
RobotSLAM: A Lightweight Low-cost 3D LiDAR SLAM Handheld Device 
 

 

Huimin Gao1, Gefei Kong2, Xiaochuan Huang3, Hongchao Fan4, Ruofei Zhong5 

 
1 College of Resources, Environment and Tourism, Capital Normal University, Beijing, P.R. China – 543177458@qq.com 

2 Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway – 

gefei.kong@ntnu.no 
3 Zhengtu 3D (Beijing) Laser Technology Co., Ltd., Beijing, P.R. China – peterdachuan@126.com 

4 Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway – 

hongchao.fan@ntnu.no 
5 College of Resources, Environment and Tourism, Capital Normal University, Beijing, P.R. China –zrfsss@163.com 

 

 

Keywords: Mobile Laser Scanning (MLS), Handheld Device, Simultaneous Localization and Mapping (SLAM), Multi-sensor 

Fusion, Point Cloud Accuracy Verification. 

 

 

Abstract 

 

As the importance of Mobile Laser Scanning (MLS) technology in 3D mapping continues to grow, the development of low-cost, 

portable devices to address the complex mapping needs of various environments has become a key area of research in the industry. 

Currently, handheld MLS devices are increasingly being applied in a wide range of surveying tasks, especially in small outdoor spaces, 

indoor environments, and narrow areas with limited accessibility. This study proposes the development of a novel handheld mobile 

laser scanning system, RobotSLAM Lite. The system integrates a LiDAR sensor and a fisheye camera through a multi-sensor fusion 

approach to enable Simultaneous Localization and Mapping (SLAM). A dedicated data processing platform, RobotSLAM Engine, has 

also been developed to generate and optimize point cloud maps with true-color information. To evaluate the system’s performance, the 

study was conducted at the Norwegian University of Science and Technology, utilizing an experimental building and nearby roads as 

test sites. High-precision point cloud data obtained from a terrestrial laser scanner (Leica ScanStation P30 TLS) and RTK measurement 

Ground Control Points (GCPs) were used as reference benchmarks. A four-metric evaluation framework, comprising absolute 

coordinate deviation, point cloud density distribution, surface roughness, and cloud-to-cloud distance (C2C), was established to 

quantitatively analyze the mapping accuracy of the device in indoor and outdoor scenarios at various scales. Experimental results 

indicate that RobotSLAM Lite provides centimeter-level accuracy while significantly reducing both equipment cost and operational 

complexity, offering a new technological solution for 3D mapping in both large and small spaces. 

 

 

 

1. Introduction 

 

In traditional laser surveying, terrestrial laser scanners (TLS) 

have long served as the core method for high-precision 3D 

spatial data acquisition. However, these technologies exhibit 

significant operational limitations: firstly, TLS requires line-of-

sight conditions to establish control networks, resulting in 

restricted coverage per station; additionally, the equipment 

necessitates collaborative operation by specialized personnel, 

leading to increased labor intensity for field staff. 

 

To overcome these technical bottlenecks, Mobile Laser 

Scanning (MLS) devices have emerged. Mobile surveying 

solutions, by ensuring point cloud accuracy and data integrity, 

substantially enhance field data collection efficiency. This leap 

in efficiency is attributed to their unique dynamic scanning 

mechanism—eliminating the time-consuming relocation 

between fixed stations, thereby enabling continuous 3D data 

acquisition. 

 

Laser scanning technology is increasingly evolving towards 

dynamic and large-scale applications, which is a great 

transformation driven by the development of MLS, Airborne 

Laser Scanning (ALS) and Simultaneous Localization and 

Mapping (SLAM). These technologies are widely applied in 

various disciplines, including autonomous driving, forestry 

investigation, and urban 3D modeling (Cadena, C. et al, 2016). 

To facilitate broader adoption in these areas, recent 

advancements in LiDAR technology have focused on reducing 

device costs while enhancing its reliability and flexibility (Lin,  

 

J. and Zhang, F. 2020). Unlike traditional MLS that typically rely 

on large platforms such as vehicles or aircraft, Personal/Portable 

Laser Scanner (PLS) (Di Stefano, F. et al.,2021), such as 

handheld PLS, place the consumer-grade laser scanners on 

portable equipment. These devices are suitable for more flexible 

3D data collection in small-scale scenes, particularly in complex 

terrains and narrow spaces, and indoor scenes. 

