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Abstract

Real-world 3D reconstructions of building fagades in LoD3 and beyond are not yet widely available on the mass market due to
financial and technological barriers, as well as the challenges of automated modeling. We propose a novel method for extracting
3D facade elements using image-based instance segmentation and scale-invariant object contour points (SIOCP). Our methodology
uses RGB images, camera parameters, absolute 6DoF pose and position, as well as LoD2 building information. The images are
processed using instance segmentation with YOLOv8 and SAM, complemented by classical and enhanced algorithms for line and
edge detection. The SIOCP method refines object contour lines from instance segmentation by incorporating LoD2 building data
and 6DoF information. Subsequently, the keypoints are estimated and the single-camera image 6DoF pose is reconstructed using a
PnP solver. From these 6DoF poses a photogrammetrically point cloud is generated, and semantically- and instance-segmented with
SuperCluster. The segmentation results are intended for future comparisons with other point clouds and LoD3 reconstructions. The
presented approach is still under development, so the current results are limited. In summary, this paper introduces a key component
of our vision for LoD3 reconstruction by using handheld devices.

1. Introduction

Future city models require LoD3 quality and can be considered
as a cross-sectional technology for many domains. Examples
include urban planning, rescue during fire, and shading analysis
for photovoltaic systems. However, LoD3 models have not yet
reached the mass market. Current real-world available LoD3
reconstructions are mainly based on MLS and semi-automatic
data processing (Wysocki O. et al., 2022). The high finan-
cial and technological barriers limit the widespread creation
of LoD3 models. As a result, in the SAVE (Schwab B. and
Wysocki O., 2021) research project in Europe, only one real-
world street reconstruction was carried out. It becomes clear
that the data processing aspect of the project was the most time-
consuming.

To address this challenge, we propose a novel method for ex-
tracting 3D fagade elements using image-based instance seg-
mentation and scale-invariant object contour points. We intro-
duce a new data processing pipeline for RGB image processing.
The aim of this paper is to facilitate LoD3 reconstruction for
the mass market by lowering technical and financial entry bar-
riers. The ideal scenario would enable the reconstruction of
LoD3 models using widely available consumer devices, such as
smartphones.

2. Related Work

Everything began with the idea of object-based outdoor local-
ization by using a monocamera system. For this purpose, a
handcart was built with a 720° gimbal for environmental per-
ception with a monocamera system. Additionally, the handcart
uses an absolute positioning system consisting of GNSS RTK
and IMU (Frank et al., 2024b). The handcart was used to digit-
alize the Campus Fallenbrunnen in Friedrichshafen, Germany

and TUM experimental farm Roggenstein. During digitaliza-
tion, the handcart placed in different positions and at each pos-
ition 200 to 360 12MP images were taken. This high resolution
of the images allows visually to detect facade details, like door
handle bars. Further, this high level of detail led to the creation
of a 39-class object catalog with instructions for instance seg-
mentation labeling of facade elements (Frank et al., 2024c).

This is where out paper contributes to LoD3 reconstruction.
LoD3 reconstruction methods can be distinguished into image-
based, point cloud-based, and hybrid approaches. Each recon-
struction approach relies on a dataset, which is processed using
statistical or AI methods to create LoD3 models. Point cloud-
based approaches are primarily based on mobile laser scans
(MLS) and may involve color-enriched point clouds. For ex-
ample, Scan2LoD3 (Wysocki et al., 2023) proposes a method
based on Bayesian networks, while A. Yarroudh et al. utilize a
Grounding Dino Al approach. The camera-based approaches
by B.G. Pantoja-Rosero et al. (Pantoja-Rosero et al., 2022)
and H. Huang et al. (Huang et al., 2020) use structure-from-
motion (SfM) point clouds for outer shell detection and seg-
ment openable objects using deep learning methods. Both ap-
proaches generate outer shells at LoD2 level using statistical
methods for point cloud processing (Nan and Wonka, 2017),
while windows and doors are instance-segmented in images
via deep learning models such as DenseNet56 and TernausNet.
The semi-automated approach to LoD3 creation (Harshit et al.,
2024) co-registers Apple LiDAR and UAV-derived photogram-
metric point clouds. Its LoD3 reconstruction pipeline consists
of Autodesk Revit and FME Workbench for processing.

