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Abstract

Construction plans integrate visual and textual information that is essential for construction projects. However, the huge diversity of
formats of these plans poses challenges for automated analysis. This paper presents a novel correspondence model that links objects
and texts in construction plans, providing a unified approach to interpreting various formats, such as scanned blueprints, CAD
drawings, and digital construction documents. Leveraging deep-learning-based object detection and text recognition techniques,
our model establishes semantic correspondences between visual and textual elements. We integrate CLIP-based models with ViT-
based encoders as part of our approach to enhance feature extraction and correspondence learning. By employing a threshold-based
determination, our model effectively resolves cases where a single text passage may describe multiple objects or where a single
object is referenced by multiple pieces of text. This capability enables the model to establish robust correspondences between
objects and texts, laying a strong foundation for subsequent semantic understanding and information extraction. We evaluate its
effectiveness on labeled datasets and demonstrate that our model achieves high precision, recall, F1-score, and accuracy. Hence,
we provide a feasible approach to establishing object-text correspondences in construction plan analysis. The results suggest its
potential to serve as a foundation for further exploration in the automated analysis of technical drawings, particularly in the context
of quality assurance and construction project planning.

1. Introduction

Construction plans serve as fundamental blueprints in the archi-
tecture, engineering, and construction (AEC) industry, facilitat-
ing effective project design, coordination, and execution (East-
man et al., 2011). These plans incorporate both intricate visual
object representations and textual annotations, detailing critical
structural components, dimensions, material specifications, and
construction guidelines. Despite their essential role, the digit-
ization and standardization of construction plans have not kept
pace with advancements in automated document analysis, lead-
ing to their frequent availability solely as raster graphics. This
limitation presents substantial challenges for automated inter-
pretation, as the information must be extracted, structured, and
semantically linked for downstream applications (Zhang et al.,
2024).

The extraction of visual information, such as object layouts
and structural elements, from images is typically performed
using advanced object detection and segmentation methods
(Jamieson et al., 2024). Similarly, textual annotations, in-
cluding labels, descriptions, and measurements, are commonly
retrieved through Optical Character Recognition (OCR) tech-
niques (Impedovo et al., 1991). However, these modalities
are often treated independently, neglecting the complex spatial
and semantic relationships that inherently exist in construction
plans. Establishing accurate associations between textual ele-
ments and corresponding visual objects is crucial for ensuring
data integrity, reducing errors in automated workflows, and sup-
porting applications such as automated quality assurance (Sci-
enceNet, 2021) and real-time project monitoring (Zhang et al.,
2024).

Analyzing highly detailed and information-dense construction
plans introduces further challenges. Overlapping elements, spa-
tially close but unrelated annotations, and inconsistencies in

textual descriptions contribute to ambiguities in interpretation.
Moreover, variations in formatting, font styles, and handwriting
in manually annotated plans further complicate automated pro-
cessing (Zhang et al., 2024). Consequently, knowledge about
the correspondences between visual objects and textual annota-
tions is particularly beneficial for the automated analysis of
technical drawings. In addition to handling challenging scen-
arios — such as overlapping elements, ambiguous annotations,
and inconsistencies — this knowledge also facilitates new tasks,
including detecting missing textual descriptions or objects, as
well as verifying the completeness and functionality of con-
struction plans.

To tackle these challenges, this paper presents a tailored multi-
modal framework that establishes robust correspondences bet-
ween objects and texts in construction plans. Instead of ad-
dressing object detection or text recognition tasks directly, our
approach leverages their results as multi-modal input for a
novel correspondence model and assumes that both tasks have
already been accurately performed. Previous work on visual-
semantic correspondence (Karpathy and Fei-Fei, 2015, Chen et
al., 2020b) has demonstrated the effectiveness of shared em-
bedding spaces for linking textual and visual information. Ad-
ditionally, top-down and bottom-up attention mechanisms (An-
derson et al., 2018) have been widely applied to enhance se-
mantic and spatial reasoning in multi-modal tasks (Anderson
et al., 2018, Cheng et al., 2020, Ghosh et al., 2019). How-
ever, these approaches primarily focus on generic image-text
pairs and do not address the specific challenges present in con-
struction document analysis, such as identifying missing tex-
tual descriptions or handling complex spatial correspondences
between objects and labels. To bridge this gap, we propose a
contrastive learning framework specifically designed for tech-
nical drawings, integrating both semantic and spatial corres-
pondences. By considering domain-specific challenges such
as structured annotations, varying text orientations, and object
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Figure 1. Example image of the dataset that was utilized to
evaluate our correspondence model. Corresponding objects and

texts are illustrated in the same color.

co-occurrence patterns, our method ensures robust correspond-
ences between visual objects and textual annotations, thereby
improving the accuracy of object-text linking in construction
plans.

