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Abstract: 

 

Accurate forest inventory is critical for sustainable management, ecological assessment, and biomass estimation. Combining near-

proximal and proximal Light Detection and Ranging (LiDAR) data produces point clouds that fully capture the forest structure. This 

study presents a unified framework for processing multi-resolution LiDAR data to extract key forest attributes, including tree location, 

height, and diameter at breast height (DBH). The proposed methodology integrates LiDAR data captured by Unmanned Aerial Vehicles 

(UAVs) and BackPack systems for canopy structure delineation and fine-scale understory mapping, enhancing the accuracy of tree 

segmentation and biometrics estimation. A multi-stage processing pipeline is developed, incorporating adaptive ground removal, 

intensity/geometry-based filtering for woody part separation, and layered density-based spatial clustering of applications with noise 

(DBSCAN) to mitigate over-segmentation. Additionally, an image-LiDAR linking strategy is introduced as a precursor for tree species 

identification by associating segmented trees with UAV and BackPack imagery. The proposed approach is evaluated in a plantation, 

demonstrating an F1-score of 100% for tree detection and a 3.1 cm root mean square error (RMSE) for DBH estimation. The results 

highlight the reliability of the proposed framework for accurately detecting trees and estimating their DBH. Furthermore, by combining 

geometric information from LiDAR with the rich semantic information in captured imagery, the proposed image-LiDAR linking 

strategy shows its potential for tree species identification. The effectiveness of multi-source LiDAR integration for forest inventory 

applications, offers a scalable solution for large-scale forest monitoring. Future work will focus on improving tree segmentation in 

complex forest environments and leveraging machine learning models for automated species classification. 

 

 

1. Introduction 

Fine-resolution forest inventory is essential for evaluating forest 

health, biomass distribution, and carbon storage, forming a foun-

dation for sustainable forest management. Accurate inventory 

data informs policy decisions aimed at tackling climate change, 

preserving biodiversity, and optimizing forest resources (Lin et 

al., 2022). Traditionally, forest assessments depended on manual 

measurements, which are time-consuming and expensive. How-

ever, advancements in remote sensing, particularly Light Detec-

tion and Ranging (LiDAR) technology, have transformed forest 

data collection. Research has highlighted the effectiveness of Li-

DAR in various inventory applications, including detecting indi-

vidual trees, estimating tree height, analysing canopy structure, 

and assessing above-ground biomass (Chen et al., 2021; Ganz et 

al., 2019; Lin et al., 2021; Pirotti et al., 2017; Revenga et al., 

2022; Wallace et al., 2014, 2012). 

 

Near-proximal and proximal LiDAR technologies, such as Un-

manned Aerial Vehicles (UAVs) and BackPack mobile LiDAR 

systems, provide high-resolution data for forest inventory. UAV 

LiDAR, which operates above the canopy, provides canopy 

structure data while maintaining stable Global Navigation Satel-

lite System (GNSS) signal connectivity, making it particularly 

useful for mapping tree crowns and overall forest structure. How-

ever, the nature of data acquisition from aerial vehicles limits 

their ability in capturing details beneath dense foliage, such as 

diameter at breast height (DBH) and stem volume. On the other 

hand, BackPack LiDAR, used within the forest understory, cap-

tures fine-scale details of trunks, ground vegetation, and other 

structural elements crucial for a thorough forest assessment (Shao 

et al., 2024). Integrating UAV and BackPack LiDAR data en-

hances inventory accuracy by combining canopy-level mapping 

with below-canopy level structural analysis. Additionally, 

incorporating Red-Green-Blue (RGB) imagery with LiDAR pre-

sents several potential benefits for tree species identification, fur-

ther expanding its applications in forest ecology. 

 

Many researchers have focused on Mobile Laser Scanning 

(MLS) for evaluating its accuracy and efficiency in forest inven-

tory applications. Chiappini et al. (2022) evaluated the accuracy 

of handheld MLS compared to traditional manual measurements 

for estimating dendrometric variables in a black pine plantation. 