 

This study develops RobotSLAM Lite, a lightweight, low-cost 

3D LiDAR handheld device. While ensuring affordability and 

portability, the device achieves high accuracy and vivid color 

mapping across both small- and large-scale environments, 

including indoor and outdoor settings. Additionally, an 

accompanying software platform, RobotSLAM Engine, has been 

developed for this device, which supports efficient computation, 

visualization, and processing of point cloud data with advanced 

functionalities. 

 

To comprehensively validate the performance of this device, this 

study selected two scenes for case studies: (1) the main roads 

around Norwegian University of Science and Technology 

(NTNU) as a large-scale outdoor scene, and (2) the corridors of 

a building at NTNU as a small indoor scene. High-precision 

point clouds obtained from the Leica ScanStation P30 terrestrial 

laser scanner (TLS) and control points collected with Leica Real-

time Kinematic (RTK) were used as reference data. The 

evaluation metrics—absolute coordinates, point cloud density, 

surface roughness, and cloud-to-cloud distance (C2C)—will be 

used to verify the point cloud quality collected by RobotSLAM. 
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2. Product Design and Innovation 

 

2.1 Hardware (RobotSLAM Lite) 

 

RobotSLAM Lite handheld mobile scanning system developed in 

this study employs a multi-source heterogeneous sensor fusion 

architecture to achieve a synergistic optimization of lightweight 

design and high-precision 3D data acquisition. As shown in 

Figure 1, the system hardware configurations are as follows: 

 

2.1.1 Sensor Unit: The Laser Scanning Module is equipped with 

the DJI Livox Mid-360 hybrid-solid LiDAR sensor, built in an 

Inertial Measurement Unit (IMU), which utilizes non-repetitive 

scanning technology to achieve a composite field of view (FoV) 

of 360° (horizontal) × 59° (vertical). At a reference distance of 

10 meters, the ranging accuracy reaches 2 cm (1σ confidence 

interval), with angular accuracy better than 0.15° (RMS), and an 

effective detection range spanning 0.1 to 70 meters, meeting the 

surveying requirements in most scenarios. The Panoramic 

Imaging Module integrates a dual-fisheye lens panoramic 

camera system, with a total weight of 135 grams. The front and 

rear lens groups are arranged back-to-back to achieve 360° 

omnidirectional coverage. Each lens supports image capture at a 

resolution of 6080×3040 pixels. An integrated six-axis MEMS 

gyroscope ensures temporal and spatial synchronization between 

images and point clouds. 

 

2.1.2 Optimized Structural Design: The device body features 

a topologically optimized magnesium-aluminum alloy frame, 

balancing structural rigidity and lightweight design (total weight 

of 1.32 kg). The bottom is equipped with an arrow-shaped 

stabilizing base, with the tip featuring a hollow target marker 

(aperture of 3 mm ±0.1 mm, positioning accuracy of ±0.5 mm), 

supporting rapid total station co-location. The handle's contact 

surface is ergonomically designed and made of high-friction 

silicone material to ensure device stability during operation, 

making it comfortable to use for long time data collection 

sessions (over 20 minutes). 

 

2.1.3 Intelligent Operation System: The system is equipped 

with an embedded interactive control unit, enabling full-process 

automation: 

One-Button Acquisition: A single press triggers simultaneous 

start and stop of multiple sensors. The SLAM algorithm, based 

on LiDAR-inertial initialization strategy, achieves convergence 

in less than 15 seconds. 

Status Visualization: The display screen provides real-time 

status updates, including initialization, data acquisition, data 

saving, and sleep mode (low-power mode). 

 

2.1.4 High-Reliability Storage and Endurance: Under typical 

power consumption (LiDAR + IMU + panoramic camera 

operating continuously), the system supports ≥2.5 hours of 

continuous scanning. The data storage unit is equipped with a 1 

TB solid-state drive (sustained write speed ≥500 MB/s), 

accommodating the maximum data volume per task (point cloud 

+ images ≤800 GB). 

