask 

 
Label Distance (m) Error (m) 

Scale bar 2 0.503 0.0031 
Total  0.0031 

Table 2. Check scale bar – point cloud with mask 
 
Results from the second point cloud without masks applied: 

 Total tie points: 478,526 
 Total projections: 1,212,980 
 Reprojection Error: 1.02 pix 

Total points: 28,841,877 
 

Label Distance (m) Error (m) 
Scale bar 2 0.5027 0.00273 
Scale bar 1 1.248 -0.00110 

Total  0.00208 
Table 3. Control scale bar – point cloud without mask 

 
In this way, with preprocessing and the application of masks, we 
reduce the number of points in the cloud while maintaining the 
accuracy of the obtained results. The points that represent the 
model belong to edges, contours and ornaments that are decisive 
for the captured object. 
 

3.2 Analysing point clouds 
 
Point cloud processing is essential for extracting geometric and 
structural information from 3D data. This study focuses on edge 

detection based on point density variations, particularly suitable 
for datasets where points predominantly lie in a single plane. 
Point cloud edge detection has been approached using various 
techniques, including curvature-based analysis, normal variation, 
and density-based filtering. 
Curvature-based approaches extract edges by analysing local 
shape properties (Pauly, et al., 2003). 
Normal variation methods detect edges where significant 
changes in normal orientation occur (Rusu, et al., 2011). 
Density-based methods used in this study identify edges by 
detecting abrupt changes in the distribution of points (Demantké, 
et al., 2011). 
By using varying densities, our method avoids problems 
associated with normal estimation in noisy datasets and offers 
computational efficiency. The methodology involves 
preprocessing, density analysis, edge extraction, and contour 
smoothing. In this study we propose a hybrid approach that first 
applies density-based edge detection to segment potential edge 
regions before using Alpha Shape Reconstruction to extract 
structured vectorized contours. The proposed method improves 
accuracy by focusing only on regions with significant point 
density changes, reducing the impact of noise and improving 
edge definition. Statistical analysis of the extracted edges shows 
a mean distance error of 2.68 mm, with 75% of errors below 3.89 
mm, demonstrating high accuracy and consistency. 
 

3.2.1 Preprocessing and Normal Estimation 
 
For easier processing, we reduced the number of points in the 
cloud by voxel grid filtering method. The reduced point cloud 
contained N = 209,370 points, each with X, Y, Z coordinates, 
RGB colour attributes, normal vectors, and curvature metrics. 
The normal vectors are calculated, and an additional evaluation 
of the orientation is made. 
The core idea of density-based edge detection is to compute the 
local density of points and identify regions where the density 
changes significantly. The detection of edges relied on 
identifying points with low local density in comparison to their 
surroundings. To facilitate edge detection, we computed point 
density (ρ) for each point using a fixed-radius neighborhood 
search: 
 

 ρ௜ =
ே೔

௏
    (7) 

where: 
Ni is the number of neighbors within a predefined search radius, 
V is the volume of the spherical neighborhood defined by the 
radius r. 

 𝑉 =
ସ

ଷ
𝜋𝑟ଷ     (8) 

 
A search radius of r = 0.00415 was calculated based on the 
correlation with Ground Sampling Distance (GSD). The 
histogram of the surface density distribution is presented in 
Figure 7. 

 
Figure 7. Surface density distribution 
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In point cloud analysis, the selection of a local neighbourhood 
radius (r) is crucial for computing point density, normal 
estimation, and edge detection. Simultaneously, the Ground 
Sampling Distance (GSD) defines the spatial resolution of the 
photogrammetric data used to generate the point cloud. 
Understanding the relationship between r and GSD ensures that 
edge extraction and density-based filtering remain consistent 
with the dataset’s spatial scale. 
The neighborhood radius defines the size of the local region for 
calculating point density and extracting features in the point 
cloud. GSD (Ground Sampling Distance) represents the real-
world size of one pixel in the original images. For our dataset 
under analysis, the GSD is 0.563 mm/pixel, meaning that each 
pixel represents 0.563 mm of real-world. Since the point cloud is 
derived from image pixels, the radius r should be proportional to 
GSD, ensuring that the spatial scale of feature extraction aligns 
with the resolution of the original dataset. 
 
 r = k*GSD    (9) 
 
where k is a coefficient that depends on the type of analysis. 
k - from 2 to 5 - for local fine-scale analysis (normal estimation, 
curvature computation) 
k - from 5 to 10 - for global structural analysis (edge detection, 
contour extraction) 
In our study, we selected a radius of r = 0.00415 m (4.15 mm) for 
global structural analysis, which is approximately 7.3 times the 
GSD. Thus, we establish an empirical relationship between the 
neighborhood radius r and GSD, providing an optimal balance 
between local feature extraction and noise suppression. 
 

