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Abstract

In this work we investigate the problem of measuring a checkerboard target’s centre in an 3D point cloud. This is an important
problem which has applications in registration, long term monitoring and linking to other sensor systems. We use a 3D template
matching approach based on the coloured ICP algorithm to solve the problem. We tackle the problem under the additional constraints
that we assume no structure in the 3D data in order to be able to handle unordered point clouds. This gives us the capability to process
data from the new generation of low-cost LIDAR sensors. This category of sensors also suffers from increased noise in range and
reflectivity measurement. We provide extensive simulation results using synthetic data to capture the potential of the approach. We
then give the detailed steps for handling real sensor data.

1. Introduction

It is a common workflow scenario for terrestrial laser scan-
ning that several separate stations are necessary to capture a
scene. The alignment of the stations into a common reference
frame is usually referred to as registration. Several alternative
approaches exist to solve the alignment problem. Often, ap-
proaches for terrestrial laser scanning can be traced back to clas-
sical surveying, photogrammetry, or computer vision. We can
categorise the approaches into marker based, sensor based or
data driven approaches (Pfeifer and Böhm, 2008). The marker-
based approaches are still expected to deliver the highest accur-
acy.

Similar use cases for high accuracy targets arise for easy in-
tegration of terrestrial laser scans with other measurement tech-
nologies such as total station or laser tracker. Also, the long-
term observation of single qualified points for example in mon-
itoring or metrology applications can be directly accomplished
with targets. For this reason, commercial laser scanning systems
provide vendor specific software solutions to detect markers in
laser scans from their systems. Although different target designs
exist (Janßen et al., 2019), checkerboard style targets have been
universally adopted across vendors for reasons of cost and ver-
satility.

Due to the raster-wise sampling of most common terrestrial
laser scanning systems the back-scattered intensity can be rep-
resented in a matrix structure (Boehm and Becker, 2007; Sanc-
hez Castillo et al., 2021). This allows for the adoption of ro-
bust and widely available image processing algorithms to per-
form target detection and measurement in 2D. Unfortunately,
for non-standard laser scanners, this is not always possible.
Some newer generation scanners deliver unordered point clouds
(Ortiz Arteaga et al., 2019). It is not possible to apply image
processing algorithms directly to this data type. One possible
approach is to project (a portion of) the unordered point cloud
into a plane and use a 2D approach in the projection plane (Ge
andWunderlich, 2015; Goo et al., 2024). This would then allow
to revert to standard image processing.
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In this work, we want to follow another approach. We formulate
the problem of measuring a target’s centre as a template match-
ing problem in 3D. We distinguish the measurement problem
from the detection problem. Detection tries to find the target in
the overall scene. Here we are concerned with finding the ex-
act centre of the target when its approximate location is already
known. We solve the template matching directly on the raw 3D
point cloud data and thus avoid the projection of the data to 2D
described above.

In unordered 3D data there is no direct equivalent to a cross-
correlation. Instead, the Iterative Closest Point (ICP) category
of algorithms serves a similar purpose for template matching
(Besl and McKay, 1992). It is well-known that ICP does not
perform well on planar surfaces. Therefore, additional inform-
ation needs to be taken into account. Using per-point intensity
for ICP is a common approach and has been successfully applied
to this problem (Liang et al., 2024a).

Naively, we can extend the 3D geometry information to form a
4D vector by adding intensity (Feldmar et al., 1997). However,
the more recent literature of Park et al. (2017a) suggests a differ-
ent approach. Two error terms separating geometry and intens-
ity (or colour) are formulated and optimised for. This solution
is reported to have superior precision over previous approaches.
An open implementation of this algorithm is available in the
widely adopted Open3D library (Zhou et al., 2018). Based on
this implementation, we perform several experiments both using
synthetic and real data to test the precision of the target meas-
urement using a checkerboard target template.

2. Related Works

2.1 Iterative Closest Point (ICP) Algorithm

The Iterative Closest Point (ICP) algorithm has been a funda-
mental technique in 3D computer vision and robotics for point
cloud. Originally proposed by Besl and McKay (1992), ICP
aims to minimise the distance between two datasets, typically
referred to as the source and the target. The algorithm operates

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-529-2025 | © Author(s) 2025. CC BY 4.0 License.

