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Abstract 
 
Visual-inertial navigation systems (VINS) have emerged as a popular and effective solution for autonomous navigation due to their 
accuracy, real-time capabilities, and cost-effectiveness. However, while traditional VINS methods excel in static environments with 
well-distributed features, they struggle in highly dynamic urban environments where moving objects distort feature tracking, leading 
to pose estimation errors and localization inaccuracies. Recent approaches, such as image geometric constraints-based methods, aim 
to address these challenges but are limited when moving objects dominate the scene. Deep learning (DL)-based methods, which directly 
remove potential dynamic objects, often degrade accuracy in low-texture scenes and overlook the resulting uneven feature distribution, 
further impacting state estimation. To address these issues, we propose a novel VINS method that combines visual and inertial 
information with a smart feature grading module to overcome cautious and excessive dynamic feature removal, effectively handling 
the complexities of dominant and ambiguous dynamic objects beyond the limitations of traditional DL and vision-based methods. The 
method's performance shows effective identification and filtering of dynamic features while preserving static ones. Tests carried out 
on multiple datasets in urban dynamic environments highlight the method's enhanced accuracy and robustness. 
 
 

1. Introduction 

Localization and navigation in a GPS-denied environment 
always pose great challenges (Rabbou et al., 2021; Li et al., 2023; 
Wang et al., 2024). Over the past decades, visual-inertial 
navigation systems (VINS) have seen significant advances, 
making them an attractive solution for robust positioning in 
various environments (Reid et al., 2019).  Prominent methods 
like ORB-SLAM3 (Campos et al., 2021), Open-VINS (Geneva 
et al., 2020), and VINS-mono (Qin et al., 2018) have 
demonstrated high performance in feature-rich, static 
environments. While VINS has showcased significant 
achievements, it mainly relies on the static nature of the 
surrounding features. However, the performance of VINS can be 
significantly hindered in highly dynamic scenarios such as large-
scale urban environments where the quality of feature tracking is 
affected by moving objects (Adham et al., 2024). Visual features 
associated with these moving objects become distorted or 
dislocated, leading to degraded feature tracking accuracy, pose 
deviations, trajectory drift, and reduced system robustness in 
such environments. Traditional VINS methods filter out the 
moving features as outliers. Typical methods such as VINS-
Mono and ORB-SLAM3 adapt RANSAC to eliminate such 
features but they’re less effective when the environment has 
many moving objects. Therefore, achieving robust and drift-free 
positioning in large-scale outdoor dynamic environments is still 
challenging (Mahmoud et al., 2022a; Mansour and Chen, 2022). 
Researchers have developed various algorithms to tackle this 
issue, focusing on direct detection and removal of these objects 
using either visual data alone or combined visual and IMU data 
(He and Rajkumar, 2021). 
 
Recent studies reveal a clear gap in current approaches, 
highlighting some limitations in effectively removing moving 
objects. Geometric constraint-based approaches struggle in 
highly dynamic areas like urban environments, where moving 
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objects introduce noise in feature correspondences, degrading the 
accuracy of the fundamental matrix affecting camera motion 
estimation. Epipolar geometry methods fail when dynamic 
features move along the epipolar line, and optical flow-based 
methods stumble when objects move toward/away from the 
camera or have large displacements between frames. IMU-
integrated VINS algorithms improve robustness but struggle with 
prolonged stops or pure rotations. DL-based methods, limited by 
predefined knowledge, often fail in low-light conditions, 
incomplete object capture, poor detection of distant moving 
objects or with unpredictable object motion. Moreover, DL 
methods tend to indiscriminately between stationary and 
dynamic objects, leading to excessive feature removal and 
geometric distortions, which affect pose estimation accuracy. 
 
To address these challenges, we propose a novel VINS method 
that integrates visual and inertial sensor data with a smart feature 
grading module. Our approach overcomes the limitations of 
traditional DL and vision-based methods by introducing a real-
time perceptual feature grading and processing module. This 
module categorizes tracked image features into stable, fixed, and 
fickle categories, enabling reliable transformation calculations 
from static points. A Hybrid Geometric Correspondence 
Constraints (HGCC) module is introduced to maintain geometric 
consistency across static points between frames, applying 
multiple constraints to handle fickle features effectively. 
 
Furthermore, to ensure robustness and eliminate missed dynamic 
objects, we propose a VI-based motion consistency constraint. 
This addresses cases such as unknown moving objects, distant 
moving objects, and partially captured dynamic objects. Finally, 
to mitigate uneven feature distribution caused by excessive 
removal of dynamic points, we introduce an auto-adaptive 
covariance estimation method. This dynamically estimates a 
weight factor based on feature distribution in each frame, 
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remodelling the covariance matrix of visual measurements 
during VIO pose estimation. 
 