Their study demonstrated that MLS provides precise estimates of 

tree height and DBH, offering an efficient alternative to labour-

intensive field measurements. Their findings indicate that MLS 

can achieve comparable accuracy to manual measurements while 

significantly reducing field survey time, making it a viable tool 

for large-scale forest inventory applications. Balestra et al. (2024) 

introduced a UAV image/LiDAR data fusion approach for esti-

mating individual tree carbon stock, highlighting its application 

in urban green planning and sustainable forest management. This 

method combines UAV imagery with spherical LiDAR data to 

enhance tree parameter estimation and improve carbon stock as-

sessments. Their findings show that integrating UAV LiDAR and 

RGB imagery enhances carbon stock estimation and enables 

high-resolution tree monitoring in urban areas. 

 

Recent advancements in remote sensing technologies have ena-

bled more efficient and detailed 3D modeling of urban trees, lev-

eraging various sensing methods for improved accuracy. 

Chiappini et al. (2024) compared the accuracy of 3D urban olive 

tree models generated using different sensing technologies, in-

cluding LiDAR sensors on smartphones, photogrammetry, and 

neural radiance fields (NeRF). Their study demonstrated that 

smartphone LiDAR can effectively capture tree structure, though 

photogrammetry and NeRF provided more detailed reconstruc-

tions. The findings highlighted the potential of smartphone-based 
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LiDAR for rapid tree modeling but emphasized the need for hy-

brid approaches to improve accuracy in complex environments. 

Gollob et al. (2021) assessed the capability of Apple iPad Pro’s 

integrated LiDAR sensor for measuring forest inventory param-

eters. Their study evaluated the accuracy of tree height, DBH, 

and stem volume estimates using this consumer-grade technol-

ogy. The findings suggest that iPad LiDAR can estimate forest 

inventory biometrics but with lower accuracy than TLS and 

MLS, making it better for preliminary assessments and rapid field 

surveys. 

 

Current limitations in forest inventory applications include the 

lower accuracy of consumer-grade LiDAR sensors compared to 

traditional MLS and TLS systems, making them less suitable for 

high-precision measurements. Additionally, while UAV and 

smartphone-based approaches show promise, they often require 

hybrid methods or data fusion techniques to improve accuracy in 

complex environments such as dense forests and urban settings. 

This study proposes a unified framework for deriving key forest 

inventory attributes, including tree location, height, and DBH, 

while also proposing an image-LiDAR linking strategy that can 

potentially be used for tree species classification. Furthermore, 

the proposed pipeline can deal with processing both single-source 

and multi-source LiDAR data across extensive forested areas. By 

addressing current challenges in multi-platform LiDAR integra-

tion and automation, this research aims to improve large-scale 

forest monitoring, supporting sustainable management and con-

servation efforts. The remainder of this paper is structured as fol-

lows: Section 2 introduces the proximal and near proximal mo-

bile mapping systems, study sites, and acquired datasets used in 

this study; Sections 3 and 4 demonstrate the overall methodology 

and the experimental results; Lastly, Section 5 summarizes the 

findings of the research and recommendations for future work. 

 

2. Data Acquisition Systems and Study Site 

The point clouds used in this study were collected by two 

different platforms: 1) UAV and 2) BackPack LiDAR systems. 

The UAV system in Figure 1 is equipped with an Ouster OS1-

128 LiDAR sensor (Ouster, 2025), a Sony RX1RII camera (Sony, 

2024b), and an Applanix APX15 v3 GNSS/INS unit (Applanix, 

2025). The GNSS/INS unit records Inertial Measurement Unit 

(IMU) data at a rate of 200 Hz, ensuring precise positioning and 

orientation tracking. This system can achieve a positional 

accuracy around ±5 cm and orientation accuracy of ±0.025° for 

roll/pitch angles and ±0.080° for heading in open-sky conditions.  

 

The Backpack LiDAR system, shown in Figure 2, includes a 

Velodyne VLP-16 LiDAR sensor (Velodyne, 2025) and a Sony 

α7R II digital camera (Sony, 2024b) for integrated imaging and 

spatial data collection. BackPack data georeferencing was 

realized using a Novatel SPAN-CPT GNSS/INS unit (Novatel, 

2024), ensuring accurate positioning and orientation. The system 

records IMU data at a rate of 100 Hz, achieving a post-processing 

positional accuracy of ±1 to ±2 cm and orientation accuracy of 

±0.008° for roll/pitch and ±0.026° for heading. 

  

A black walnut plantation, located near Purdue University in 

West Lafayette, IN, USA serves as the study site for this work. 