We evaluate our novel correspondence model on a labeled data-
set of construction plans, specifically curated for this task and
labeled by domain experts. The dataset consists of construc-
tion plans annotated with object categories, their locations, as
well as textual content and corresponding positions. Addition-
ally, the correspondences between objects and their associated
texts are labeled, by assigning them the same group ID. Figure 1
presents an example from our dataset, illustrating the annotated
construction plans with object bounding boxes and text bound-
ing boxes. This dataset enables the testing of upstream tasks
such as object detection and text recognition, as well as down-
stream tasks like establishing correspondences in this particu-
lar domain. Experimental results from two Vision-Transformer
(ViT)-based models (Dosovitskiy, 2020) confirm the feasibil-
ity of our approach, showing that it achieves satisfactory per-
formance in object-text correspondence tasks within construc-
tion plan analysis.

2. Related Work

2.1 Object Detection and Text Recognition

Object detection and text recognition are fundamental compon-
ents in the analysis of technical drawings, such as constructions
plans. Modern object detection models, such as YOLO (Red-
mon et al., 2016), have demonstrated high efficiency in identi-
fying and localizing objects in images, while Optical Charac-
ter Recognition (OCR) methods (Smith, 2007) enable the ex-
traction of textual information from scanned images and docu-
ments (Appalaraju et al., 2021). These techniques have been ap-
plied to the analysis of technical drawings (Nguyen et al., 2021,
Huang et al., 2019, Rezvanifar et al., 2020), where identifying
object categories and extracting textual content are essential for
various downstream applications.

However, most existing object detection models are primar-
ily optimized for real-world images, making their direct ap-
plication to technical drawings challenging. Unlike real-world

images, construction plans contain domain-specific textual an-
notations, geometric dependencies, and hierarchical relation-
ships. While these factors introduce unique challenges, they
can often be addressed through careful fine-tuning (Roth-
meier et al., 2024) and domain adaptation techniques (Sarkar
and Stricker, 2019). Although conventional OCR techniques
(Smith, 2007) are primarily designed for printed and handwrit-
ten text, they often struggle with the specific characteristics of
construction plans, such as non-standard fonts, rotated text ori-
entations, and domain-specific notation systems. These chal-
lenges necessitate domain-specific adaptations in both object
detection and text recognition pipelines to ensure accurate in-
terpretation.

2.2 Challenges in Document Parsing

Parsing technical drawings requires advanced methods that in-
tegrate textual and graphical elements. Traditional approaches,
such as heuristic segmentation (Moreno-Garcı́a et al., 2017) and
object-text recognition (Nguyen et al., 2021), treat object detec-
tion and text extraction as separate tasks, limiting their ability
to capture contextual correspondences.

A major challenge in construction plans is the precise spatial
alignment of objects. Unlike standard documents with predict-
able layouts, technical drawings vary in format, scale, and ob-
ject positioning. Overlapping symbols, multi-line annotations,
and mixed structured and unstructured content further complic-
ate parsing (Zhang et al., 2024).

Recent advancements, such as LayoutLM (Xu et al., 2020a),
integrate textual and spatial embeddings to enhance document
understanding, while LayoutLMv2 (Xu et al., 2020b) further in-
corporates visual features for structured document processing.
StructText (Li et al., 2021) learns hierarchical text-layout rep-
resentations for improved information extraction. However,
these models are primarily designed for structured documents
like forms and receipts, where text follows a fixed layout, rather
than for establishing object-text correspondence in construc-
tion plans with unknown and diverse layouts. Their effective-
ness on technical drawings remains limited due to the domain-
specific symbols and intricate spatial correspondences. Con-
sequently, construction and engineering workflows require spe-
cialized models that can accurately capture the interplay bet-
ween texts and geometric objects.