 

There configurations ensure that RobotSLAM Lite delivers high-

precision, efficient, and user-friendly performance for 3D data 

acquisition in various environments. 

 

 
Figure 1. The Structure of RobotSLAM Lite (Front and Back). 

 

2.2 Software (RobotSLAM Engine) 

 

RobotSLAM Engine is based on SLAM algorithm and multi-

sensor fusion, providing state estimation and obtaining real-

color 3D point cloud map. Figure 2. illustrates the core software 

functionality distribution of RobotSLAM Engine, which is 

divided into three main modules: Point Cloud Processing, Image 

Processing, and SLAM Processing. The functions within each 

module are as follows: 

 

2.2.1 Point Cloud Processing: This module includes 

conventional functions, coord transformation, filter, and 

classification for point clouds. Conventional Functions includes 

standard point cloud processing tools such as 3D measurements, 

point cloud slicing, file format conversion, point cloud rendering, 

resampling, and more. Coord Transformation provides 4-

parameter and 7-parameter transformations to convert the point 

cloud data from the local coordinate system to global 

geographical coordinate system, ensures that the data can 

provide reliable and useful geographical reference information. 

As for Filter, the Progressive Morphological Filter (PMF) and 

Statistical Outlier Removal Filter (SORF) help remove noise 

from the point cloud, while the Cloth Simulation Filter (CSF) 

separates ground and non-ground point cloud data. Classifier has 

built-in basic point cloud categories and also supports adding 

categories, which requires manual operation. 

 

2.2.2 Image Processing: This module calculates the pose 

information of the camera capturing the images, allowing point 

clouds to be projected onto the images and providing RGB 

information for coloring the point clouds. 

 

2.2.3 SLAM Processing: In this module, the FAST-LIO2 (Xu, 

W., et al, 2022) algorithm is employed as the SLAM front-end 

framework. FAST-LIO2 is a fast, robust, and versatile LiDAR-

inertial odometry framework that directly registers raw points to 

the map without feature extraction, enabling the exploitation of 

environmental features to enhance accuracy. Afterward, 

Trajectory Adjustment optimizes the device’s movement 

trajectory to improve localization accuracy. Loop Closure 

feature corrects position drift by detecting overlapping regions 

in the point cloud data, enabling accurate map reconstruction, 

while GNSS coordinates can also be used outdoors to adjust the 

trajectory. Manual Matching allows for manual frame-to-frame 

matching, where the software automatically computes poses for 

trajectory optimization. After multiple or repeated scans, project 

merging can be performed, followed by global point cloud 

optimization. This solves issues of inconsistent data accuracy 

across multiple scans and enables manual alignment and 

registration of different datasets for accurate point cloud 

stitching. 
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These integrated functional modules enable efficient point cloud 

processing, precise pose estimation, and effective SLAM 

algorithm application, resulting in high-quality MLS and data 

collection. 

 

 
Figure 2. Modules and Functions of RobotSLAM Engine. 

 

3. Point Cloud Data Acquisition 

 

3.1 Data Acquisition 

 

In order to comprehensively evaluate the accuracy of the device, 

this study has designed the data acquisition and accuracy 

verification methods for both large-scale outdoor road and small-

scale indoor scenarios. These environments include both typical 

and challenging, hard-to-handle features.  

 

3.1.1 Outdoor Data Acquisition: Main roads in NTNU and 

surrounding area were selected for the outdoor large-scale survey, 

covering nearly 7000 m, with a total area of nearly 81,000 m2, as 

shown in Figure 3, the red lines. The road terrain in this area is 

relatively complicated, with significant changes in slope. 

Therefore, we divided the road into multiple closed loops during 

point cloud data acquisition, ensuring consistency between the 

start and end points of each loop. Each individual trajectory 

underwent loop closure optimization. Adjacent loops overlapped 

to ensure accurate stitching of the multiple routes.  