Finally, our approach differs from others because we do not
create a high-density point cloud to derive the building’s outer
shell. Instead, we first extract the objects, refine the object con-
tours, and reconstruct the camera poses and facade elements
using scale-invariant object contour points (SIOCP).
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To validate our SIOCP results, a high-density point cloud is
generated and related to following works: 3D deep learning ex-
perienced a breakthrough in segmenting 3D data with (Qi et
al., 2017a), which introduced PointNet, a network architecture
for segmentation that manages fundamental properties of point
clouds, such as unordered and permutation-invariant points. How-
ever, PointNet fails to leverage the spatial neighborhood of points
for feature extraction, which is crucial for identifying local pat-
terns. Subsequent works addressed this limitation with architec-
tures such as PointNet++ (Qi et al., 2017b) and DGCNN (Wang
et al., 2019). These methods primarily focus on accuracy rather
than the efficient processing of large-scale data, a critical factor
when creating large-scale LoD3 models, as individual build-
ing facades can consist of millions of points. Processing such
large datasets can push modern hardware to its limits, mak-
ing data aggregation essential. However, downsampling point
clouds into dense voxel grids contradicts the inherently sparse
structure of point clouds (Graham et al., 2018). This approach
results in a large proportion of grid cells being unoccupied,
significantly increasing computational costs and memory con-
sumption. Equally important, coordinate-based voxelization ig-
nores object semantics, leading to inaccuracies (Landrieu and
Simonovsky, 2018). Conversely, (Landrieu and Simonovsky,
2018) propose an approach that explicitly utilizes semantic in-
formation to partition the point cloud into so-called superpoints,
which are then embedded as nodes in a graph neural network
for learning. Similar to how PointNet++ improved on Point-
Net, the Superpoint Transformer (SPT) (Robert et al., 2023)
builds on the superpoint graph method. SPT employs a multi-
scale processing scheme to exploit rich neighborhood inform-
ation and introduces an attention mechanism (Vaswani et al.,
2017), thereby achieving high performance.

3. Methodology

The methodology section describes a workflow for automat-
ically creating LoD3 building models from street-level image
data. An overview of the approach is presented in Section Sys-
tem Architecture. Section Data Annotation and Prepara-
tion explains the process of data annotation and preparation.
Sections Object Extraction and Scale-Invariant Object Con-
tour Points (SIOCP) outline our approach for identifying ob-
ject contours in images and recovering precise camera poses
by matching those contours. Based on these poses, a dense
point cloud can be reconstructed from the images using semi-
global matching. Finally, section Object Segmentation with
SuperCluster describes the object segmentation of the gener-
ated point cloud, allowing us to evaluate the previous object
extraction results.

3.1 System Architecture

The system architecture is based on the concept of a monocam-
era object localization approach. This idea was further developed
into a suitable object catalog (Frank et al., 2024a), which in-
cludes buildings and vegetation for localization. Additionally,
a handcart tool for data acquisition (Frank et al., 2024b) and a
data annotation strategy for building facade elements were de-
veloped (Frank et al., 2024c¢). The starting point of the proposed
system architecture is the acquired data types, which consist of
12MP RGB images, absolute 6DoF pose and position data de-
rived from GNSS RTK, IMU, and gimbal pose, as well as date
and time stamps. Figure 1 provides an overview of the system
architecture and introduces the proposed methodology. The se-
quence of steps in the presented approach is indicated by num-

bers highlighted in yellow. The first step was data annotation
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Figure 1. System architecture overview to introduce in the
methodology.

and preparation for the approach. This was necessary due to
certain technological barriers, which are discussed in subsec-
tion 3.2. The object extraction (see subsection 3.3) is used dual
to accelerate the annotation process and segmentation automa-
tion. In the third step, described in subsection 3.4, raw images
were processed into edge vectors. The fourth step combines
object contours, edge vectors, and raw input data to generate
Scale-Invariant Object Contour Points (SIOCP). These SIOCPs
enable precise reconstruction of the camera’s 6-DoF pose and
position. To compare the results we photogrammetrically re-
constructed the point cloud and compard data with other point
clouds.