2. Literature Review 

Recent research has focused on improving VINS robustness in 
dynamic environments by addressing the challenges posed by 
moving objects. Approaches can be categorized into geometric 
constraint-based methods, deep learning (DL)-based methods, 
and hybrid techniques integrating visual and IMU data. 
 
Geometric constraint methods leverage camera pose estimation 
and geometric relationships to detect and remove dynamic 
features. For instance, (Tan et al., 2013) used Adaptive RANSAC 
to remove invalid feature points, while (Sun et al., 2017) 
employed optical flow (Ali et al., 2021) and homography 
computation to eliminate moving objects. Epipolar geometry-
based methods, such as those by (Fan et al., 2019) and (Cheng et 
al., 2019), face challenges with slow-moving or large dynamic 
objects and errors in positional transformations. IMU-aided 
methods, such as those by (Fu et al., 2021) and (Reginald et al., 
2022), combine IMU data with epipolar constraints to filter 
dynamic features. However, these methods struggle when 
dynamic features move along the epipolar line or when IMU data 
is biased. DynaVINS (Song et al., 2022) introduced a loss 
function integrating IMU pre-integration into Bundle 
Adjustment, but its practicality is limited by hyperparameter 
tuning (Mohammed et al., 2023). 

DL-based methods, such as those by (Zhang et al., 2018) and (Wu 
et al., 2022), use object detection models like YOLO to filter 
dynamic features. However, these methods often fail to 
distinguish between stationary and moving objects, leading to 
excessive feature removal. Dynamic-VINS (Liu et al., 2022) 
combine object detection (Mahmoud et al., 2022b) with motion 
models or depth information but face challenges in large-scale 
environments. Hybrid approaches, such as by (Zhang et al., 2021) 
integrate DL segmentation (Mahmoud et al., 2024a) with 
geometric constraints but struggle with real-time execution and 
excessive feature removal. These mentioned DL-methods 
overlook missed detections or object detection failures, which 
can degrade feature tracking and cause pose deviations at 
detected locations.  

Our approach introduces an innovative semantic-aware and 
multi-level geometric constraint framework designed to address 
the challenges posed by dominant and ambiguous dynamic 
objects. By surpassing the limitations of traditional DL and 
vision-based methods, our method enhances localization 
accuracy and state estimation robustness, making it particularly 
effective for dynamic outdoor environments. 

3. Methodology 

In this section, the details of the proposed system are introduced 
as follows. 
 
3.1 System Overview 

The proposed system, illustrated in Figure 1, integrates a novel 
front-end and adaptive back end combining camera and IMU 
measurements. The framework begins with IMU pre-integration 
between consecutive frames, followed by parallel processing of 
visual and semantic information to efficiently handle moving 
objects. A feature grading module categorizes tracked features 
into fixed, stable, and fickle categories, enabling dynamic feature 
filtering. A developed motion consistency procedure is proposed 
to ensure robust tracking by combining IMU pre-integration 

states and optimized pose estimation. Subsequently, outlier 
culling is applied to eliminate unsatisfactory tracked feature 
observations and associated landmarks based on two reprojection 
error processes. The proposed auto-adaptive covariance 
estimation method is introduced to address uneven feature 
distribution caused by excessive removal of dynamic features. 
The back-end employs pose graph optimization in a local visual-
inertial odometry estimator ensuring accurate trajectory 
estimation in dynamic environments. 
 
3.2 Scene Understanding and Tracking 

This module combines semantic object detection with geometric 
feature tracking to enable robust scene understanding in dynamic 
environments. A custom-trained YOLOv5 model (Redmon and 
Farhadi, 2018) is employed for real-time object detection, 
classifying common outdoor objects into two categories: fixed 
(e.g., traffic lights, benches) and potentially dynamic (e.g., cars, 
pedestrians). Objects belonging to the second category demand a 
more thorough analysis by the system to ascertain their likelihood 
of being in motion. The model, accelerated using TensorRT, 
provides semantic labels and bounding boxes for detected 
objects, allowing the system to prioritize static features while 
flagging dynamic ones for further analysis. Concurrently, 
geometric feature tracking is performed using the Shi-Tomasi 
corner detector (Shi and Tomasi, 1994) and the pyramidal KLT 
optical flow algorithm (Lucas and Kanade, 1981). The Shi-
Tomasi detector ensures a uniform distribution of feature points, 
while the pyramidal KLT algorithm handles challenges such as 
fast camera motion, large displacements, and illumination 
changes. Keyframes are selected based on parallax and overlap 
criteria to optimize pose estimation efficiency, ensuring reliable 
landmark triangulation and reprojection factors for graph 
optimization. This dual-threaded approach enables the system to 
maintain high accuracy and computational efficiency in real-time 
applications. 
 