3.2.2 Edge Detection 
 
Traditional methods, such as Alpha Shape Reconstruction, are 
effective at generating concave and convex boundaries but suffer 
from sensitivity to noise and uniform point distributions 
(Edelsbrunner, et al., 1983).  
At first, we applied Alpha Shape to the entire point cloud and 
then using density-based edge points for post-processing 
refinement, we achieve more accurate, noise-resistant, and 
topologically consistent boundaries. We applied Initial Alpha 
Shape Reconstruction to the entire point cloud to generate an 
initial boundary. Experimental results demonstrate that this 
approach reduces boundary errors by 35%, with a mean deviation 
of 2.68 mm, compared to conventional Alpha Shape 
reconstruction.  
 
 𝒜ఈ = {𝑝௜  𝑤ℎ𝑒𝑟𝑒 ฮ𝑝௜ − 𝑝௝ ฮ  <  𝛼} (10) 
 
where:  
α is the shape control parameter. 
𝑝௜  𝑎𝑛𝑑 𝑝௝ are neighbouring points 
 

3.2.3 Contour Smoothing and Vectorization 
 
To determine which points, correspond to edges, we apply 
statistical thresholding. We defined a density threshold as: 
 
 𝜌௢ = 𝜇ఘ − 𝑚𝜎ఘ   (11) 
 
where: 
μρ is the mean density across all points, 
σρ is the standard deviation of the density values, 
m is an empirical coefficient. 
Points with ρ < ρo were classified as potential edge points. 

 
Once density-based edge points are identified, they are used to 
refine the initial Alpha Shape boundaries. We apply Intersection-
Based Filtering where only Alpha Shape contours that overlap 
with density-based edge points are preserved. The next step that 
we made local adjustment of α based on density. Instead of a 
single global α, we use a locally adaptive αi. 
 

 𝛼௜ = 𝜆.
ଵ

ఘ೔
    (12) 

where: 
λ is a scaling factor. 
ρi ensures finer detail in high-density regions and smoother 
contours in sparse regions. 
The following statistics were obtained: 
 

Metric Alpha Shape Only Refined Alpha Shape 
Mean 

Distance Error 
4.32 mm 2.68 mm 

Median 
Distance Error 

3.89 mm 2.24 mm 

Max Distance 
Error 

9.77 mm 7.99 mm 

Standard 
Deviation 

2.89 mm 1.98 mm 

Table 4. Comparison between statistics 
 
The identified edges correspond well to regions of abrupt density 
change. Contour smoothing effectively removes noise while 
preserving geometric detail. Alpha Shapes provides a flexible 
contouring. The distance of the points from the cloud to the 
formed vector line is determined. The distribution of the points 
relative to the distance to the vectorized line is presented in 
Figure 8. 
 

 
Figure 8. Distribution of the points relative to the distance to the 

vectorized line 
 
This method performs well in planar point clouds, but further 
refinement using graph-based edge linking (Morales, et al., 2011) 
or anisotropic filtering (Fan, et al., 2020) could enhance 
precision. 
 

4. Results 

Applying masks, which restrict the formation of a 3D point cloud 
to only the range of predefined edges and contours, improves the 
results when applying a hybrid approach, combining edge 
detection based on density variations with alpha shape 
reconstruction. This approach was applied to an object with a flat 
surface, saturated with edges and ornaments formed mainly by 
color differences. Stable vectorization was achieved for a cloud 
formed by 209,370 points with the following key statistical 
characteristics: 

 Mean Value: 2.684 mm 
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 Median Value: 2.240 mm 
 Standard Deviation: 1.983 mm 
 Coefficient of Variation: 0.739 
 Interquartile Range (IQR): 2.802 mm  

The analysis of the vectorization accuracy yielded the following 
results: 

 Mean Distance Error: 2.68 mm 
 75% of Errors Below: 3.89 mm 

 
We could draw the following key findings: 
- The average distance error of 2.68 mm shows that the applied 

approach achieves high accuracy in forming and vectorizing 
the point cloud. This is especially noticeable considering the 
removal of noise and irregularities in the dataset. 

- The fact that 75% of errors are below 3.89 mm indicates that 
the method is consistent and reliable across the majority of 
the dataset. 

- The hybrid approach effectively handles noise and 
irregularities, as evidenced by the low coefficient of variation 
(0.739034) and the tight interquartile range (2.80mm). 

- By focusing computational effort on regions with significant 
density, the method improves efficiency without sacrificing 
accuracy. 

In addition to the vectorization evaluation results, the quality of 
the resulting vector model based on the point cloud can be 
determined from the convergence (distance) of the points to the 
corresponding line Figure 9.  
 

 
Figure 9. Part of the point cloud classified by distance 

 
These results highlight the potential of the proposed approach for 
a wide range of applications in 3D data processing. 
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