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ABSTRACT:

Earthquakes and other natural disasters rank among the most destructive events, causing widespread loss of life and severe economic
consequences globally. A primary consequence of earthquakes is the large-scale collapse and damage of buildings. The rapid
advancement of high-resolution remote sensing technology, offering extensive coverage and multi-temporal capabilities, combined
with deep learning methods, has opened new possibilities for accurately and efficiently detecting and assessing building damage to
support crisis management. However, pre- and post-disaster images are often acquired under varying temporal, lighting, and weather
conditions, complicating the task of accurately identifying building damage levels. This study proposes a Siamese network based
on UNet to address these challenges, enabling the assessment of building damage using satellite imagery following earthquakes.
The network leverages multi-scale feature differentiation to model spatial and temporal semantic relationships, addressing the issue
of intra-class semantic variation. The proposed method was evaluated on the xBD disaster damage dataset and the 2023 Morocco
earthquake dataset, achieving an overall accuracy of 95.5% and a kappa coefficient of 76.0%. These results highlight the potential
of AI-driven solutions to meet the critical demands for speed and accuracy in disaster response scenarios.

1. INTRODUCTION

Natural disasters, such as earthquakes, rank among the most
destructive phenomena, often causing significant loss of life,
widespread infrastructure destruction, and severe economic set-
backs (Hingorani et al., 2020; Perrone et al., 2020). The
September 2023 Morocco earthquake highlighted these chal-
lenges, with entire communities experiencing extensive build-
ing collapses and damage (Oduoye et al., 2023). Accurately
assessing the extent and severity of building damage is a crit-
ical component of disaster management, enabling the priorit-
ization of rescue operations, resource allocation, and recovery
planning (Krichen et al., 2024). Traditional damage assessment
methods, such as on-site surveys, are valuable but often time-
consuming, costly, and constrained by physical accessibility,
particularly in large-scale disasters or remote areas (Contreras
et al., 2021; Giardina et al., 2024). Therefore, efficient and
accurate methods to extract information within a reasonable
time frame are essential. Synthetic aperture radar (SAR) data,
alongside optical satellite imagery, provides large-scale, timely,
and detailed damage assessments for natural disasters (Brun-
ner et al., 2010; Ferrentino et al., 2021; Serifoglu Yilmaz et al.,
2023; Saleh et al., 2024a). While SAR data can capture in-
formation under all weather conditions and is suitable for real-
time analysis, interpreting building damage scores remains a
challenge (Ge et al., 2020). For example, Jung et al. (2017)
investigated the damage caused by the Lake Fire in the San
Bernardino National Forest, California, USA, in June 2015, us-
ing multi-temporal interferometric SAR data. Their proposed
method formulated a coherent change model, assuming two
simplified layers to interpret interferometric coherence with
full polarization, calculate damage probability, compare nat-
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ural variations, and identify damaged areas. Saleh et al. (2024b)
examined the damage caused by floods resulting from heavy
rainfall and tornadoes in the Iran region on January 13, 2020,
using multi-temporal SAR data from the DAM-Net network,
alongside large-scale flood inundation mapping and identifica-
tion of damaged buildings. Li et al. (2019a) studied the dam-
age from the 2009 L’Aquila earthquake in Italy using Envisat
SAR images. By applying the principal components of an im-
proved principal component analysis (PCA) method combined
with multi-texture techniques, they achieved favorable results
for building damage detection (BDD). Similarly, Kim et al.
(2023) proposed a contextual change analysis method to map
damaged buildings from the 2016 Kumamoto earthquake using
Kompsat-5 dual-time SAR data. This approach utilized novel
texture features and achieved improved results while maintain-
ing low false alarm rates in agricultural areas.