3.3 Smart Feature Grading Module 

The pyramidal KLT tracking method, while effective for tracking 
features in most scenarios, faces challenges in dynamic 
environments due to abnormal motion patterns caused by moving 
objects. Additionally, relying solely on deep learning models to 
determine the motion status of objects such as distinguishing 
between moving and stationary vehicles proves insufficient. To 
address these limitations, the system leverages semantic 
information from detected objects to classify features into three 
distinct categories: stable, fixed, and fickle. This classification is 
based on the object category associated with each feature, as 
outlined in Section 3.2.  
 
The feature grading process begins by clustering visual feature 
points based on their location relative to detected bounding 
boxes. Features outside the bounding boxes are classified as 
stable, as they are unlikely to belong to moving objects. These 
features are refined using the RANSAC algorithm to exclude 
outliers, ensuring only reliable points are used for transformation 
calculations. Features inside bounding boxes are further 
categorized as fixed or fickle. Fixed features correspond to 
absolutely static objects, such as traffic lights, stop sign, poles, or 
benches, and are used directly for transformation calculations if 
they meet specific conditions, such as being tracked over a 
minimum number of consecutive frames and having a depth 
below a predefined threshold. Thus, the calculations exclusively 
rely on features near the vehicle's body, thereby maximizing the 
reliability of the outcomes. 
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Figure 1. Overview of our proposed system; boxes highlighted in red are the main contributions of the proposed approach. 
 

Fickle features, associated with potentially dynamic objects like 
vehicles or pedestrians, require further analysis to determine their 
motion status. To handle these features, a Hybrid Geometric 
Correspondences Constraints (HGCC) module is introduced. The 
HGCC module combines multiple geometric constraints to 
reduce the limitations of using individual constraints. It first 
calculates the fundamental matrix (F) using stable and fixed 
features which capture the geometric relationships among static 
feature points in consecutive frames and then applies two 
geometric constraints to mitigate interference from dynamic 
objects. This module uses epipolar geometry (Hartley and 
Zisserman, 2003) and novel sliding window-optical flow 
constraints to distinguish between static and dynamic features.  
 
The first constraint is based on the principles of epipolar 
geometry, which states that a matched point in a subsequent 
frame should lie on its corresponding epipolar line as depicted in 
Figure 2. Using the accurately calculated Fundamental matrix 
(F), the system computes the epipolar lines for feature points in 
the current frame. For static point P as shown in Figure 2, its 
corresponding feature points p1 and p2 in consecutive frames 
satisfy the epipolar constraint: 
 
𝒑𝒑𝒋𝒋,𝒊𝒊+𝟏𝟏𝑻𝑻 𝑭𝑭𝒑𝒑𝒋𝒋,𝒊𝒊 = 𝒑𝒑𝒋𝒋,𝒊𝒊+𝟏𝟏𝑻𝑻 𝒍𝒍ʹ = 0, 𝑗𝑗 = 1,2,3, … ,𝑛𝑛.                   (1) 
 
However, the presence of dynamic objects introduces 
abnormality, as illustrated by the case of point P’ in figure 2 (a). 
To address this interference, we calculate the distance (D) from a 
feature point to its corresponding epipolar line 𝑙𝑙 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 +
𝑐𝑐 = 0, using:   
 

D =
|Axj

 +Byj
 +c|

�A2+B2
=   

|𝐩𝐩j,i+1
T 𝐅𝐅𝐩𝐩j,i

 |

�A2+B2
                               (2) 