 
529



Figure 1. Visual comparison of a synthetic target template, survey-grade instrument scan of a target and low-cost scan of a target.

in an iterative manner, identifying correspondences by match-
ing each source point with its nearest target point (Wang and
Zhao, 2017). It then computes the rigid transformation, usu-
ally involving both rotation and translation, to achieve the best
alignment of thesematched points (Wang and Zhao, 2017). This
process is repeated until convergence, where the change in the
alignment parameters or the overall alignment error becomes
smaller than a predefined threshold.

One key advantage of the ICP framework lies in its simplicity:
the algorithm is conceptually straightforward, and its basic ver-
sion is relatively easy to implement. However, traditional ICP
can be sensitive to local minima, often requiring a good initial
alignment (Zhang et al., 2021). Furthermore, outliers, noise,
and partial overlaps between datasets can significantly degrade
its performance (Zhang et al., 2021; Bouaziz et al., 2013). Over
the years, various modifications and improvements (Gelfand et
al., 2005; Rusu et al., 2009; Aiger et al., 2008; Gruen and Akca,
2005; Fitzgibbon, 2003) have been proposed to mitigate these
issues. Among themost common strategies are robust cost func-
tions (Fitzgibbon, 2003), weighting schemes for correspond-
ences (Rusu et al., 2009), and more sophisticated techniques
(Gelfand et al., 2005; Bouaziz et al., 2013) to reject outliers.

In addition, there is significant interest in integrating additional
information into the ICP pipeline. Instead of solely relying
on geometric cues such as point coordinates or surface nor-
mals, recent approaches have proposed incorporating colour
(RGB) or intensity data to enhance correspondence accuracy.
These methods (Park et al., 2017b; Men et al., 2011), commonly
known as ”Colored ICP” employ differences in pixel intensities
or colour values as additional constraints. This is particularly
beneficial in situations where geometric attributes alone are in-
adequate for accurate alignment or where surfaces possess com-
plex texture patterns that can assist in the matching process.

2.2 Applications of Target Measurement

One approach relies on the use of physical checkerboard targets
for registration. Fryskowska (2019) analyse checkerboard tar-
get identification for terrestrial laser scanning. They propose
a geometric method to determine the target centre with higher
precision, demonstrating that their approach can reduce errors
by up to 6 mm compared to conventional automatic methods.

Becerik-Gerber et al. (2011) examines data acquisition errors
in 3D laser scanning for construction by evaluating how differ-
ent target types (paper, paddle, and sphere) and layouts impact
registration accuracy in both indoor and outdoor environments
and presents guidelines for optimal target configuration.

Liang et al. (2024b) propose to use Coloured ICP to measure
target centres for checkerboard targets, similar to our investig-
ation. They use data from a survey-grade terrestrial laser scan-
ner. Their intended application is structural bridge monitoring
purposes. They report an average accuracy of the measurement
below 1.3 millimetres.

Where targets cannot be placed in the scene, the intensity in-
formation form the scanner can still be used to identify distinct-
ive points. For point cloud data that is captured with a regular
pattern, standard image processing can be used in a similar way
to target detection. For example, Wendt (2004) proposes to use
the SUSAN operator on a co-registered image from a camera,
Boehm and Becker (2007) proposes to use the SIFT operator on
the LIDAR reflectance directly and Theiler et al. (2013) propose
to use a Difference-of-Gaussian approach on the reflectance in-
formation. Most of these methods extract image features to find
reliable 3D correspondences for the purpose of registration.

In the following we describe our approach to the measurement
of the target centre. In contrast to most proposed methods above
we focus on unordered point clouds, where raster-based meth-
ods are not available, and low-cost sensors, where increased
measurement noise and outliers are expected. As we are not
aware of a commercial reference solution to this problem, we
start by conducting a series of synthetic experiments to explore
the viability and accuracy potential of the approach.

3. Methodology

Synthetic Data The initial set of experiments focuses on gener-
ating synthetic point cloud data to evaluate the performance of
Coloured ICP algorithm. Using synthetic data guarantees pre-
cise ground truth values for the target positions and orientations.
It also allows us to explore the iterative algorithm under a vari-
ety of initial configurations of translation and orientation. We
can also control the amount of noise the simulated LIDAR data.
As we vary translation, orientation, and noise our evaluation cri-
teria are:

• Root Mean Squared Error (RMSE): The error between
the source and target checkerboards after alignment. The
error is expressed as a fraction of the target size.