3.2 Data Annotation and Preparation

For this approach, 115 positions with 240 to 370 RGB images
each were captured at the Campus Fallenbrunnen and the exper-
imental farm Roggenstein, resulting in a total of 20,365 12MP
images to process. Applying the facade data annotation strategy
(Frank et al., 2024c¢) to these images presents a significant tech-
nical challenge. Comparable datasets and approaches do not
consider such a high level of detail. The labeling process began
with the manual annotation of images using CVAT (Sekachev
et al., 2020). Manually labeling a single image with polygonal
instance segmentation for 39 facade element classes takes, on
average, 3 to 4 hours. In the worst case, annotating 500 im-
ages would take around 2,000 hours—equivalent to a full-time
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job for an entire year. To ensure that a sufficient number of im-
ages could be annotated, we explored Al-assisted labeling tools.
Several market-available tools, such as Roboflow Annotate and
Label Studio, were tested. However, due to the complexity of
the annotation task, these tools proved inefficient for three main
reasons: 1. The Al tools did not offer a viable self-learning
mechanism. 2. Classification often still had to be performed
manually. 3. The costs were prohibitively high and unafford-
able for a research institute. During the same period, Ground-
ingDINO (Liu et al., 2024) and the Segment Anything Model
(SAM) (Kirillov et al., 2023) were released. Consequently, the
decision was made to develop our own Al-based labeling tool
by integrating CVAT, SAM, and YOLOvVS§-world (Cheng et al.,
2024) (see Subsection 3.3). In several iterations, the images
were labeled while simultaneously training the object extrac-
tion toolchain. On average, Al-assisted labeling of a single im-
age took at least 45 minutes. Additionally, recorded IMU, gim-
bal, and GNSS+RTK data were processed (Frank et al., 2024b).
This provided a preliminary absolute 6DoF position and pose of
the camera, which was further refined using SIOCP see section
3.5.

3.3 Object Extraction in Images based on Yolo and Segment-

Anything Model

The object extraction as facade instance segmentation is one of
the core components of this process. The circumstances can be
described as gaps between our 39 facade element classes, re-
lated datasets, labeling time, training time, and the Al precision
required to achieve a sufficient level of automation. Based on
these circumstances, the following requirements were derived:
To meet the challenge of detailed object extraction under the
given conditions, pre-trained Al models must be taken into ac-
count. Regarding object classification and labeling in CVAT,
an open-vocabulary detection model should be used as an in-
teractor. To assist the manual annotation, we began with seg-
mentation models. In a second step, the segmentation was en-
hanced with an object detection model to improve automation.
For automation, the output of the object detection model serves
as input for the segmentation model.

We started with the state-of-the-art segmentation Al tools re-
leased at the end of 2023 and in 2024. The most recent one
was Meta’s Segment Anything Model (SAM) (Kirillov et al.,
2023). SAM is a pre-trained, closed black-box model with data
interfaces that can be run offline, but it is not trainable. Meta
offers a free demo application with a ’segment everything’ func-
tion available at https://segment-anything.com/demo. Its out
of the box ’segment everything’ function on our dataset and
some inner-city pictures did not match the required segment-
ation classes. However, the manual segmentation using mouse-
click annotations was significantly accelerated by this model.

Ultralytics, in cooperation with Meta, released a trainable cut-
down version of SAM. The model was fine-tuned with 50 and
100 annotated images, but it produced worse results than Meta’s
original SAM. Thus, we decided to proceed with the original
Meta SAM for segmentation.

For object detection, an open-vocabulary object detection model
was necessary due to its text interface, which allows for extract-
ing only specific classes. GroundingDINO (Liu et al., 2024)
and YOLOv8-world (Cheng et al., 2024) identified as suitable
candidates. However, running HuggingFace’s GroundingDINO
in combination with SAM resulted in mismatched CUDA ver-

sions. Thus, running both models in parallel without code changes

or a recompiled version was not an out-of-the-box solution.