 
The epipolar constraint distance of a feature point to its 
corresponding epipolar line with static features exhibiting small 
distances while dynamic features showing larger deviations. By 
evaluating the D distance with a predefined threshold, we can 
effectively distinguish between static and dynamic points. 
However, this method faces challenges when dynamic features 
move along the optical center, leading to inaccurate 
determinations. To address this, the system proposes a sliding 
window-based optical flow constraint, which analyzes the 

displacement of features across multiple frames. In traditional 
VINS, feature point matching typically involves two adjacent 
keyframes to calculate the relative camera motion. However, our 
approach proposes a constraint that considers the tracked features 
in the current frame and all other frames within a sliding window. 
This sliding window encompasses all the frames on which the 
feature is located. The displacement of the correspondence point 
in the current frame is compared with all frames where the 
tracked point is located after applying the reliable F to wrap the 
sequence frames. This analysis allows us to distinguish between 
static points, which exhibit minimal or zero displacement, and 
dynamic features, which display varying degrees of 
displacement. To quantify the average displacement 𝛾𝛾𝑚𝑚 of the 
observed feature mth that is initially observed in the frame (i), we 
compute the average of its displacements within a sliding 
window spanning N frames where the feature is observed. This 
calculation is performed according to the equation shown as 
follows: 

𝛾𝛾𝑚𝑚 =    
1
𝑁𝑁  ��𝑝𝑝𝑚𝑚

𝑐𝑐𝑖𝑖 −
𝑖𝑖≠𝑗𝑗

(𝐹𝐹𝑐𝑐𝑗𝑗
𝑐𝑐𝑖𝑖𝑝𝑝𝑚𝑚

𝑐𝑐𝑗𝑗)�, (3) 

where 𝑝𝑝𝑚𝑚
𝑐𝑐𝑖𝑖  the observation of the mth feature in the ith frame. 𝑝𝑝𝑚𝑚

𝑐𝑐𝑗𝑗  
is the mth correspondence feature coordinates in the jth frame. 𝐹𝐹𝑐𝑐𝑗𝑗

𝑐𝑐𝑖𝑖  
is the transformation between the sliding window frames. When 
the 𝛾𝛾𝑚𝑚 is over a preset threshold, the mth feature is considered as 
a dynamic feature. By integrating both the epipolar and sliding 
window constraints, the HGCC module overcomes the 
limitations of relying on a single geometric constraint. This dual 
approach enhances the system's robustness, enabling it to 
accurately distinguish between static and dynamic features in 
complex environments. 

 

Figure 2. Epipolar constraint for Fickle features. (a) general 
feature point motion. (b) motion along the optical center. p1 
and p2 are correspondence points in frames, while p3 is the 
projection in the second frame based on the moving point (P).  
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3.4 Visual-Inertial Odometry (VIO) Based on Factor Graph 
Optimization 

The proposed system employs a Visual-Inertial Odometry (VIO) 
algorithm to tightly integrate visual and IMU measurements for 
local pose estimation. Building upon the VINS-Mono framework 
(Qin et al., 2018), we introduce an adaptive backend alongside a 
novel frontend to enhance performance in complex 
environments. The backend utilizes a sliding window approach 
to fuse measurements within a factor graph optimization 
framework. The full state vector 𝜒𝜒 within the sliding window is 
defined as: 
 
𝜒𝜒 = [𝒙𝒙0 ,𝒙𝒙1 , … … . ,𝒙𝒙𝑛𝑛1,𝒑𝒑𝑐𝑐𝑏𝑏 ,𝒒𝒒𝑐𝑐𝑏𝑏 , 𝑠𝑠0 , 𝑠𝑠1 … . , 𝐴𝐴𝑛𝑛2]𝑇𝑇    (4) 
𝒙𝒙𝑚𝑚 = �𝒑𝒑𝑏𝑏𝑚𝑚

𝑤𝑤  ,𝒗𝒗𝑏𝑏𝑚𝑚
𝑤𝑤 ,𝒒𝒒𝑏𝑏𝑚𝑚

𝑤𝑤 ,𝒃𝒃𝑎𝑎
𝑏𝑏𝑚𝑚 ,𝒃𝒃𝑔𝑔

𝑏𝑏𝑚𝑚�
𝑇𝑇

 𝑚𝑚 ∈ [0,𝑛𝑛1]    (5) 
 
where 𝒙𝒙𝑚𝑚 represents the IMU state at the mth frame, including 
position, velocity, orientation, and IMU biases. The state vector 
also includes the inverse depth of visual features and extrinsic 
parameters between the camera and IMU. Subsequently, the local 
VIO optimization problem is formulated as a maximum a 
posteriori (MAP) estimation, minimizing the residuals of prior 
information, IMU measurements, and visual measurements: 
 