• Success of measurement: Defined as a case where ICP or
Coloured ICP converges with RMSE less than 15% of one
side of the source checkerboard (geometric success) and
the colour matching score exceeds 0.5 (colour success),
with both conditions satisfied.
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Figure 2. Target measurement process on low-cost scan data using ICP and Coloured ICP. (1) Initialisation: The source point cloud
(checkerboard) is misaligned with the target point cloud. (2) Initial Registration using Point-to-Plane ICP: Standard ICP leads to
suboptimal registration. (3) Final Registration using Coloured ICP: Colour information is incorporated after pre-processing with

RANSAC and Binarisation with Otsu Thresholding for real data, resulting in improved alignment.

Figure 3. The process of target generation

We vary the initial translation of the template in relative terms of
the size of the target from 0% (full overlap) to 150% (no over-
lap) in steps of 10%, applying both in-plane and out-plane ro-
tations with the same degree of rotation for each (see Figure 3).
We conduct experiments by randomly selecting translation dir-
ections while increasing the shift and rotation magnitudes. For
each configuration, we perform 100 experiments and compute
the statistics for the criteria above.

(a) Before RANSAC (b) After RANSAC

Figure 4. Effect of RANSAC filtering. (a) Before RANSAC:
Numerous outliers are present particularly in the black regions,
affecting the alignment. (b) After RANSAC: The outliers are
removed, leading to a cleaner point cloud and improved

registration quality.

The experiments on simulated data will be followed up with
tests on real LIDAR data captured with a Livox MID-360
sensor. Figure 1 shows a visual representation of the problem
we are tackling, with the rightmost scan being the most challen-
ging situation.

Real Data In order to evaluate the proposed checkerboard re-
gistration method in real-world scenarios, we collected indoor
point cloud data using our Livox LiDAR sensors. The scanned
scene includes a physical checkerboard composed of black and
white squares. As we are not aware of commercial reference
software that can be applied to arbitrary unordered point clouds,
we do not have ground truth values for this experiment. There-
fore, we conduct a second experiment on a dataset acquired of

(a) Before binarisation (b) After binarisation

Figure 5. Effect of binarisation on point cloud processing using
Otsu’s method

the same scene with a Leica RTC 360 survey-grade terrestrial
laser scanner. We use vendor-provided software Leica Re-
gister360 to measure the centres of the targets in the scene. This
provides ground truth values, albeit on an ordered and rather
noise-free point cloud.

We first isolate the region of interest from the raw LiDAR data
by cropping a bounding box around the checkerboard’s assumed
initial location. The synthetic checkerboard template is initial-
ised near the assumed position of the real checkerboard. To
match the scale and geometry of the real chequerboard, we res-
ized the synthetic model to the a priori known physical dimen-
sions of the realcheckerboard. In order to leverage colour-based
registration, we convert intensity information of the synthetic
checkerboard into corresponding RGB values. Following the
extraction of the real checkerboard and the preparation of the
synthetic one, we perform a first alignment step using Point-to-
Plane Iterative Closest Point (ICP).

Due to the nature of LiDAR sensing, black surfaces gener-
ally exhibit lower reflectivity compared to white surfaces, of-
ten leading to weaker return signals and higher measurement
noise. In our Livox sensor data, the black squares on the check-
erboard display significantly more noise and outlier points than
the white squares. There are already previous reports on the is-
sues around the intensity values and effects on ranging accuracy
of this category of LiDAR sensors (Zhang et al., 2023).

To mitigate the impact of the noise on point cloud registration,
we apply a RANSAC-based outlier removal step on the extrac-
ted real checkerboard. This is to eliminate outliers, predomin-
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Figure 6. Comparison of ICP and Coloured ICP results across different shifts and rotations. The results highlight the RMSE and
success rate differences between the two methods under varying conditions.

antly over the black squares.

It is well known from template matching in images that differ-
ences in colour or grey values between source and target need
to be considered. For example, in least-squares matching this is
often achieved with estimating an offset and scale factor for the
intensity. However, in (Park et al., 2017b) the photometric cost
function is formulated as the squared differences of intensity
values. We must therefore adapt the intensities before Coloured
ICP is applied.

To address these problems, we perform a binarisation of the
point cloud intensities using Otsu’s method. This binarised rep-
resentation facilitated the identification of corresponding points
during Coloured ICP, ensuring more accurate and robust regis-
tration by reducing ambiguity in grayscale intensity variations.