Unlike SAR data, optical satellite images are easier to interpret
and process, making them the preferred choice for damage de-
tection (Wang et al., 2024; Gomroki et al., 2024; Seydi et al.,
2023). Tong et al. (2012) proposed a method to detect build-
ing collapses from the Wenchuan earthquake using 3D geo-
metric changes, particularly elevation differences, derived from
IKONOS stereo image pairs. Li et al. (2022) developed an SSD
model combined with a convolutional block attention mechan-
ism (SSD CBAM) to detect damaged buildings from post-event
UAV images of the 2008 Wenchuan earthquake. Similarly, Li
et al. (2019b) analyzed building damage caused by Hurricane
Sandy in the Caribbean using post-event satellite images. Jan-
alipour and Mohammadzadeh (2015) introduced an adaptive
network-based fuzzy inference system (ANFIS) model to detect
urban building damage after the Bam earthquake in Iran, integ-
rating a pre-event vector map with post-event high-resolution
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Figure 1. Overview of the proposed framework. Pre-processed pre- and post-disaster images are fed into the encoder and decoder, and
building segmentation and damage classification masks are produced.

imagery. Holail et al. (2023) combined differential image fea-
tures and attention modules using a learnable parameter along
with deep supervision (DS) module to improve CNN perform-
ance and Hang et al. (2022) implemented a CNN-based seg-
mentation network using high-resolution remote sensing data,
while Ji et al. (2019) combined random forest (RF) and con-
volutional neural networks (CNN) to analyze satellite images
from the 2010 Haiti earthquake, demonstrating superior per-
formance of the CNN-RF combination. Xu et al. (2019) ap-
plied CNN-based machine learning for building damage detec-
tion across three disasters: the 2010 Haiti earthquake, the 2017
Mexico City earthquake, and the 2018 Indonesia earthquake.
Other studies (Tilon et al., 2020; Zhao and Zhang, 2020; Shao
et al., 2020; Shen et al., 2021; Da et al., 2022; Bai et al., 2020)
utilized deep convolutional networks and transformers on xBD
dataset satellite images to assess building damage before and
after events. Lu et al. (2024) proposed a temporal binary at-
tention transformer to identify building changes and damage
by excluding irrelevant information in temporal remote sensing
images, producing detailed damage maps. Holail et al. (2024)
proposed a Siamese method that integrated an attention mech-
anism based on the temporal dimension of images to highlight
subtle differences in damage levels, coupled with data augment-
ation strategies to mitigate class imbalance issues for detecting
damaged buildings in a conflict zone.

Despite recent advancements, many approaches fail to account
for the inherent ordering of ordinal damage labels, often simpli-
fying building damage detection to a mere multi-class semantic
segmentation task. For example, distinguishing between ”mod-
erate” and ”severe” damage necessitates precise feature extrac-
tion, which is frequently obstructed by visual ambiguities such
as debris, shadows, occlusions, or vegetation. Additionally,
each disaster is inherently unique, even when similarities ex-
ist. For instance, building damage caused by one tornado may
differ significantly from that caused by another. As a result,
applying models trained on images from past disaster events to
assess damage from new events requires rigorous evaluation on
new datasets to assess the model’s adaptive performance. To
address these challenges, this study introduces a UNet-based
model designed to learn features at multiple scales and train
a building damage detection network. The proposed method
builds a hierarchy of multi-scale features to improve the local-
ization and classification of changes between two input images.
Several backbones are incorporated within the UNet framework

as baselines for comparison. Furthermore, the model is trained
on the xBD dataset to account for domain shifts across diverse
disaster events. The effectiveness of the model is demonstrated
through its application to the 2023 Morocco earthquake, utiliz-
ing 26 image pairs (512 × 512 pixels) with a high spatial res-
olution of 0.6 m/pixel. The primary contributions of this study
are as follows:

1) A modified Siamese network based on UNet is proposed for
building damage detection, leveraging multi-scale feature
differentiation to effectively and efficiently model spatio-
temporal semantic relationships between pre- and post-
disaster images.

2) The proposed method’s effectiveness is evaluated using the
2023 Morocco earthquake dataset, providing a baseline for
damage assessment tasks, demonstrating transfer learning
capabilities, and assessing the model’s adaptive perform-
ance.

The remainder of the paper is organized as follows: Section 2
outlines the proposed method and evaluation metrics. Section 3
describes the dataset and presents experimental results. Finally,
Section 4 concludes the study and discusses future research dir-
ections.