 

3.1.2 Indoor Data Acquisition: The indoor data was collected 

in an experimental building at NTNU. The building has two 

floors and features numerous long corridors, with the longest 

measuring 69.24 m. The similar structures included in this test 

area makes SLAM computations highly prone to degradation 

and distortion. The total length of the corridors we collected is 

approximately 395.21 m, with 130.11 m on the first floor and 

265.10 m on the second floor. In the indoor data acquisition 

strategy, four distinct routes were established: Firstly, data 

collection along the circular corridor on the first floor; next, the 

staircase connecting different floors, and finally, the two circular 

corridors on the second floor. Each route was designed to ensure 

approximately 30% overlap with adjacent routes, facilitating 

accurate alignment and integration of the point cloud data. 

 

 
Figure 3. Experimental Area and Data Collection Routes. 

Statement: Screenshot from Google Maps, Time: 2025-2-10. 

The citation of Google Maps (https://www.google.com/maps/) 

in this study is in accordance with its terms of use and is for 

academic research purposes only. 

 

3.2 Data Processing 

 

3.2.1 Point Cloud Registration: During the data acquisition 

process, nine trajectory routes and corresponding point cloud 

datasets were generated for the outdoor environment, while four 

trajectory routes and point cloud datasets were obtained for the 

indoor environment. In the RobotSLAM Engine software, each 

individual trajectory underwent optimization using the loop 

closure detection feature. Subsequently, the multi-project 

trajectory stitching function was employed to manually register 

all outdoor trajectories and all indoor trajectories, followed by 

global adjustment. 

 

3.2.2 Point Cloud Data Optimization: After completing the 

global point cloud stitching, optimization procedures were 

applied to enhance the data quality. Initially, RGB coloring was 

applied to the global point cloud. Subsequently, the Statistical 

Outlier Removal Filter (SORF) was utilized to eliminate noise 

points, for the road data, primarily targeting dynamic objects 

such as pedestrians, vehicles, and cyclists; while for the indoor 

data, targeting specifically points that are reflected from glass 

surfaces. The parameters were set with a standard deviation 

multiplier (α) of 2.0 and a neighborhood size (K) of 30 for road 

scene and (α) of 1.5 and (K) of 20 for corridor scene. 

 

3.2.3 7-Parameter Transformation: Due to the absence of RTK 

functionality in RobotSLAM Lite, it was necessary to perform a 

7-parameter transformation to obtain absolute coordinates for 

the outdoor road point cloud. The Norwegian Public Roads 

Administration provided 11 high-precision Ground Control 

Points (GCPs) within the survey area, each with an accuracy 

exceeding 0.5 cm. After establishing corresponding points in the 

point cloud, a 7-parameter transformation was conducted, 

resulting in a mean error of 0.1452 m, which meets the required 

accuracy standards. 

 

Totally, in the outdoor large-scale scene, we collected a total of 

17.12 GB of road point cloud data, while in the indoor scene, we 

collected 2.22 GB of data. As shown in Figure 4 (a) and (b), the 

point cloud is colored by elevation, with different colors on the 

road surface indicating elevation changes, while Figure 4 (c) and 

(d) show the layout of the corridors on the first and second floors 

of the building, respectively.  
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(a) (b) large-scale road data acquisition. 

  
(c) (d) indoor corridor data acquisition. 

Figure 4. Display of Point Cloud Data by RobotSLAM. 

 

4. Data Accuracy Verification 

 

4.1 Data Accuracy Verification 

 

The 3D TLS instruments have wide fields of view and can 

generate very dense and high-precision 3D point clouds, as well 

as they can survey roads and buildings almost non-destructively 

(Bi, S. et al, 2020). Therefore, in this paper, the point cloud data 

scanned by the Leica ScanStation P30 TLS (Leica Geosystems, 

Hexagon, Germany), will serve as the reference data to verify 

the accuracy of data scanned by RobotSLAM. Table 1. shows the 

comparison between the 2 devices. We collected data from the 

same road and partial data from the second floor of the 

experimental building using the Leica ScanStation P30 TLS. The 

outdoor data from the P30 was then processed and optimized. 

The resulting errors are as follows: C2C Error = 0.008m; GCPs 

Error = 0.033m; Global Bundle Error = 0.019m. 