The site measures approximately 100 m × 75 m, as illustrated in 

Figure 3. The plantation layout consists of 16 rows and 12 

columns, with an average tree spacing of 4.5 m. The average tree 

height in this area is approximately 25 m. 

  

For the UAV, data collection took place during the leaf-on season 

in September 2024. The UAV operated at an altitude of 50 m 

above ground, flying at a speed of 3.6 m/s along seven flight lines 

in the East-West direction, with a lateral distance of 15 m 

between adjacent flights. The point cloud was reconstructed 

using an off-nadir angle of ±70°, achieving a 97% overlap 

between adjacent flight lines. For the BackPack system, data 

collection was conducted during the leaf-off season in March 

2024. The operator traversed the site along 13 tracks in the East-

West direction. The datasets from both platforms were integrated 

using the F2-LSLAM algorithm (Zhao, 2023) to enhance spatial 

consistency and alignment between the datasets, ensuring a 

seamless representation of the study area. Table 1 summarizes 

the specifications of the data acquisition systems and the 

collected data. 

 

System UAV System BackPack System 

Sensors & Units 

Ouster OS1-128 

LiDAR, Sony 

RX1RII Camera, 

Applanix APX15 

v3 GNSS/INS 

Velodyne VLP-16 

LiDAR, Sony α7R 

II Camera, Novatel 

SPAN-CPT 

GNSS/INS 

IMU Data 

Frequency 
200 HZ 100 HZ 

Positional 

Accuracy 
±5 cm ±1 to ±2 cm 

Orientation 

Accuracy 

±0.025° 

(roll/pitch), 

±0.080° (heading) 

±0.008° 

(roll/pitch), 

±0.026° (heading) 

Collection Season 
Leaf-on 

(September 2024) 

Leaf-off  

(March 2024) 

Flight/Survey 

Details 

Altitude: 50 m, 

Speed: 3.6 m/s, 7 

E-W flight lines, 15 

m lateral distance 

13 E-W tracks  

Table 1. Systems specifications summary 

 

 
Figure 1. UAV LiDAR system. 

 

 
Figure 2. BackPack LiDAR system. 

 

  
(a) (b) 

Figure 3.    Black walnut area: (a) a sample image showing the 

study site and (b) combined UAV/BackPack 

LiDAR point clouds (colored by height). 
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3. Methodology 

Figure 4 illustrates the workflow of the proposed forest inventory 

pipeline and LiDAR image linking algorithm, which will be used 

as a precursor for tree species identification. The workflow starts 

with a pre-processing step to handle large datasets and remove 

ground points. Next, height normalization is applied to facilitate 

tree segmentation and deriving individual tree location, DBH, 

and height. Various filtering techniques are applied to separate 

connected tree canopy, improving segmentation accuracy. 

Finally, clustering and quality control address tree over-

segmentation, ensuring reliable forest inventory metrics. The 

details of the methodology are explained in the following 

subsections. 

 

Figure 4. Illustration of the proposed workflow. 

 

3.1 Forest Inventory Pipeline 

3.1.1 Pre-processing and Above-Ground Filtering 

 

The workflow begins with ground filtering using an adaptive 

cloth simulation algorithm (Lin et al., 2021), which conducts 

ground and non-ground separation while generating a Digital 

Terrain Model (DTM) as shown in Figure 5. The above-ground 

point cloud undergoes a series of filtering processes to enhance 

segmentation accuracy. A two-step filtering process is applied to 

separate tree woody parts from foliage and mitigate the effects of 

canopy connectivity. First, intensity filtering removes foliage 

using an adaptive threshold derived through Otsu’s strategy 

(Otsu, 1979), effectively isolating high-intensity woody 

components. Second, geometric filtering partitions the point 

cloud into prisms of predefined dimensions, allowing for 

structural analysis based on a linearity metric derived through 

variance-covariance analysis of individual prisms. Points within 

prisms exhibiting strong linear characteristics are assumed to 

represent tree trunks and are retained. 

  

Following these steps, a statistical outlier removal (SOR) is 

applied to refine the point cloud by eliminating noise while 

preserving key woody parts. Figure 6 shows a sample tree in the 

original point cloud and the outcome of each filtering step. One 

should note that points lower than 5 meters above the ground are 

not included in the filtering process, which aims at minimizing 

interlocking between adjacent trees in the upper canopy (i.e., we 

ensure that the tree trunks are always retained). This approach 

ensures the retention of essential data for precise tree 

identification. 