2. PROPOSED METHODOLOGY

2.1 Network Overview

Figure 1 presents an overview of the proposed multi-class
change detection network for building damage assessment.
The network is designed to perform two tasks simultaneously:
building location identification and damage classification. It
consists of a pair of pre- and post-disaster images, a Siamese
U-Net-based encoder (E) that shares weights to learn hierarch-
ical features, and a decoder (D) responsible for segmenting bin-
ary building masks and multi-class damage masks during the
training stage. The encoder extracts features from the input im-
ages, while the decoder restores spatial dimensions and details
through a deconvolution process. Initially, after preprocessing,
which includes cropping, class imbalance optimization, and the
application of data augmentation techniques, the images are
fed into a pixel-level structure. In the encoder, a modified U-
Net model (He et al., 2023) is used to generate a feature-based
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hierarchical difference block. The features from the i-th stage
level Ex(i), where x ∈ {pre, post}, are passed to the difference
block Z, producing the common difference features zi as out-
put. These features represent the building polygons. Multiple
backbones are employed for pre-training and performing bin-
ary semantic segmentation at the pixel level to predict whether
each pixel belongs to a building. We tested VGG16, MobileN-
etV2, EfficientNet, and ResNet as backbones and classified the
damage level of each building.

Specifically, the U-Net model is trained on the xBD dataset us-
ing pre- and post-disaster images, which serve as the pre-trained
backbone for the damage assessment task. To capture the dif-
ferences between pre- and post-disaster images, the features ex-
tracted from each clustering stage of the encoder are combined
via concatenation. The decoder D is then used to reconstruct
the output at the pixel level. The multi-scale features zi, com-
bined with the skip connections, are passed through the decoder
D to achieve two-mask semantic segmentation of building loca-
tions. An upsampling operation is applied to the difference fea-
tures, combined with previous features, to restore higher spatial
dimensions, matching the size of the input images. The Soft-
Max function is applied to obtain the output of building loca-
tions, with values between (0, 1). For damage classification, the
argmax function is applied to the final layer instead of SoftMax
to obtain a five-class classification, where each pixel is assigned
a value between 0 and 4. Here, 0 represents the background,
and 1-4 correspond to buildings with damage levels ranging
from no damage to completely destroyed. Finally, the Focal
loss and Dice loss functions are applied during the training pro-
cess for semantic segmentation. For the damage classification
loss, we incorporate the multi-class cross-entropy loss, as for-
mulated in (1).

LDice = 1− 2Pt

P + T

LFocal =

{
−α(1− Pt)

2 log(Pt), y = 1

−(1− α)(Pt)
2 log(1− Pt), y = 0

Lcls = − 1

N
y log(p)

(1)

where T represents the true value, P the predicted value, y the
label value, Pt the number of positive samples, α the weighting
factor, 0 indicating the absence of a building, 1 indicating the
presence of a building, N the number of classes, p the class
probability of the predicted sample, and y the one-hot encoded
vector.

2.2 Encoder blocks

The U-Net encoder block follows the ResNet architecture, as
illustrated in Fig. 2. It consists of a convolutional layer with a
kernel size of 1×1, which serves to reduce the number of fea-
tures. This is followed by a single convolutional layer with a
kernel size of 3×3 to maintain the feature count. The final con-
volution also uses a 1×1 kernel. Both the first and second con-
volutional layers are followed by batch normalization (BNorm)
and ReLU activation functions. Additionally, the output of the
final convolution is processed by a squeeze-and-excite module
(SEM) that adaptively recalibrates the importance of each chan-
nel’s features (Hu et al., 2018). The output is then added back
to the block’s input through a residual connection. If there is

a mismatch in the number of input and output features, an ad-
ditional pointwise convolution with batch normalization is ap-
plied along the residual path to align the output shape, enabling
element-wise summation. This result is then passed through
another ReLU activation.
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Figure 2. Convolutional blocks used in U-Net encoder with
squeeze-and-excite module.

2.3 Evaluation metrics

Four metrics were utilized to validate the accuracy and effect-
iveness of the proposed method in comparing the ground truth
and predicted change map. These metrics include Overall Ac-
curacy (OA), Precision (P), Recall (R), and F1-score. The for-
mulas for these metrics are provided below:

OA =
TP + TN

TP + FN + TN + FP

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Floc =
2TP

2TP + FP+ FN

Fcls =
4∑4

i=1
1

F1Ci

F all
1 = α · Floc + β · Fcls

(2)

where TP = total number of true positives for all classes
FN = false negatives
FP = false positives
TN = true negatives