2.3 Multimodal Learning for Drawings

Recent advancements in multimodal learning have introduced
new possibilities for the simultaneous analysis of visual and
textual information in technical drawings. Contrastive learning
techniques (Oord et al., 2018, Chen et al., 2020a) have been em-
ployed to align representations from different modalities, facil-
itating improved cross-modal retrieval and interpretation. Sim-
ilarly, transformer-based architectures (Devlin, 2018, Li et al.,
2022) have demonstrated strong capabilities in structured doc-
ument understanding by leveraging self-attention mechanisms
to model contextual dependencies. However, while these ap-
proaches (Oord et al., 2018, Chen et al., 2020a, Devlin, 2018,
Li et al., 2022) have proven useful for general document pro-
cessing, they do not address the specific challenges posed by
engineering and construction plans, where there is no stand-
ard template for spatial arrangement, making interpretation de-
pendent on complex correspondences between objects and tex-
tual annotations.
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Existing multimodal frameworks primarily rely on pre-trained
visual and textual encoders optimized for natural images and
general text understanding. These models struggle with the
unique characteristics of construction plans, where textual ele-
ments often describe geometric objects, and their meaning is
highly dependent on spatial context. Some prior works (Sun et
al., 2021, Lin and Hu, 2022) have explored multimodal analysis
in structured documents, but they typically focus on either ob-
ject detection or text recognition, treating them as independent
tasks. This results in a critical limitation: while previous ap-
proaches can identify objects and extract text, they lack a mech-
anism to establish semantic correspondences between these ele-
ments, which is essential for understanding construction plans
at a deeper level.

To bridge this gap, we introduce a correspondence model that
explicitly links detected objects with related textual annota-
tions. Instead of treating text and object recognition as separate
outputs, our approach integrates their spatial and semantic rela-
tionships into a structured representation. By leveraging con-
trastive learning and domain-specific adaptations, our model
learns to correspond objects with their respective descriptions,
supporting tasks such as automated quality assurance of tech-
nical drawings and digital construction management. This goes
beyond mere detection, allowing us to interpret construction
plans in a way that aligns with real-world engineering work-
flows, such as verifying plan completeness, identifying thermal
bridges, and supporting BIM processes. Our method has the
potential to significantly increase precision in the inspection of
technical drawings and contributes to automation in the AEC
industry.

3. Methodology

The proposed framework is illustrated in Figure 2. This sec-
tion provides an overview of the methodology, detailing the
input preprocessing, the dataset structure for correspondence
learning, the correspondence modeling, and the correspondence
score computation.

3.1 Input Preprocessing

The input to our correspondence model comprises Oriented
Bounding Boxes (OBBs) for detected objects and textual ele-
ments, extracted text content, and the full construction plan im-
age. Also as shown in Figure 2, the preprocessing stage is di-
vided into two primary components, which serve as preliminary
tasks rather than integral parts of the correspondence model it-
self:

Object Detection: To identify relevant construction elements
and text regions, we employ YOLOv8 (Redmon et al., 2016).
We choose version 8 because, unlike newer versions, this ver-
sion is also able to predict the orientations of the bounding
boxes. The orientation is important because construction plans
often contain objects that are not aligned horizontally (e.g., a
tilted screw in an assembly drawing). The object detection
model is fine-tuned on a domain-specific dataset to enhance re-
cognition accuracy for construction-related objects. The output
consists of OBBs containing positional and category attributes
of detected elements. Notably, objects classified as ”text” are
further processed in the text recognition stage.

Text Recognition: The primary goal of this stage is to extract
textual content from the detected text regions and transcribe it

into machine-readable text. For this purpose, we utilize Tesser-
act OCR (Smith, 2007).

Once the objects and texts are extracted, the detected OBBs
are highlighted in the original image, which then serves as
overlay image. An example of a processed overlay image is
shown in Fig. 3, where one object-text correspondence is visu-
ally encoded. This visualization ensures that the correspond-
ence model captures a comprehensive representation of the con-
struction plan, preserving global spatial structures and contex-
tual correspondences.

3.2 Dataset Structure for Correspondence Learning

To facilitate effective model training, we construct a structured
ground-truth dataset for correspondence learning. This data-
set comprises the original construction plans, detected object
categories along with their OBBs, recognized text content with
their corresponding OBBs, and the existence of relationships
between them. For each construction plan, we generate the fol-
lowing data representations:

• Object regions: Cropped image patches corresponding to
the OBBs of detected objects, where each patch is assigned
a category label.