 
Figure 5. Illustration of generated DTMs derived from the 

original (red) and adaptive (black) cloth 

simulation filters, with a zoomed-in section 

showing an artificial peak in the DTM from the 

original cloth simulation filter. 

 

    
(a) (b) (c) (d) 

Figure 6. Filtering process for a sample tree showing: (a) 

original point cloud, (b) woody points after 

intensity filtering, (c) result after geometry 

filtering, and (d) remaining point cloud after 

outlier removal. 

 

3.1.2 Clustering and Individual Tree Localization 

 

Tree segmentation is performed using the traditional DBSCAN 

algorithm (Ester, 1996) in a layered approach rather than 

applying it to the entire point cloud at once. This double-layer 

strategy ensures that even when adjacent tree canopies remain 

connected, as shown in Figure 7(a), the trunk layer remains 

isolated. This separation allows for accurate identification of 

individual tree clusters. To refine the segmentation, adjacent 

clusters across multiple layers are merged based on centroid 

proximity and eigenvector alignment as shown in Figure 7(b). 

Tree locations are determined by analysing the sum of elevation 

values within a 2D grid representation of the segmented points, 

specifically for the lower section with a given threshold above 

ground for each segment. The presence of trees is identified by 

having local maxima in the elevation sum, with peaks 

corresponding to individual tree location. To eliminate false 

positives, a trunk continuity check is performed. This involves 

slicing each trunk into multiple intervals, evaluating the point 

distribution within each slice and calculating the percentage of 

completeness along the trunk’s height. This process ensures that 

only well-defined tree trunks are retained. To mitigate over-

segmentation, falsely segmented clusters are removed by 

verifying the presence of a corresponding tree location. Clusters 

without a matching tree location are considered over-segmented 

and subsequently excluded as shown in Figure 7(c). After the 

final segmentation of woody parts, individual tree locations are 

further refined by defining the tree axis and identifying its 

intersection with the DTM to determine the final tree position.  
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(a) (b) (c) 

Figure 7. Illustration of layered DBSCAN and over-

segmentation mitigation showing: (a) clustering 

result for the multiple layers, (b) merged clusters 

based on proximity, and (c) final segmented 

woody part after over-segmentation mitigation. 

 

3.1.3 Final Tree Segmentation and Biometrics Extraction 

 

Key tree metrics including location, DBH, and height are derived 

from the segmented clusters. DBH is estimated through circle 

fitting for a cross-section between 1.4 m and 1.5 m from the 

ground, while ensuring sufficient point density for accurate 

estimation. Filtered points, previously removed during intensity 

and geometry filtering (Section 3.1.1), are iteratively reintegrated 

in small increments, restoring only points near the segmented 

woody structure. This iterative region-growing process retains 

essential canopy points while minimizing the inclusion of distant 

noise. The reintegration occurs based on a 10 cm proximity 

criterion per iteration, enabling controlled adjustments that 

maintain segmentation accuracy to represent entire tree structure. 

Figure 8 illustrates an example of the reintegration process, 

where the initially segmented woody structure shown in Figure 

8(a), and the reintegrated points every 10 iterations represented 

in different colors as shown in Figure 8(b-d). Finally, tree height 

is determined from the highest and lowest points within each 

cluster using the normalized height point cloud. This process 

enhances tree isolation while preserving critical structural details 

necessary for accurate forest inventory analysis. Final segmented 

tree together with derived metrics are shown in Figure 9. 

    

(a) (b) (c) (d) 

Figure 8. Iterative reintegration of filtered points into the 

segmented woody structure: (a) segmented woody 

structure after over-segmentation mitigation, (b) 

reintegrated points in red after 10 iterations, (c) 

reintegrated points in black after 20 iterations, and 

(d) final reconstructed tree with the reintegrated 

points beyond 20 iterations in green. 

 

 

 
 

(a) (b) 

Figure 9. Derived tree biometrics: (a) tree location represented 

by the red square together with the cross section 

used for DBH estimation and (b) segmented tree 

with the estimated height. 