3. EXPERIMENTAL RESULTS

3.1 Materials and Dataset

3.1.1 xBD Dataset: The xBD dataset is a large-scale col-
lection of building samples from seven disaster types across
19 natural disaster events, obtained from multiple satellite plat-
forms, including WorldView-2 and WorldView-3, and serves
as a benchmark for building damage assessment Gupta et al.
(2019). It comprises 11,034 pairs of high-resolution optical
satellite images, covering a total area of 45,361.79 sq-km and
including 850,736 building polygons. Each image pair consists
of a pre-disaster and a post-disaster image. The dataset cat-
egorizes damage into four levels: no damage, minor damage,
major damage, and devastating damage. In this study, the xBD
dataset was utilized, with 70% of the data allocated for train-
ing and 30% for validation to evaluate building damage levels
effectively.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-G-2025 
ISPRS Geospatial Week 2025 “Photogrammetry & Remote Sensing for a Better Tomorrow…”, 6–11 April 2025, Dubai, UAE

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-589-2025 | © Author(s) 2025. CC BY 4.0 License.

 
591



3.1.2 Morocco Earthquake 2023: Morocco is situated on
the northwestern edge of the African Plate, which is in con-
tinuous convergence and collision with the Eurasian Plate. On
September 8, 2023, a 6.8-magnitude earthquake struck the High
Atlas Mountains, 71 km southwest of Marrakesh, marking one
of the most violent earthquakes in Morocco’s history. The epi-
center was located at 31.058◦N and 8.490◦W, with a focal
depth of 26 km according to the Euro-Mediterranean Seismo-
logical Center and 27.8 km as reported by the Global Centroid
Moment Tensor (CMT) project Ziraoui et al. (2024); Touati et
al. (2024). According to the Moroccan Ministry of Interior, at
least 2,901 people were killed, primarily in Marrakesh and five
governorates near the epicenter, while approximately 320,000
people were affected. Remote villages in the High Atlas Moun-
tains suffered severe losses and extensive structural damage.
The earthquake’s impact was intensified by the vulnerability of
the building stock and its occurrence at night when most people
were at home Cheloni et al. (2024); Yeck et al. (2023). Figure 3

(a) (b) (c)

Figure 3. Sample from Morocco earthquake dataset. (a) Image
acquired in Dec 2022 as a pre-event reference. (b) Image taken
on September 9, 2023, after the Morocco earthquake. (c) The

ground truth.

presents a WorldView-II image of Marrakesh and the corres-
ponding ground truth, highlighting the city’s dense urban lay-
out and significant post-earthquake damage. Polygons repres-
enting damaged and undamaged buildings were plotted in QGIS
and layered with unique identifiers to generate the ground truth.
Following training on the xBD dataset, the Morocco earthquake
dataset was employed for prediction purposes.

3.2 Implementation details

The experiments were conducted using the PyTorch frame-
work 1 on an NVIDIA GRID RTX8000-8Q GPU with 8 GB
memory to ensure optimal performance. The network optim-
ization utilized the AdamW optimizer and a one-cycle learning
rate policy, with an initial learning rate of 0.0001, momentum of
0.9, and a weight decay of 0.0002. To address the limited size
of the Morocco earthquake dataset, data augmentation tech-
niques, including random flipping, rotation, and random crop-
ping, were applied to the input image patches during training.
The batch size was set to two, and the input image size was fixed
at 512 × 512 pixels. The models were trained for 100 epochs,
with weights saved every 20 epochs. The model achieving the
highest F1 score was selected for inference across various test
locations.
1 https://pytorch.org

Model Accuracy Precision Recall Kappa

VGG16 0.942 0.742 0.486 0.653

MobileNetV2 0.942 0.727 0.482 0.654

EfficientNet 0.948 0.592 0.490 0.737

ResNet50 0.953 0.724 0.537 0.746

ResNet18 0.952 0.639 0.514 0.752

ResNet34 0.955 0.704 0.545 0.760

Table 1. Quantitative evaluation of results on the xBD dataset.