YOLOv8-world became the preferred alternative, as it worked
out of the box and had better community support. We star-
ted with the largest HuggingFace YOLOv8x-worldv2 model,
which has a mean average precision (mAP) of 47.1. For train-
ing YOLOV8, we split the 12MP (3040x4032) images into 1024
patches (5x4) with an overlap of 218 pixels in the x-direction
and 264 pixels in the y-direction. Additionally, we enriched the
model with our object classes and trained it. The training and
test data were split in an 80/20 ratio, as many unknown facade
element classes could not be inherited or related to other model
classes. The model was trained for 500 epochs, and the res-
ults are shown in the results section. The YOLOvVS results were
promising, so we integrated YOLOVS as the detector in CVAT.

The YOLO output was then passed as input to the SAM model
for automated instance segmentation. Several options are avail-
able for this integration: passing the bounding boxes (BB), tilted
bounding boxes, or points for SAM instance segmentation. Res-
ults are shown in the results section. Finally, the relative pose
of the recognized object is critical for successful instance seg-
mentation. Objects parallel to the camera image plane are easier
to segment than tilted ones.

3.4 Edge and Line Extraction

The edge and line extraction is used to obtain pixel-accurate line
vectors from the images. Standard OpenCV (Bradski, 2000)
methods, such as Canny edge detection, are applied to extract
edges from 12MP RGB images. First, the image is blurred us-
ing a small 3x3 kernel to preserve important details. Afterward,
Canny edge detection is performed without thresholds. The res-
ulting black-and-white image of extracted lines is processed us-
ing the probabilistic Hough line transform (HoughLinesP). The
parameters are set with a minimum line length of 10 pixels, a
maximum gap of 3 pixels, and a threshold of 100, which de-
livered workable results for most images. HoughLinesP cre-
ates several small line vectors along a single interrupted diag-
onal pixel line. These interrupted lines are then padded using
a nearest-vector clustering algorithm. The algorithm merges
vectors that are aligned within a distance of 2 pixels and have
an angular difference of less than 0.5°. Finally, the lines are
filtered based on their length and connected vectors.

3.5 Scale-Invariant Object Contour Points (SIOCP)

The SIOCP algorithm combines edges, instance-segmented ob-
jects, LoD2 building models, and 6DoF camera pose and posi-
tion to create scale-invariant object contour points (SIOCP).

In the first step, building orientation and shading are estimated.
Germany has digitalized all buildings in LoD2, which allows us
to determine the expected range of vertical building lines in the
images. This is done by transforming the LoD2 building mod-
els into a bird’s-eye view and ray tracing their visibility from
the GNSS-RTK position and the offset vector to the camera in a
360° view. The range of view is limited by the angular resolu-
tion of the 16 mm lens and the Sony IMX477 image sensor, and
to maintain an error of less than 3 mm, the detection distance
is set to 50 m. The estimated edge lines are sorted into ver-
tical and horizontal lines. The strategy is to use vertical lines
first to compensate for compass drift and adjust the horizontal
points by aligning the image plane with a parallel ground off-
set between the images. Horizontal building edges, seen from
the grounded camera’s point of view, create vanishing points.
These vanishing points are used to estimate and check the plaus-
ibility of horizontal fagade element parts by comparing vector

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-G-2025-473-2025 | © Author(s) 2025. CC BY 4.0 License. 475



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow...”, 6—11 April 2025, Dubai, UAE

orientations. The spatial orientation of each building in relation
to the camera’s 6DoF pose can be estimated in this step. Ad-
ditionally, the sun vector in 3D space is calculated, which can
later be used for exact object extraction.

The following parts of SIOCP are theoretical strategies and still
under development. Thus, there are no results yet, but they will
be briefly discussed later.