 

3.1.4 UAV/BackPack Image-LiDAR Linking Strategy 

 

In this study, an image-LiDAR linking strategy is proposed to 

generate image patches for each tree from both the UAV and 

BackPack systems. For UAV image patch generation, points 

above the 90th percentile height for each segmented tree are 

isolated, as presented in Figure 10(a). A concave hull (Park et al., 

2021) is then applied to define their boundary, as illustrated in 

Figure 10(b). Figure 10(c) shows the back-projection of the 

derived boundary marked in red onto 2D imagery. Figure 10(d) 

presents the final UAV image patch, preserving only the image 

region within the concave hull. For the BackPack system, a 

similar procedure is applied, but only tree trunk points are 

considered, as shown in Figure 11(a). Finally, an image patch 

from the BackPack system is generated, with a buffer applied to 

its edges to ensure that bark features remain fully visible, as 

depicted in Figure 11(b). 

 
(a) (b) 

 
(c)  

 
(d) 

Figure 10. Illustration of (a) individually-segmented tree points 

showing the 90th percentile height, (b) isolated points 

that are above 90th percentile height with their 

boundary, (c) boundary points back-projected onto 

2D imagery, and (d) generated image patch. 
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(a) (b) 

Figure 11. Illustration of (a) tree trunk points back-projected onto 

2D imagery and (b) generated image patch. 

 

4. Experimental Results  

This section presents the experimental evaluation of the proposed 

method. The primary objective of the experiments is to assess the 

pipeline’s effectiveness in tree detection by establishing True 

Positives (TP), False Positives (FP), False Negatives (FN) when 

comparing the results with reference data. Also, the RMSE, 

characterizing the differences between the estimated DBH values 

from the proposed strategy and reference data measured in the 

field using vernier callipers, is reported. To evaluate the 

pipeline’s performance, the proposed method was tested in a 

plantation area, where the uniform tree spacing and minimal 

undergrowth provide a controlled environment for validation. 

This setting allows for a clear assessment of detection accuracy 

and diameter measurements, ensuring that the evaluation focuses 

on the method’s effectiveness without additional variability 

introduced by complex forest structures. Starting with the pre-

processing step, the point cloud is separated into ground and 

above ground while generating a DTM, which will be used to 

normalize the point cloud elevation for accurate tree 

segmentation and detection as shown in Figure 12. 

 

  
(a) (b) 

  

(c) (d) 

Figure 12. Ground non-ground separation: (a) original point 

cloud, (b) above ground point cloud, (c) bare earth 

point cloud, and (d) digital terrain model. 

 

The next step involves filtering the point cloud to reduce canopy 

interlocking. As shown in Figure 13, intensity-based filtering, 

geometry-based retention of woody parts, and SOR noise 

removal effectively reduce crown overlap by eliminating noise 

and canopy connections between adjacent trees. This refinement 

enhances individual tree isolation, leading to more accurate 

segmentation and better downstream analysis. 

  

(a) (b) 

  

(c) (d) 

Figure 13. Filtering and outlier removal steps: (a) original 

point cloud, (b) intensity filtering results, (c) 

geometry filtering results, and (d) remaining point 

cloud after statistical outlier removal. 
 

The clustering and merging approach enhanced tree 

segmentation accuracy by reducing over-segmentation, 

particularly in canopy regions. As illustrated in Figure 14(a), the 

initial layered clustering results show multiple fragmented 

clusters representing different tree segments. However, as shown 

in Figure 14(b), most of these initially fragmented clusters were 

successfully integrated, minimizing redundant detections of 

individual trees. Without this merging step, multiple detections 

for a single tree would have occurred, leading to over-

segmentation. After the merging process, tree detection was 

conducted on each cluster. Over-segmented clusters lacking a 

detected trunk location were reassigned to the nearest valid tree, 

ensuring a more accurate and cohesive segmentation. This 

refinement produced a complete tree structure, as depicted in 

Figure 15(a). Consequently, 92 trees were identified within the 

study area, as shown in Figure 15(b). The mitigation of over-

segmentation enhanced segmentation consistency and reduced 

false positives, improving the overall accuracy of tree 

delineation. Additionally, the incremental reintegration of 

filtered points further enhanced the representation of tree 

structures. The most significant improvements were observed in 

dense and overlapping tree regions, where the proposed method 

achieved more accurate delineation of individual trees. Unlike 

conventional segmentation techniques, which often result in false 

boundary lines between closely spaced trees—resulting in 

unnecessary fragmentation, the proposed approach preserves 

structural continuity ensuring a more natural and cohesive 

segmentation, as shown in Figure 16. The extracted forest 

inventory metrics including tree height and DBH are presented in 

Figure 17, where each individual tree is visualized with its 

corresponding height and DBH value. 
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(a) (b) 

Figure 14. Illustration of (a) layered DBSCAN clustering and 

(b) clusters after merging based on proximity. 