 

Parameter RobotSLAM Lite 
Leica ScanStation 

P30 

Detection Range 

40m (@10% 

Reflectivity) 

70m (@80% 

Reflectivity) 

120m 

(@18% 

Reflectivity) 

Distance 

Accuracy 
2cm（@10m） 1.2 mm + 10 ppm 

Angular 

Accuracy 
≤ 0.15° ≤ 0.002° 

Field of View H 360°; V 59° H 360°; V 290° 

Measurement 

Rate 
200,000 pts/s 1,000,000 pts/s 

Table 1. Comparison of Device Parameters. 

 

Here are several evaluation metrics used in this work. 

 

4.1.1 Absolute Coordinate Errors: In the road scenario, 52 

GCPs were selected uniformly, and their Easting (E), Northing 

(N), and Height (H) values were measured and recorded using a 

Leica GS15 GNSS Antenna Surveying RTK system. These 

GCPs, with the accuracy of 1-3 cm, were used to evaluate the 

accuracy of the absolute coordinates obtained from the handheld 

system. In the road point cloud with absolute coordinates, 

corresponding points from the GCPs are selected, and errors in 

the E, N, and H directions are calculated. The Mean and RMSE 

values are then computed. As shown in Figure 5, (a) illustrates 

the distribution of GCPs within the survey area, while (b) 

displays the error distribution in the E, N, and H directions.

 

   
(a) the distribution of GCPs; (b) the error distribution in the N, E, and H directions. 

Figure 5. The Result of Absolute Coordinate Errors. 

 

As shown in Table 2, the mean absolute error (MAE) values in 

the E, N, and H directions are all less than 0.2m, and the root 

mean square error (RMSE) values are all below 0.3m, which 

meets the general accuracy requirements for road surveying. As 

seen in Figure 5(b), the errors in the E, N, H directions are 

predominantly in the range of -0.25 m to 0.25 m. The errors in 

the horizontal (E and N) directions are smaller, while those in 

the H direction are more scattered. This is due to the significant 

elevation differences in the survey area, and the LiDAR's lower 

resolution and smaller field of view in the H direction compared 

to the horizontal directions. 

 

Items E N H 

MAE 0.136m 0.121m 0.177m 

RESE 0.177m 0.256m 0.220m 

Table 2. Mean Error and RESE Values in 3 Directions. 

 

4.1.2 Point cloud density: In this paper, surface density was as 

the point cloud density indicator, with the local neighborhood 

radius of 0.5642 m, to calculate the point cloud density value 
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within 1 m2 neighborhood range. Point clouds were extracted 

from 15 sections of the road and building surfaces, and the 

surface density for each slice was calculated for analyzing their 

density and distribution.  

As shown in Figure 6 and 7(a), (b), and (c), the point cloud data 

collected by RobotSLAM Lite exhibits a distinct variation in 

surface point cloud density. Specifically, the point cloud density 

shows consistent behavior along the direction of the scanning 

trajectory, while it exhibits a gradient change in the direction 

perpendicular to the trajectory. As the distance from the 

trajectory points increases, the point cloud density decreases. 

Within 10-meter near the trajectory routes, the point cloud 

density reaches 1500 pts/m2, while within 3 meters of the 

trajectory, the density increases significantly, exceeding 8000 

pts/m2. This variation in point cloud density reflects the scanning 

system's capacity to capture more detailed information near the 

trajectory while gradually losing precision as the distance from 

the scanning path increases. This behavior is indicative of the 

inherent properties of MLS systems. 

 
    

  
(a) Point cloud range with a density exceeding 8000 pts/m²  

  
(b) Point cloud range with a density reaching 1500 pts/m². 

Figure 6. The Comparison of Point Cloud Density. 

(RobotSLAM on the left and Leica P30 on the right.) 

 

   
(a)(b)(c) Density distribution of point cloud on road surfaces. 

  
(d)(e) Density distribution of point cloud on building facade. 

Figure 7. Some visualization results of point cloud density from RobotSLAM. 