With the pre-processed real checkerboard (noise reduction and
binarisation) and the synthetic checkerboard, we execute Col-
oured ICP to further refine the alignment. The full workflow
with example data is shown in Figure 2.

4. Results

We start by conducting experiments on synthetic data. We create
the source template as a regular grid of points with the colouring
of a chequerboard. In the initial experiments, the same data act
as the target point cloud to be matched against. Figure 10 shows
that the coloured ICP is able to maintain a high success rate
and a low RMSE for shifts up to 90% when only shifts between
the source point cloud and target point cloud are considered.
We show pure ICP as a baseline here to reiterate that pure ICP
cannot reliably find a match for planar targets.

In a second round of experiments for synthetic data, we combine
shift and rotation. Figure 6 shows that adding rotation reduces

the success rate. For rotations up to 30 degrees, shifts up to 60%
still provide a better success rate than 70%. Figure 7 shows the
performance when noise is added to the target point cloud. The
range for successful convergence is slightly reduced.

The next set of experiments is conducted on real point clouds
that were acquired over a test field with different checkerboard
targets using both a survey-grade terrestrial laser scanner and
a low-cost automotive scanner. For the low-cost system, we
have no ground truth data, so we will provide qualitative results.
Figure 4 shows that the RANSAC filter has effectively removed
the outliers while preserving most of the checkerboard points.
Figure 5 (a) shows the ’bleeding’ across the black and white
edges from the low-cost system. Binarisation shown in Figure
5 (b) generates sharper edges which has improved results in our
experiments. Figure 8 illustrates how pre-processing impacts
the outcome. Without preprocessing, the results are noticeably
more susceptible to noise and exhibit a tilt. In Figure 9, we show
the final alignment that is achieved which gives us the centre of
the target via the transformation parameters obtained with the
Coloured ICP.

The experiments on the survey-grade data are performed to val-
idate the approach and allow us to compare the results to vendor-
calculated reference values which we consider as ground truth
values. We use a Leica RTC 360 laser scanner. This scanner is
specified by the vendor with a 3D accuracy of 1.9 millimetre at
10 metre range. We used the vendor provided software Leica
Register 360 to calculate reference values for the target centres.
We achieved an average accuracy on the target centres of 1.1
millimetre with our approach.

5. Conclusion

The primary contribution of this research is the systematic eval-
uation of key parameters that affect the accuracy of the Col-
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(a) RMSE of Coloured ICP

(b) Success Rate of Coloured ICP

Figure 7. Results of Coloured ICP with noise in the target data.
(a) RMSE across different shifts and rotations.(lower values
indicate better performance) (b) Success Rate across different
shifts and rotations.(higher values indicate better performance)

oured ICP algorithm to measure checkerboard centres in un-
ordered point clouds. We explored parameters such as Gaus-
sian noise, translation, and rotation in a controlled setup using
synthetic data. The finalised settings are validated using real
scanned datasets, demonstrating that the approach effectively
measures target centres. When compared to reference methods
the approach delivers the expected accuracies. The approach is
capable of handling unordered point clouds in the presence of
significant noise both in range and intensity.

The experiments have also raised some new questions around
the quality of the low-cost scanner data. At the moment, we do
not know enough about the physical or optical properties of the
sensor. For example, the ’bleeding’ that is visible in Figure 5 (a)
could be caused by the spot size of the scanner or a cross-talk
on the detector between subsequent point acquisitions. Like-
wise, the interaction of reflectance and range measurement is a
continuing issue. Further investigations would be beneficial to
create a better model of the sensor’s characteristics. This would
also aid the simulation of the sensor and could provide more
realistic synthetic data.

(a) Without pre-processing (b) With pre-processing

Figure 8. Effect of pre-processing on Coloured ICP registration.

(a) Front (b) Side

Figure 9. Final alignment between template and scanned target
from a low-cost sensor. We use pseudo colour for visualising the

sensor data to better see the intensity alignment.

(a) RMSE of ICP and Color ICP

(b) Success Rate of ICP and Color ICP

Figure 10. (a) RMSE of ICP and Coloured ICP, with numbers
next to each point representing the standard deviation from 100
execution counts. (b) Success Rate of ICP and Coloured ICP,
comparing their performance across different shift percentages.
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