In the next step, the contours of instance-segmented facade ele-
ments are refined using extracted lines. The approach considers
the hierarchical relationships between facade elements, starting
from outer building walls and moving to detailed elements such
as window frames, casements, glass panes, and handles. These
dependencies reflect how most elements are integrated into the
facade and provide additional information about the probable
shape and edge locations. The 3D orientation and sun vector
are used to calculate shading, which helps estimate color gradi-
ents. Practical shading caused by elements such as balconies
or adjacent walls is also considered. For example, rain gutters
and pipes are typically round-shaped, so their color gradient de-
pends on the camera’s 6DoF pose and the sun vector. All this
information is combined to match the lines with the object con-
tours. Sharp known edges of each element are refined at the
sub-pixel level to improve their accuracy. The corrected con-
tour lines are then used to extract scale-invariant object contour
keypoints. These keypoints are located at orthogonal irregular-
ities along the contour, such as sharp edges or the midpoints of
circular shapes. Each keypoint is described by its vector, the
6DoF camera pose and position, and its object class.

Keypoint tracking across images taken from different 6DoF po-
sitions is performed by matching their rays and relative posi-
tions on the embedded fagade surface. A combination of brute-
force and closest-point matching is used. Finally, the best key-
points from two images are selected for 6DoF camera pose re-
construction. Keypoints covering the largest area in both im-
ages are used to reconstruct the 6DoF camera pose and position
via a perspective-n-point solver.

3.6 Object Segmentation with SuperCluster

We used SuperCluster (Robert et al., 2024), a panoptic segment-
ation architecture (Kirillov et al., 2019) based on SPT, which ef-
ficiently processes large point clouds. The method derives both,
semantic and instance labels, with the latter being particularly
relevant for us. However, the fact that both contribute to a com-
mon loss function leads to a harmonious understanding of the
scene. Initially, the method computes hand-crafted features per
point to build base-level superpoints. Since these represent the
highest possible resolution of the point cloud, it is crucial to find
an initial partition that accurately reflects object boundaries. To
achieve this, a search technique must be applied to find a para-
metrization consistent with the featured data and scene. Using
parameters based on the DALES dataset, and without adjust-
ing them, we explored the model on data from an agricultural
building obtained via mobile laser scanning. The dataset con-
tains nine facade sections, each approximately 20 meters wide,
manually labeled into semantic classes. Not all classes are rep-
resented in each individual section. We trained SuperCluster
for 2000 epochs without pre-trained weights due to incompat-
ible number of classes, using a train/test split of 80/20 %.

4. Results

In this section, we present a subset of the achieved methodo-
logy and its functional components. The functional compon-

ents include Data Annotation, Object Extraction, Line Vector
Extraction, and Object Segmentation using SuperCluster.

4.1 Data Annotation and Preparation

Annotation was and remains an ongoing task for this method-
ology. At this point, 200 images have been annotated at the
pixel level to generate ground truth data (Frank et al., 2024c)
from the Campus Friedrichshafen, Germany. Table 1 shows the
occurrences of facade elements in 200 instance-segmented and
annotated images. Glass elements are very common because of

Class Amount
Communication Technology 11
Bell 7
Mailbox 12
Handle 44
Support 93
Stairs 12
Door 47
Living Beings 18
Railing 167
Sky 49
Darkening 178
Window sill 297
Glass 1455
Scaffold 34
Obstacle 274
Wall 592
Roof 96
Frame 520
Lighting & Lamps 82
Ventilation/Heating/Climate 65
Text & Graphics 154
Traffic Sign 104
Pipe 181
Casement 466
Window 327
Road 110
Walkable 156
Vegetation 186
Vehicle 92
Ground 149
Fence, Wall 41

Table 1. Facade elements and their occurrences in 200 images

the modern architecture of one of the campus buildings. The
other campus buildings are 1930s barracks that were renovated
in 2010. A notable is the high proportion of glass elements
compared to walls, with a 1:3 ratio in the facades. The results of
the automated annotation are presented in the next subsection.

4.2 Object Extraction in Images based on Yolo and Segment-
Anything Model

The object extraction subsection is divided into SAM training,
YOLO training, and automatic annotation combining YOLO
and SAM. Training and validation are separated by an 80:20
ratio. This ratio was selected due to the limited quantity of im-
ages.