 

4.1.3 Surface roughness: In this paper, the definition of point 

cloud roughness is as follows: The point cloud roughness of 

point p is determined by fitting a reference plane using the points 

within its neighborhood. The directed distance from point p to 

the reference plane is considered the roughness of point p (Ma, 

X., et al, 2024). We have extracted point clouds from 15 sections 

of the road/building surfaces and 5 sections of indoor corridor 

scenes, including point clouds of wooden doors, white walls, and 

floor surfaces. For each point cloud slice, we have calculated the 

surface roughness and selected the same sections in the TLS 

point cloud for comparison. 

 

According to Figure 8. (a)(b)(c)(d), in the indoor scene, the 

building corner points exhibit higher roughness, a feature 

observed in both devices. However, the point cloud from 

RobotSLAM exhibits significantly greater roughness 

(approximately 0 ~ 0.7), while the roughness of the point cloud 

from Leica P30 is confined to a range of 0 ~ 0.04, much smaller 

in comparison. In the outdoor scene (as shown in Figure 8. 

(e)(f)(g)(h)), the road surface captured by RobotSLAM exhibits 

good performance (roughness values approximately 0 ~ 0.05). 

However, in the building facade, while smooth wall surfaces 

yield favorable results, the roughness increases significantly at 

the window sills and eaves. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-497-2025 | © Author(s) 2025. CC BY 4.0 License.

 
501



  
(a)(b) A corridor with doors; 

 

() 

  
(c)(d) White wall; 

  
(e)(f) building facade; 

  
(g)(h) road surfaces. 

Figure 8. Some visualization results of point cloud roughness. (RobotSLAM left and Leica P30 right.) 

 

4.1.4 Cloud-to-cloud Distance: In outdoor scene, the cloud-to-

cloud distances were calculated between the RobotSLAM point 

clouds and TLS road data. This measures the level of detail in 

the data construction. In the C2C calculation results for the 15 

road and building surfaces, the road slices consistently yielded 

favorable experimental results. As shown in Figure 9. (a)(b), the 

amber color reflects the C2C distance values and their 

distribution. The darker the color, the smaller the distance, 

indicating higher relative accuracy. In the road slices, the 

average relative distance is better than 0.2m. However, in the 

building facade calculations, the average relative distance is only 

better than 0.3m. As shown in Figure 9. (d), which represents the 

largest error, a distance difference of 0.5~0.7m is observed on 

one facade. 
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(a)(b) C2C in road sections. 

  
(c)(d) C2C in building facade. 

Figure 9. Some Results of C2C Distance. 

 

 

5. Conclusion 

 

This paper provides a detailed introduction and accuracy 

evaluation of the RobotSLAM Lite, a portable and low-cost 

handheld mobile laser scanning device designed and developed 

for surveying applications. The results indicate that, in both 

indoor and outdoor environments across large and small-scale 

scenarios, the device performs excellently in terms of point 

cloud coordinate accuracy and geometric precision. Based on a 

laser SLAM algorithm for mapping and supported by point cloud 

map quality optimization functions in RobotSLAM Engine, the 

RobotSLAM Lite performs well across several key metrics, 

including absolute coordinates, point cloud density, surface 

roughness, and cloud-to-cloud distance. 

 

The primary advantages of the RobotSLAM Lite lie in its 

lightweight design, affordability, and ease of use, making it an 

attractive solution for surveying tasks in both large and small-

scale environments. However, this study also highlights certain 

limitations of the device, such as the occurrence of significant 

point cloud noise in highly dynamic or cluttered environments, 

as well as a reduction in point cloud density. Additionally, the 

accuracy of point cloud coloring still requires further 

optimization. 

 

Future research will focus on improving methods for dynamic 

object removal to ensure better point cloud quality. Currently, we 

are developing techniques using Gaussian splatting to enhance 

the fusion modelling accuracy between images and point clouds, 

as well as expanding its application in more complex 

environments. 

 

Overall, this study underscores RobotSLAM as a cost-effective, 

multifunctional tool in modern surveying, with significant 

promise for widespread applications in industries such as 

construction surveying, road mapping, and indoor modelling. 
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