min
𝜒𝜒

� �𝒓𝒓𝑝𝑝 − 𝑱𝑱𝑝𝑝𝝌𝝌�
2 + ��𝒓𝒓𝐵𝐵 �𝒛𝒛�𝑏𝑏𝑖𝑖+1

𝑏𝑏𝑖𝑖 ,𝒙𝒙��
𝑷𝑷𝑏𝑏𝑖𝑖+1
𝑏𝑏𝑖𝑖  

2
𝑛𝑛

𝑖𝑖𝑖𝑖𝐵𝐵

+ �  
𝑛𝑛

(𝑘𝑘,𝑗𝑗)𝑖𝑖𝑐𝑐

�𝒓𝒓𝑐𝑐�𝒛𝒛�𝑘𝑘
𝑐𝑐𝑗𝑗 ,𝒙𝒙��

𝑷𝑷𝑘𝑘
𝑐𝑐𝑗𝑗 

2
� 

 (6) 

where  𝒓𝒓𝑝𝑝 and 𝑱𝑱𝑝𝑝 represent the prior residual and Jacobian from 
marginalization, 𝒓𝒓𝐵𝐵 is the IMU residual, and 𝒓𝒓𝑐𝑐  is the visual 
reprojection residual. The Ceres solver (Agarwal, Sameer, 
Mierle, 2023)is used to solve this optimization problem. The 
visual reprojection residual is computed as the difference 
between the observed feature location and its projected location. 
The residuals related to the IMU is computed based on the IMU 
preintegration measurements. The IMU pre-integration (Forster 
et al., 2017) approach merges several IMU measurements into a 
single integrated measurement, to mitigate the high computation 
load. To minimize computing complexity, IMU states and 
features are marginalized from the sliding window, converting 
the correlated measurements into prior information. 
 
In dynamic environments, our approach faces two key difficulties 
in solving this optimization problem. First, the object recognition 
model's vulnerability to missed detections impacts state 
optimization due to features originating from unidentified 
moving objects. Second, excessive removing dynamic features, 
especially in scenes with a high prevalence of movement, alters 
the surrounding feature distribution and reduces state estimation 
accuracy. To address these issues, we have modified the local 
back end, as detailed in the following subsections. 
 
3.4.1 Dynamic Feature Culling via IMU-Visual 
Reprojection Constraint:  We incorporate an extra constraint to 
remove remaining dynamic features, enhancing system 
reliability. In outdoor environments, certain challenging 
scenarios arise, such as undetected unknown moving objects, 
rapidly moving objects at a distance, or instances where only a 
portion of a dynamic object appears in the image. These 
unresolved factors persistently influence the system's state 
optimization. This module utilizes visual-inertial fusion, as 
accurately projecting a feature point onto the current frame is 
difficult without knowing the camera’s pose. 
   

This constraint leverages IMU preintegration to estimate the 
camera pose and compute reprojection errors across all frames 
observing a feature not only between two consecutive frames 
overcoming issues arise from scenarios involving fast camera, 
degenerate cases (e.g., planar scenes or pure rotational motion). 
The camera poses for the j-th frames are obtained through IMU 
preintegration then refined and utilized to determine the 3D 
coordinates 𝑃𝑃𝑚𝑚

𝑐𝑐𝑗𝑗= [x, y, z] of feature landmarks visible across 
multiple frames. Then two reprojection residuals 𝑟𝑟𝑐𝑐1 𝑎𝑎𝑛𝑛𝑎𝑎  𝑟𝑟𝑐𝑐2  for 
the feature measurements in the observed frames are then 
computed as follows. 

𝒑𝒑𝑚𝑚
𝑐𝑐𝑗𝑗 = 𝜋𝜋 �𝑹𝑹𝑏𝑏𝑐𝑐𝑹𝑹𝑤𝑤

𝑏𝑏𝑗𝑗𝑹𝑹𝑏𝑏𝑖𝑖  
𝑤𝑤 𝑹𝑹𝑐𝑐 

𝑏𝑏𝑷𝑷𝑚𝑚
𝑐𝑐𝑗𝑗�                                                         (7) 

𝑟𝑟𝑐𝑐1 = 𝒑𝒑𝑚𝑚
𝑐𝑐𝑗𝑗

𝑝𝑝𝑚𝑚
𝑐𝑐𝑗𝑗 .𝑧𝑧

− 𝒑𝒑𝑚𝑚
𝑐𝑐𝑖𝑖  , 𝑟𝑟𝑐𝑐2 =  𝒑𝒑𝑚𝑚

𝑐𝑐𝑗𝑗−𝒑𝒑𝑚𝑚
𝑐𝑐𝑖𝑖

𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑ℎ 
                                           (8) 

𝑟𝑟𝑚𝑚 =    1
𝑁𝑁

 ∑ ‖𝑟𝑟𝑐𝑐 ‖𝑖𝑖≠𝑗𝑗                                                                (9) 

where 𝒑𝒑𝑚𝑚
𝑐𝑐𝑗𝑗   is the observed feature location, and 𝑟𝑟𝑚𝑚  is the average 

reprojection residual. Features failing to meet predefined 
thresholds are culled as outliers. This process helps ensure that 
only reliable features and observations are retained in the system. 
 
