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Abstract 

This paper proposes a methodology for detecting flooded areas using Sentinel-2 images, followed by flood forecasting based on a 
combination of the deep neural network U-Net and a support vector machine (SVM). The U-Net architecture classifies a given Sentinel 
image into the two classes “water” and “no water”, the SVM subsequently performs a near-future prediction of flooded areas based on 
the U-Net results and additional information (DEM, land use information, precipitation data etc.). Experimental results demonstrate 
that for a test site in Ukraine the U-Net/SVM model achieves the highest overall accuracy (98.8%), slightly outperforming other 
models, including Random Forest and SVM. The resulting flood maps provide valuable information for planning rescue operations 
and territory management, allowing for rapidly identifying areas of flooding. It can thus contribute to a significant reduction in 
economic losses and an increase in emergency preparedness. 

1. Introduction

Flooding is one of the most dangerous and widespread natural 
hazards in the world, causing damage to people, infrastructure, 
and the economy. According to the United Nations, water-related 
disasters such as floods have dominated the list of disasters over 
the past 50 years and account for 70 % of all deaths related to 
natural disasters (UN 2025). Effective and quick response to 
flooding emergencies requires, among others, flood maps which 
contain information about geographical features such as 
transportation networks, place names, landscape conditions, and 
areas of possible flooding. These maps are widely used in 
political, social, and environmental studies. However, generating 
them is a labour-intensive process, which creates the need to 
develop automated methods for producing such maps.  
In recent years, there has been a growing interest in producing 
flood maps in photogrammetry and remote sensing. These maps 
are based on topographic maps and show such additional 
information as flooded areas and water depth as a result of 
flooding1. 
The goal of this paper is to create such flood maps, which do not 
only show the present state, but can also forecast the flooding 
situation for the near future. The current state is derived from 
Sentinel-2 imagery via semantic segmentation, while the 
following scenario is generated using additional information 
(e.g., land cover, digital terrain models, precipitation data) in a 
separate step, using a support vector machine in a type of multi-
criteria decision-making in order to produce the desired flood 
map. 

2. Literature review

An older review of flood risk assessment can be found in 
Ologunorisa, Abawua (2005). More recently, to assess flood risks 

1Note, that flooded areas and water depth at a particular position 
can only roughly be derived from a digital elevation model 

in the Mulde River area in Saxony, Germany, Meyer et al. (2009) 
used the multi-attribute utility theory (MAUT, von Winterfeld, 
Fischer, 1975). The flood hazard was evaluated using a quasi-
dimensional (2D) hydrodynamic model. Dang et al. (2010) 
studied the Red River Delta in Vietnam using the Analytic 
Hierarchy Process (AHP) method (Saaty 1990). Like MAUT, 
AHP is widely used in multi-criteria decision-making (MCDM), 
however, in AHP many of the parameters needed for decision- 
making are determined automatically, unlike in MAUT, where 
those parameters need to be set interactively (Velasquez et al., 
2013). The criteria selected by Dang et al. (2010) for assessing 
the flood risk (economic, social, and environmental losses) are 
more detailed than those of previous studies. However, obtaining 
the above criteria is a difficult task. Parameters such as water 
depth, duration, and speed of water flow are proposed to assess 
flooding territories. To this end, the positions and extents of 
residential buildings, unique purpose buildings, public 
infrastructure and agricultural land were considered. Social 
losses were estimated based on population density and income. 
Environmental damages were estimated based on pollution 
(industrial emissions, waste, and stagnation of flood waters), 
erosion, and the availability of open spaces. Thus, flood 
assessment for large areas or regions with limited information 
detail may be complicated due to the need to use the above 
criteria, which requires significant resources and may complicate 
the implementation of the proposed methodology.  
In another flood risk assessment study, conducted by Yeganeh et 
al. (2014) for the Iskandar region in Malaysia, fuzzy logic, multi-
criteria ranking and weighted linear combination were employed. 
The criteria for creating the map of flooded areas were distance 
to the mainstream river, elevation, slope, land use, land cover 
type, distance to the drainage channel, and population density. 
One of the limitations of this approach is the lack of a theoretical 