The HuggingFace SAM model was fine-tuned using 100 im-
ages over 50 epochs. Figure 2 shows that the model begins to
overfit after 5 epochs of training. The pre-trained and fine-tuned
HuggingFace and Meta SAM models were compared in CVAT
during manual labeling. The fine-tuned HuggingFace model
produced weak results due to overfitting and masking overly
large areas. Compared to the Meta model, the HuggingFace
model also had issues with shading and edge detection when
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Figure 2. Overfiting Huggingface SAM model

clicking around the image. Due to the significant gap in per-
formance between the two models, no further scientific metrics
or comparisons were conducted. Finally, the decision was made
to use the Meta model.

The pre-trained YOLOv8-world weights were enhanced with
facade element classes and trained for 500 epochs. Figure 3
visualizes the training results over the epochs. The downward
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Figure 3. Resluts of YOLOvV8 during training after 500 epochs.

trend of box and class loss in both training and validation indic-
ates that the model is learning. However, towards the end, the
model shows slight overfitting, as seen in the focal loss. The
mAP50-95 value is within the range achieved by the model on
the COCO dataset overall.

The results of the automatic instance segmentation pipeline,
combining YOLOVS and SAM, are shown in Figure 4. The
visualization displays the overlay of YOLO bounding boxes
and SAM’s segmentation results. The stacked bounding boxes
around the segmented building windows may appear confus-
ing, but they result from the detailed segmentation of openable
parts such as frames, casements, and glass. In the upper subfig-
ure (a), an orthogonal and closed building facade is segmented,
where the pipeline performs appropriately. Subfigure (b) shows
an image with an askew camera view of windows. Here, YOLO
misclassifies some shading elements as walls because the shad-
ing looks like a balcony. Metrics compared to the ground truth
have not yet been calculated, because the pipeline requires fur-
ther adaptation and refinement. More details can be found in
the discussion section.

4.3 Edge and Line Extraction

The results of the edge and line extraction methodology are
shown in Figure 5. The image is converted to greyscale for
better line visualization. The original RGB image presents a
challenge for the algorithm due to alternating light and shadow

Figure 4. Instance segmentation results from an automated
pipeline of YOLOv8 and SAM.

conditions. The extracted line vectors accurately overlay the
edges. However, some lines are shorter than the actual edge
lengths. This is caused by the Canny edge detection and the
padding algorithm. Canny edge detection creates interruptions
in the edges, which are subsequently padded. The figure shows
twice padded line vectors, where the second padding filter cri-
teria is more accurately.

Figure 5. Greyscale image of a building with challenging
sunlight and shadows, overlaid with extracted lines.

4.4 Object Segmentation with SuperCluster

Figure 6 shows the semantic and instance segmentation results
for a sample from the test set. As the training only took place on
very little data, the results are mediocre. For example, Figure
(d) shows that the rain gutter is not recognized in the instance
segmentation. We expect improved accuracy with more avail-
able training data and additional effort in parameter optimiza-
tion. Additionally, since the utilized point clouds are dense, we
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assume that SuperCluster will perform equally on photogram-
metric data.

(d) Instance segmentation: SuperCluster prediction

Figure 6. Results of semi automated labeling with SuperCluster.

5. Discussion

The presented methodology for LoD3 reconstruction is still un-
der development. Nevertheless, we present a methodology as a
proof of concept. The dataset used covers only a small portion
of building and architectural types for reconstruction, resulting
in a lack of data variation for training and testing. This indic-
ates that the dataset must be expanded to include a wider range
of building types. Furthermore, the data was recorded during
the summer on sunny days because the recording handcart is
not rainproof. This results in a best-case scenario for the in-
stance segmentation approach. The dataset should also be ex-
panded to include different weather conditions and recording
times for greater robustness. Additionally, the limited number
of 200 annotated images is not an ideal starting point for im-
proving object detection and segmentation. While there is no
fixed “magic number” for Al training, various forums suggest
using at least 1,000 images from different perspectives, object
scales, and times of day to ensure robustness.