3.4.2 Geometry-Guided visual Covariance Estimator: 
Uniform feature distribution around the camera is optimal for 
accurate state estimation, but deviations from this optimal 
arrangement can degrade performance.  To address uneven 
feature distribution caused by excessive dynamic feature 
removal, an adaptive covariance estimation method is 
introduced. This module dynamically estimates a weight factor 
based on feature distribution in each frame, remodelling the 
covariance matrix of the visual measurement during VIO Pose 
estimation. The uncertainty in feature geometry is quantified by 
the distance Di between the camera pose (cx,cy) calculated from 
the calibration process (Mahmoud et al., 2020) and each feature 
position (pxi,pyi) and the weight distribution coefficient M is 
computed based on the spread of features relative to the camera 
pose: 

𝑀𝑀 =
1
𝑛𝑛∑ 𝐷𝐷𝑖𝑖

 
𝑖𝑖

�∑ �𝐷𝐷𝑖𝑖−
1
𝑛𝑛∑ 𝐷𝐷𝑖𝑖

 
𝑖𝑖 �

  
𝑖𝑖

2

𝑛𝑛

                                     (10) 

 
The adaptive information matrix calculation is derived as follows 
to enhance the MAP problem: 
 

∑  𝑐𝑐𝑗𝑗   
𝑘𝑘

−1
= 𝑷𝑷𝑘𝑘

𝑐𝑐𝑗𝑗
−1 

. ǁMǁ         (11) 

min
𝜒𝜒
� �𝒓𝒓𝑝𝑝 − 𝑱𝑱𝑝𝑝𝝌𝝌�

2 + ��𝒓𝒓𝐵𝐵 �𝒛𝒛�𝑏𝑏𝑖𝑖+1
𝑏𝑏𝑖𝑖 ,𝒙𝒙��

𝑷𝑷𝒃𝒃𝒊𝒊+𝟏𝟏
𝒃𝒃𝒊𝒊  

2
𝑛𝑛

𝑖𝑖𝑖𝑖𝐵𝐵

+ �  
𝑛𝑛

(𝑘𝑘,𝑗𝑗)𝑖𝑖𝑐𝑐

�𝒓𝒓𝑐𝑐�𝒛𝒛�𝑘𝑘
𝑐𝑐𝑗𝑗 ,𝒙𝒙��

∑  𝒄𝒄𝒋𝒋
𝒌𝒌  

2
�                     (12) 

 
where 𝑷𝑷𝑘𝑘

𝑐𝑐𝑗𝑗  is the original covariance matrix of the residual term 
when the kth feature is observed by jth camera. The covariance 
matrix, which is inherently tied to the focal length as described 
in (Qin et al., 2018), remains fixed. Its inverse, 𝑷𝑷𝑘𝑘

𝑐𝑐𝑗𝑗−1 
, functions 

as the original information matrix. To address variations in 
feature distribution, this matrix is dynamically adjusted using the 
coefficient M, as defined in Equation (11), yielding the adaptive 
covariance matrix  ∑  𝑐𝑐𝑗𝑗   

𝑘𝑘
−1

. This adaptive matrix is then applied 
to modify the visual error term in Equation (6), as shown in 
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Equation (12). Figure 3 illustrates the spatial arrangement of 
features following the removal of dynamic points associated with 
moving objects across various frames. The results highlight 
instances of degraded geometric distribution in certain frames, 
primarily caused by the extensive elimination of features. 
 

 
 

Figure 3. Geometry distribution of the features in different 
frames after eliminating the dynamic features. 

 
4. Experiments, Results, and Discussion 

4.1 Experimental Setup and Evaluation 

The proposed system was evaluated using different datasets: the 
UrbanNav public dataset (Hsu et al., 2023) and a custom dataset 
collected with our intelligent vehicle platform. The UrbanNav 
dataset, captured in Hong Kong’s complex urban environment, 
includes GNSS, INS, camera, and LiDAR measurements, with 
ground truth system offering centimeter-level accuracy. Our 
custom platform, equipped with a RealSense D435 camera, 
Xsens MTi-G-710 IMU, and Ublox M8T GNSS receiver, was 
used to conduct real-world experiments in two scenarios: a 
campus garden and a challenging urban road network in Hong 
Kong. These environments featured dynamic objects, GNSS-
degraded areas, and varying levels of complexity. 
 