alone, as the amount of flooding is also a function of land 
cover, individual building locations, water flow etc. 
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basis for the method, which makes it difficult to justify the 
assigned weighting factors. 
In recent years, machine learning methods such as support vector 
machines (SVMs, Opella et al., 2019; Islam et al., 2021) and 
artificial neural networks (Andaryani et al., 2021; Avand et al., 
2021; Islam et al., 2021) have been increasingly used to detect 
potential flood zones. Both methods have advantages and 
limitations that affect their effectiveness in this area. For 
example, SVM is rather robust with respect to noise and has 
demonstrated high classification accuracy, also when relatively 
little training data are available. On the other hand, artificial 
neural networks need significantly more training data and higher 
computing resources, but are generally more accurate than 
traditional machine learning (see, e.g., Heipke, Rottensteiner, 
2020 for an overview with selected examples). 
In any case, besides height data, land cover estimation is critical 
for accurate flood mapping and forecasting, as different land 
cover types affect the outflow and accumulation of water. For 
example, water bodies, urban areas with low permeability, and 
vegetation have different effects on flooding. Land cover 
classification using satellite image time series (SITS) and deep 
neural networks, as proposed e.g., by Honcharov et al. (2024) and 
Voelsen et al. (2024), allows spatial and temporal data 
characteristics to be combined accurately to deliver the necessary 
information. 
This work aims to develop a methodology that combines the U-
Net deep learning architecture (Ronneberger et al, 2015) for 
semantic segmentation of satellite images and the SVM method 
for digital mapping of flood zones. The aim is to provide a flood 
map with improved accuracy for analysing potentially flooded 
areas, particularly in urban landscapes. 
 

3. Flood forecasting method 

In this chapter we introduce our new method for flood forecasting 
(we call it our flooding model). Fig. 1 shows the block diagram, 
integrating the U-Net architecture for semantic segmentation of 
satellite images and the SVM method for predicting and mapping 
flood zones. This approach allows the creation of maps of 
flooded areas that show the spatial distribution of flooding and 
its intensity shortly after the satellite image was taken, thus 
allowing prompt response to be taken. 
 
3.1 Overview 

The proposed method consists of the following steps: 
1. The first step is to select the affected area incl. the necessary 

data: (a) the most recent suitable Sentinel-2 image; (b) a 
digital landscape model, which contains the topographic 
objects in vector form, (c) the height information in form of 
a digital elevation model (DEM)2; (d) precipitation data (we 
obtained them from meteorological stations, satellite 
observation, and the web site (Ukrainian 
Hydrometeorological Center, 2025). 

2. U-Net is employed for segmentation of the Sentinel-2 image 
with the two classes "water" and "no water" for each pixel. 

The model was trained on satellite images acquired 
previously.  

3. An SVM further processes the U-Net results. First, the U-
Net results are superimposed with the vector data of the 
polygons of the digital landscape model (see K1 in Fig.1). 
These polygons are then classified together with additional 
information to extract final water and non-water areas. 
Besides the U-Net result and the date of image acquisition, 
we use for each polygon as input: statistical textural image 
features (entropy, contrast, homogeneity), the Modified 
Normalized Difference Water Index (MNDWI, Xu 2006), 
the DEM, more precisely the max. volume of each polygon, 
and the precipitation data, denoted as K 2 to K5 in Fig. 1, 
respectively. The SVM was also trained previously using 
data available to us.  

The result is a flood map forecasting the flooding situation, where 
each polygon is marked with the appropriate class: flooded or 
not. It provides a precise classification of the flooded areas, their 
extent, and the surrounding environment, allowing the quick 
identification for further action. 
 
3.2 U-Net architecture 

The U-Net consists of an encoder and a decoder, which allows 
for detailed recognition of the boundaries of different zones. The 
input is a 321x321 satellite image tile. The encoder consists of 
several levels, each of which applies two-layer convolutional 
operations to highlight key features of the image. Each 
convolutional layer is followed by a max pooling operation. The 
bottleneck is a middle layer between the encoder and decoder, 
providing the most compact representation of the extracted 
features. This layer contains two convolutional operations with 
five filters. The decoder is designed to gradually restore the 
spatial resolution of the image. It consists of upsampling layers 
that increase the size of the feature map and convolutional layers 
that allow for detail recovery. At each decoder level, 
concatenation with the corresponding encoder level occurs. The 
final layer uses a convolution with a single filter and a softmax 
classification function. The output of U-Net is a segmentation 
mask labelled "water" or "non water" for each image pixel that 
allows to separate potentially flooded areas. 
 
3.3 SVM details 

A multi-class SVM takes the final decision on flooded areas. A 
polynomial kernel is used to ensure accurate differentiation of 
classes in a high-dimensional feature space, improving the 
quality of flood zone detection. As mentioned, the process 
involves superimposition of the U-Net results with the polygons 
of the digital landscape model. This allows flooded and non-
flooded areas to be represented as spatial objects with clearly 
defined boundaries (highway line, water line, water line polygon, 
railway, buildings, water, 5 flooding classes (+5m, +4m, +3m, 
+2m, +1m)), facilitating their integration with other geodata for 
further analysis. 