  
(a) (b) 

Figure 15. Illustration of (a) individual tree segmentation results 

(randomly colored by tree ID) and (b) stem mapping 

(colored by tree ID). 

 

 

 

(a) (b) 

Figure 16. Illustration of sample segmented trees: (a) 

perspective view of segmented trees and (b) top 

view. 

 

  

(a) (b) 

Figure 17. Derived forest inventory metrics for individual trees: 

(a) individually segmented trees with estimated tree 

height in m, and (b) individually segmented trees with 

estimated DBH in cm. 

The detected trees were compared with reference data to evaluate 

the quality of tree detection by determining TP, FP, and FN. 

Additionally, the RMSE characterizing the differences between 

the estimated and reference DBH measurements in the field was 

calculated. The results of this evaluation are summarized in 

Tables 2 and 3. The experimental results for tree detection 

achieved an F1-Score of 100% indicating that the approach had 

flawless precision and recall for the test area. The estimated tree 

DBH values exhibited an RMSE of 3.1 cm. While this indicates 

that the approach performs well, the median difference of 3.1 cm 

suggests a systematic bias relative to the reference data. This bias 

is primarily attributed to partial occlusion of tree trunks. 

Compared to manual calliper measurements, the proposed 

method tends to slightly underestimate DBH, likely due to 

inconsistencies in scan coverage. Figure 18 presents an example 

of the generated image patches derived from both UAV and 

BackPack systems. The quality of the generated image patch 

relies on the georeferencing quality of both the image and LiDAR 

data. 

 

 

Total 

number 

of trees 

TP FP FN 
Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

92 92 0 0 100 100 100  

Table 2. Tree detection evaluation results 

 

Total 

number of 

trees 

Min 

(cm) 

Max 

(cm) 

Median 

(cm) 

STD 

(cm) 

RMS 

(cm) 

92 0.1 -4.3 -3.1 0.7 3.1 

Table 3. DBH quality analysis using reference data 

 

 
(a) 

 

 
(b) (c) 

Figure 18. An example illustrating (a) an individually 

segmented tree and stem map displaying the 

generated image patches from (b) UAV showing the 

highest point highlighted by a magenta cross and (c) 

BackPack showing canopy and tree trunk features, 

respectively. 

 

5. Conclusions and Recommendations for Future Work 

This study presents a unified framework for deriving key forest 

inventory attributes by integrating multi-resolution LiDAR data 

from UAV and BackPack systems. The proposed methodology 

enhances individual tree segmentation through adaptive filtering, 

layered clustering, and an iterative reintegration strategy to re-

trieve filtered points and preserve entire tree structure. Experi-

mental evaluation in a plantation environment demonstrated an 

F1-score of 100% for tree detection and a 3.1 cm RMSE for DBH 

estimation, validating the accuracy and reliability of the ap-

proach. Additionally, the introduced image-LiDAR linking strat-

egy will facilitate tree species identification by combining struc-

tural information from LiDAR with semantic cues from imagery. 

While the evaluation was conducted in a plantation setting with 

uniform spacing and minimal undergrowth, the methodology is 

Tree St
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designed to be adaptable to more complex forest environments 

and different seasonal conditions. By leveraging its robust seg-

mentation and feature extraction capabilities, the approach holds 

promise for large-scale forest inventory across diverse ecological 

settings, supporting sustainable forest management and monitor-

ing.  

While the proposed pipeline demonstrates high accuracy in a 

plantation setting, further validation on diverse datasets is neces-

sary to assess its generalizability across different forest environ-

ments and seasonal conditions. Future work will focus on testing 

the approach in natural forests with varying tree densities and 

structures to evaluate its robustness and adaptability and explor-

ing learning-based approaches for automated tree species classi-

fication using the generated image patches and segmented tree 

points. 
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