3.3 Results and analysis

To evaluate the performance of the proposed method outlined
in Section 2.1, we assessed its segmentation capabilities using
several accuracy evaluation metrics to compare model perform-
ance. The backbone architectures employed in this study in-
cluded VGG-16, EfficientNet, MobileNetV2, ResNet18, Res-
Net50, and ResNet34. Table 1 presents the comparative results
of these models on the xBD training dataset. Among them, the
ResNet34 backbone demonstrated superior performance in the
building localization task across multiple evaluation metrics,
achieving a K-score of 76.0% and an overall accuracy of 95.5%.
Notably, the K-score showed a 10.7% improvement over the
VGG-16 model. Figure 4 illustrates the prediction results on
the xBD test set. Comparing the result maps of various mod-
els, the ResNet34 model demonstrates significantly higher ac-
curacy and effectively reduces false positives compared to other
models. Additionally, it provides a more complete classification
of buildings, closely aligning with the ground truth, and better
distinguishes building damage levels. In contrast, the VGG16
model exhibits numerous missed detections and false positives,
reducing accuracy.

Figure 4. Visual comparison of different models on a test sample
from the xBD dataset: Pre-disaster image, post-disaster image,
ground truth, VGG16, EfficientNet, MobileNetV2, ResNet18,

ResNet50, and ResNet34 (in order).

Additionally, Table 2 reports the evaluation metrics for damage
classification, integrating the building localization results on the
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Backbone F all
1 F loc

1 F
damg
1

Damage F1 score per class

Intact Minor Major Destroyed

EfficientNet (Tan and Le, 2019) 60.5 82.9 50.9 77.5 42.4 19.2 64.5

MobileNetV2 (Sandler et al., 2018) 61.9 73.5 57.0 66.1 39.9 52.9 69.1

VGG16 (Abouelyazid, 2022) 62.3 73.1 57.6 65.8 40.8 54.4 69.6

ResNet18 (He et al., 2016) 63.7 83.6 55.2 78.3 42.6 33.2 66.8

ResNet50 (He et al., 2016) 67.2 82.1 60.8 77.2 40.7 52.1 73.1

ResNet34 (He et al., 2016) 67.7 83.7 60.8 78.4 43.7 48.6 72.4

Table 2. Quantitative comparison of different backbone models on the 2023 Morocco earthquake dataset (%).

(a) (b)

Figure 5. Results of the proposed method on the Morocco earthquake dataset: (a) Post-disaster image (Sept 9, 2023), (b) Output of the
proposed method.

Morocco earthquake dataset. The ResNet34 model achieved an
overall F1 score of 67.7%, with Floc and Fdamg scores of 83.7%
and 60.8%, respectively. The F1 scores for the damage classes:
intact, minor damage, major damage, and destruction were
78.4%, 43.7%, 48.6%, and 72.4%, respectively. Compared to
EfficientNet, ResNet34 exhibited a significant improvement in
accuracy, with an overall Foverall increase of 7.2%. These results
demonstrate that the proposed network model, utilizing Res-
Net34 as its backbone, achieves high accuracy in identifying
building damage levels across various damage categories. Fig-
ure 5 presents the results of the 2023 Morocco earthquake test
using the proposed network, trained on the xBD dataset. The
network effectively distinguishes damage levels of buildings
and reconstructs their boundaries. However, as highlighted by
the red box in Figure 5(a), further improvements are needed to

detect certain damaged buildings that the current model failed
to identify.

4. CONCLUSIONS

This paper presents a Siamese model for identifying and assess-
ing building damage severity, utilizing U-Net and ResNet34 as
the backbone. The model leverages the weight-sharing cap-
ability of the Siamese network to extract and compare fea-
tures from pre- and post-disaster building images. Integrat-
ing an encoder-decoder structure enhances feature extraction
and captures richer image semantic information. The model’s
performance was evaluated on the xBD dataset and the un-
trained 2023 Morocco earthquake dataset for damage classific-
ation tasks. Experimental results demonstrate that the proposed
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model achieves superior performance across various evaluation
metrics in building damage detection, showcasing its poten-
tial for cross-disaster damage assessment. This capability can
provide a deep learning-based solution for timely disaster re-
sponse and humanitarian assistance during emergencies. How-
ever, this study has limitations. Generating diverse levels of
earthquake-damaged building data remains challenging. While
the xBD dataset was used for training, it does not accurately
represent real-world scenarios due to its limited earthquake
data, covering only a single event. Future work will focus on
incorporating datasets from diverse disaster scenarios, such as
wars, forest fires, and additional earthquake events, to further
validate the model’s effectiveness. Additionally, efforts will be
made to improve the efficiency of annotating varying degrees of
building damage for the Morocco earthquake dataset and other
disaster types, addressing the scarcity of similar disaster data
and meeting the urgent needs of disaster response.
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