 

                                                                 
2In our case, the DEM was interpolated from the drainage 

network and the height contours taken from the military 
topographic maps of scale 1:25.000 with a 10 m contour 
interval; it has a spatial resolution of 5 m. 
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Figure 1. Block diagram of the methodology for digital mapping of flooded areas. 

 

 
                     a)         b) 

 
                     c)         d) 

Figure 2. Results for the city of Mukachevo: a) and b) two Sentinel-2 satellite images; c) and d) results of U-Net classification. 
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4. Results  

The research uses imagery depicting Mukachevo, a city in 
Western Ukraine, taken in winter and spring 2024 during the 
flooding season. Mukachevo is located in an area with a high risk 
of flooding due to its proximity to nearby river systems. 
Experimental tests were conducted based on the analysis of 
multi-temporal Sentinel-2 satellite images (Fig. 2a, Fig. 2b). Each 
image was pre-processed to correct for atmospheric and spectral 
characteristics according to the methodology proposed in 
Hnatushenko, Kashtan et al. (2021). 
The results of U-Net are shown in Figure 2c for the winter image, 
and in Figure 2d for the spring image, where colour coding for 
different types of surfaces is used. Blue indicates water bodies, 
and red indicates buildings, vegetation, and other land areas. 
Flooding is clearly visible on the winter mage. Areas marked in 
blue indicate the largest threat to infrastructure and residential 
areas that require immediate response.  
Fig. 3 shows the result of the U-Net/SVM classification for flood 
forecasting based on the winter image (Fig. 2a), marked with 
colours corresponding to different levels of water rise: red (112-
113 m, +5 m), green (111-112 m, +4 m), dark green (110-111 m, 
+3 m), pink (109-110 m, +2 m), yellow (108-109 m, +1 m). The 

analysis considers different levels of terrain elevation, indicated 
by the colour scale. The map shows the areas that could be 
flooded if the water level changed between 1 to 5 meters. Not 
surprisingly, the main areas at risk of flooding are concentrated 
along the river. The red and pink zones indicate the largest extent 
of flooding (+4 to +5 meters of water rise). It includes certain 
residential and commercial areas and infrastructure that could be 
severely damaged at high flood levels. Infrastructure elements 
such as roads, railroads, and buildings are also marked on the 
map. In particular, it shows that significant transportation routes, 
such as railways and some roads, can be damaged at high flood 
levels. This can cause considerable inconvenience to residents 
and complicate logistics, which emphasizes the importance of 
considering these areas when planning infrastructure projects. 
When evaluating the overall accuracy of the models (Fig. 4), U-
Net/SVM achieves the highest overall accuracy of 98.8%, while 
using only SVM has an overall accuracy of 97%, and a Random 
Forest classifier reached an overall accuracy of 98%. Although 
these differences are small, it can thus be concluded that the U-
Net/SVM model provides the highest overall accuracy among the 
three models considered. 
 

 
 

 
 

Figure 3. Digital map of predicted flooding for the city of Mukachevo based on the winter image (Fig. 2a) as a result of our study. 
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Figure 4. Graph of overall accuracy comparison of the three 

tested methods. 
 

5. Conclusion  

The paper proposes a methodology for digital mapping of flood 
forecasting that combines the U-Net architecture for semantic 
segmentation of satellite images into the classes “water” and “no 
water” and a multi-class version of the SVM method for 
classification using, among others, a digital landscape model, a 
digital elevation model, texture, water indices and precipitation 
data as additional information. The proposed approach allows for 
obtaining detailed flood maps with high accuracy, which is 
especially relevant for urban areas, such as our test site, the city 
of Mukachevo, which is at risk of flooding due to its geographical 
location near various river systems.  
The use of U-Net ensures accurate semantic segmentation of 
flooded and non-flooded areas. At the same time, SVM can 
classify these areas based on the additional information. 
Experimental results show that the U-Net/SVM model has the 
highest overall accuracy (98.8%) compared to other models, such 
as Random Forest and SVM. The resulting flood maps provide 
valuable information for planning rescue operations and area 
management, allowing for quick identification of the areas. It, in 
turn, can significantly reduce economic losses and improve 
emergency preparedness. 
In future work, we will further experiment with the combination 
of U-Net and SVM as well as try to develop a fully trainable end-
to-end neural network solution. Further, particularly in areas 
containing rivers, upstream gauge information will be considered 
as additional information in concert with those we integrate 
already. In this context we will also conduct an ablation study, 
investigating the role and relevance of each of these sets of 
information as well as the required accuracy in order to have a 
useful impact on the final result. 
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