The object extraction is a core component of the reconstruc-
tion pipeline. From a research perspective, the investigation
into the overfitting of the Ultralytics SAM did not make sense.
To achieve successful fine-tuning, a significant amount of data
would be required, which would exceed our time constraints.

Furthermore, the comparison between Meta SAM and Ultra-
Iytics SAM was based on subjective human perception during
annotation in SAM and output comparison. In our opinion, the
pre-trained Meta model performed much better, which is why
we did not conduct a statistical evaluation. YOLOvV8 world was
trained on 160 annotated images and showed slight overfitting
towards the end of the training process. Considering the lim-
ited number of images, the performance on 40 test images was
comparable to the COCO dataset level. However, its perform-
ance in shaded regions and areas with low color transitions was
weaker. Additionally, YOLOvVS exhibited similarity issues with
shaded coverings, misclassifying them as balconies or multiple
walls due to their appearance. Further, it lacks logical inform-
ation, such as recognizing that a balcony is larger and typically
has a door on its upper side. A potential solution could be to en-
hance the model through feature fusion, incorporating informa-
tion from the sun vector, ego camera vector, fagade orientation
vectors, and illumination data. The pipeline passing bound-
ing boxes from YOLOvV8 to SAM delivers acceptable results
for facade elements positioned in the orthogonal image plane.
However, when applied to tilted or non-orthogonal fagade ele-
ments, the results deteriorate. The main issue is the mismatch
between distorted facade elements in the image space and the
rectangular bounding boxes. A possible solution could be to de-
termine the bounding box and extract line vectors (see section
3.4), then pass the inner closest points to SAM. This highlights
the potential for optimization by integrating additional features
and external information.

The extraction of lines and edges produces good vectors in
a respectable number of images. However, line vanishing ef-
fects occur due to blurring with a 3x3 kernel or color gradients,
resulting in interrupted lines. A potential solution could be to
process the unblurred image using Canny edge detection with
smaller bandwidth criteria. Another issue arises during vector-
ization with OpenCV’s ‘HoughLinesP*, which generates many
small line vectors that need to be padded afterward. Due to the
padding process, some vectors are lost, especially at the begin-
ning and end of an edge (see Figure 5). A possible improvement
would be to use an alternative vectorization method, such as a
snake algorithm, which performs vectorization and padding in
a single step. Due to the limited number of annotated images
in the dataset, the extraction algorithm has not been thoroughly
tested. One option is to test the method using the Barcelona
Images for Perceptual Edge Detection (BIPED) dataset (Soria
et al., 2023).

The SIOCP integration is partially implemented but not yet
fully operational. As a result, there are currently no results to
present.

6. Conclusion and Outlook

The paper presents a new methodological approach for mono-
camera 6DoF position and pose reconstruction in RGB images,
based on SIOCPs with building fagades. Additionally, the ex-
tracted data can be used for photogrammetric LoD3 reconstruc-
tion. Our achievements include:

e Aninstance-segmented facade dataset with 39 element classes
and 200 images was presented, and its annotation remains
an ongoing task.

e The methodology introduces an approach for scale-invariant
object contour points (SIOCP) of fagade elements for 6DoF
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mono-camera pose and position reconstruction, as well as
photogrammetric point cloud-based segmentation.

e The YOLOvVS8-World and SAM pipeline assists the com-
plex instance annotation process, reducing manual effort
by more than 75%.

e Image preprocessing components, including YOLO, SAM,
and edge extraction, are functioning appropriately and are
ready for integration into the SIOCP framework.

e Matched SIOCP keypoints or photogrammetrically gener-
ated point clouds can be used for LoD3 building fagcade
reconstruction.

Nevertheless, the implementation and cross-referencing of the
entire methodology is still an ongoing task. Several necessary
improvements, listed in the results section, must be made to
ensure the complete pipeline works reliably in an automated
way. The presented approach is a step toward simplifying LoD3
building reconstruction. Our vision is to generate LoD3 build-
ings using a handheld device, such as a smartphone.
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