For evaluation, we employed both qualitative and quantitative 
metrics. The feature grading module was qualitatively assessed 
by analyzing the assignment of feature grades, with dynamic 
features excluded under the static world assumption. Quantitative 
analysis focused on positioning accuracy, measured using the 
Root Mean Square Error (RMSE) of Relative Pose Error (RPE). 
To demonstrate the effectiveness of the proposed framework, our 
positioning method is compared with the state of the art methods. 
 
4.2 Smart Feature Grading Performance 

The feature grading module is designed to identify and retain 
only absolute static features while filtering out dynamic ones. Its 
performance was evaluated through qualitative analysis, with 
results visualized in Figure 4. Features are categorized as 
follows: blue for detected but untracked points, green for 
eliminated dynamic features, yellow for tracked fixed features, 
and red for absolute static features. Dynamic objects, such as 
moving vehicles and pedestrians, were accurately excluded, 
while static features (e.g., traffic lights, signs) were retained for 
backend optimization. In Figure  4, frames (a) and (d) depict 
static scenes with red features, while frames (b) and (c) 
demonstrate the system’s ability to filter dynamic features, even 
when semantic detection fails. Blue features represent newly 
added points to maintain a consistent feature count. In the first 
row of images depicted in Figure 4,  various scenarios are 
observed for a similar segment. In the captured frame (a), all 
objects within the scene remain static, resulting in the appearance 
of red-colored features. However, in frames (b) and (c), the 
vehicles within the view start to move, including our driving 
vehicle, which is partially visible. In frame (b), the object 
detection model successfully detects our vehicle, and the 
associated features are filtered out as dynamic features and 
represented as green-colored features. This highlights the 
effectiveness of our HGCC constraint to filter out the semantic 
masked potential dynamic features. The absolute static features 
from the fickle and stable feature classes, which are depicted as 

red points, were recognized by our dynamic features discarding 
scheme present across all frames. Compared with conventional 
methods, only these two categories of features form the 
fundamental basis for subsequent optimization in the backend, 
ensuring the accurate transformation matrix without any 
interruptions from dynamic features. 
 

 
 
Figure 4. The grading of features obtained from our semantic 
front-end across multiple scenes. Detected but untracked features 
are depicted in blue, while green, yellow, and red indicate 
eliminated dynamic features, tracked fixed features, and absolute 
static features outside the masks, respectively. 
 
4.3 Analysis of the Effect of Geometry Distribution of 
Features 

 The spatial distribution of features in each frame varies based on 
the presence of surrounding objects and the removal of dynamic 
points. This section analyzes the effects of uneven feature 
distribution caused by the elimination of dynamic objects in 
highly dynamic environments. Figure 5 illustrates the feature 
distribution and weight coefficients M for selected frames, 
showing that frames with well-distributed features around the 
camera pose exhibit higher M values, reflecting better spatial 
accuracy and pose estimation. Table 1 presents corresponding 
relative positioning errors, for instance, in Frame (c), RMSE 
improved from 0.536 meters to 0.457 meters after considering 
geometry distribution. Similarly, in Frame (e), RMSE 
significantly decreased from 0.802 meters to 0.207 meters, 
demonstrating greater accuracy gains in poorly distributed 
scenarios compared to well-distributed ones. These results 
emphasize the importance of incorporating geometry distribution 
coefficients to reduce uncertainty and enhance state estimation 
performance. 
 

 
Figure 5. Geometry distribution of the features in different 

frames with the weight distribution coefficients. 
 

RMSE M Proposed_w/o M Proposed_M Imp.% 

Frame (c) 0.952 0.536 0.457 14.73  
Frame(a) 0.753 0.542 0.367 32.28  
Frame (e) 0.518 0.802 0.207 74.18  

 
Table 1. Positioning performance at different geometry 

distribution’s weight coefficients across different frames. 
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4.4 Evaluation of the Localization Performance 

To ensure a comprehensive validation, we conducted these 
evaluations using the publicly available UrbanNav dataset and 
our experiment that was conducted in the complex urban 
environment of the Hong Kong Road network. Our method was 
validated using the UrbanNav dataset, which contains dynamic 
objects in approximately 75% of frames, posing challenges for 
state estimation due to incorrect data associations. Figure 6 shows 
a heatmap of relative positioning errors for state of the art 
methods, highlighting the effectiveness of our method. Table 2 
provide quantitative results, showing that our method improved 
RMSE by 39.30% over the baseline VINS-Mono thanks to the 
adaptive covariance estimator. In contrast, DynaVINS performed 
poorly (1.598 meters RMSE), struggling with hyperparameter 
tuning and dynamic feature elimination. Compared to Wu et al. 
(2022), which removes all detected features without considering 
motion status, our method improved accuracy by 18% by 
leveraging motion analysis and addressing feature distribution. 
Unlike pixel-level segmentation (Mahmoud et al., 2024b), our 
method uses object detection masks, reducing computational 
overhead while effectively eliminating dynamic features. 
Overall, our approach enhances accuracy and robustness in 
dynamic environments. 
  

 

Strategies RMSE Mean STD Impro. % 
(Qin et al., 2018) 1.154 0.74 0.884 - 
(Wu et al., 2022) 0.891 0.531 0.715 22.70% 
(Song et al., 2022) 1.598 1.121 1.139 -38.4% 
Our method 0.702 0.435 0.551 39.30% 

Table 2.  Performance comparison of the proposed method 
with SOTA methods using the UrbanNav dataset. 

 

  
Vins-mono Wu_et_al_2022 

  
Dyna_vins our method 

 
Figure 6. Accuracy heat map illustrates the positioning errors 

for the comparison methods. 
 
To thoroughly assess the performance of the proposed method, 
we conducted our experiment in a complex outdoor urban driving 
environment characterized by high dynamics, with 
approximately 50% of the objects in motion. Figure 7 shows a 
heatmap of positioning errors for five methods, highlighting the 
reduced drift achieved by our approach. Quantitative results in 
Table 3 reveal that the baseline VINS-Mono achieved an RMSE 
of 1.423 meters but suffered from pose deterioration in static 

scenes with dynamic objects. Our method improved RMSE by 
10.26% by filtering dynamic features and retaining only static 
ones. Further enhancement was achieved by addressing feature 
distribution skewness using an adaptive covariance estimator and 
IMU reprojection constraints with an improved RMSE of 
12.09%. Our method outperformed Wu et al. (2022) by 9%, as 
their approach removed all detected features without considering 
motion status or feature distribution. DynaVINS performed 
poorly (1.586 meters RMSE), struggling in dynamic 
environments. Overall, the results introduced in this section 
highlight the effectiveness of our proposed method in reducing 
drifting and improving positioning accuracy and enhancing the 
system's robustness. 
 

Strategies RMSE Mean STD Improv. 
VINS_mono  1.423 0.675 1.253 - 
Wu et al 2022  1.368 0.655 1.201 3.86% 

Dyna_vins  1.586 0.78 1.381 -11.45% 
Ours* 1.277 0.627 1.111 10.26% 

Our overall 
method 

1.251 0.61 1.092 12.09% 
 

*Ours: VINS with only our smart feature grading and filtering 

Table 3. Performance comparison of the proposed method with 
different methods using our real-world dataset. 

 

  
Vins-mono Wu_et_al_2022 

  
Dyna_vins our method 

  
Figure 7. Accuracy heat map illustrates the positioning errors 

for five local comparison methods. 
 

5. Processing Time Efficiency 

We tested our system's computational efficiency using the ROS 
framework on a laptop with an Intel® Core™ i9-10900 CPU, 
NVIDIA GeForce RTX 3060 GPU, and 64 GB RAM. We 
compared our method's running time with Vins-Mono, focusing 
on time per frame across modules. Vins-Mono averaged 73 
ms/frame, while our method added 18 ms/frame, maintaining 
real-time performance. The object detection module consumed 
the largest increase at 17 ms/frame, while feature grading took 
0.67 ms/frame. The optimization module differed by 0.4 
ms/frame due to an IMU reprojection constraint and adaptive 
geometry-based estimator. Despite the overhead, our method 
ensures accurate feature tracking and robustness, achieving real-
time performance suitable for timely and accurate processing. 
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6. Conclusion 

We propose a novel VINS method that leverages a smart feature 
grading module to overcome cautious and excessive dynamic 
feature removal, effectively handling the complexities of 
dominant and ambiguous dynamic objects. The proposed system 
integrates semantic-aware and multi-level geometric constraints, 
a VI-based motion consistency constraint, and an auto-adaptive 
covariance estimation method to enhance feature tracking and 
pose estimation accuracy. Experimental validation in dynamic 
urban environments demonstrates the method's superior accuracy 
and robustness, with minimal impact on computational time, 
ensuring real-time processing. Future work will focus on 
integrating additional sensors to further enhance system 
performance in challenging environments. 
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