• Text regions: Cropped image patches corresponding to
the OBBs of detected text regions, where each patch is
mapped to the recognized textual content.

• Overlay images: Visual overlays where each detected ob-
ject and text region is assigned a unique overlay image.
Each overlay highlights the corresponding OBB region,
ensuring that objects and their associated texts are dis-
tinctly represented while maintaining their spatial relation-
ships.

• Object-text correspondences: Binary labels indicating
for each object-text pair whether they correspond (1) or
not (0).

3.3 Correspondence Modeling

The core of our methodology is the establishment of semantic
relationships between detected objects and texts to find corres-
ponding pairs. The correspondence model consists of the fol-
lowing key stages:

Image Feature Extraction: We employ a ViT-based (Doso-
vitskiy, 2020) image feature extractor to extract image features
from three different inputs: object regions, text regions, and
the overlay images highlighting object-text relations. The com-
bined image feature vector fc is calculated by the weighted sum

fc = αf1 + βf2 + γf3, (1)

where all feature vectors f1, f2, and f3 are normalized to have
unit norm (e.g., ∥fi∥ = 1, for i ∈ {1, 2, 3}). Specifically,
f1 represents the feature of the object region, f2 corresponds
to the feature of the text region, f3 denotes the feature of
the overlay image, and α, β, γ ∈ [0, 1] denote the weighting
factors. Initially, the weights are set to be equally distributed as
α = 0.333, β = 0.333, γ = 1− α− β = 0.333.

Thus, the system maintains two degrees of freedom, allowing
adjustments to α and β, while γ is constrained by their sum
to ensure proper normalization. A detailed analysis of weight
optimization and its impact on model performance will be dis-
cussed in Section 5.3, where we provide a performance map
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Figure 2. Overview of the proposed correspondence model for linking objects and texts in construction plans.

Figure 3. Overlay image (cropped) with one positive object-text
pair.

visualization illustrating how different weight configurations
influence key evaluation metrics.

Text Feature Extraction: The textual content extracted from
the OCR module (Smith, 2007) is processed using a ViT-based
(Dosovitskiy, 2020) text feature extractor. Through this pro-
cess, the text is transformed into feature representations, de-
noted as ft, embedding the extracted content into the same
shared space as the image features to facilitate effective cor-
respondence learning.

To ensure feature consistency, we normalize the combined im-
age feature vector and the text feature vector:

f̂c =
fc
∥fc∥2

, f̂t =
ft
∥ft∥2

(2)

Correspondence Modeling and Loss Function: To establish
the correspondence between image and text features, we em-
ploy contrastive learning. Both image and text features are pro-
jected into a common embedding space through separate lin-
ear projection layers. The model is trained to minimize dis-
tances between positive and maximize distances between neg-
ative object-text pairs.

The correspondence between image and text features is meas-
ured using cosine similarity

sobject-text =
cos(f̂c, f̂t) + 1

2
, (3)

which rescales the similarity score to [0, 1] to be compatible
with the loss function.

We utilize the Binary Cross-Entropy Loss

Lobject-text,b = −
1

N

N∑
i=1

[yi log si + (1− yi) log(1− si)] , (4)

where si is the predicted probability output by the model, i.e.,
si = sobject-text,i, and yi is the ground-truth label indicating
whether the object-text pair corresponds. N represents the total
number of object-text pairs in a single batch.

Given a total of B batches in an epoch, the final loss for the
epoch is computed as

Ltotal =
1

B

B∑
b=1

Lobject-text,b. (5)

This loss function enforces a strong correspondence between
positive object-text pairs while ensuring clear separation of neg-
ative ones.

3.4 Correspondence Score Computation

As described before, once object detection and text recognition
have been performed, the model extracts feature representations
for both objects (fc) and text (ft). It then computes a similar-
ity between these representations to obtain the correspondence
score. If this score exceeds a predefined threshold τ , the asso-
ciated object and text are considered semantically related. By
using threshold-based determination, our model resolves cases
where multiple objects and texts need to be linked, ensuring ac-
curate semantic correspondences for downstream information
extraction.

4. Experimental Setup

4.1 Dataset

Our dataset contains 10,187 potential object-text correspond-
ences, among which 215 are positive pairs, i.e., actual corres-
pondences. The correspondences are distributed across 30 high-
resolution construction plan images. The dataset also includes
complicated cases where a single object corresponds to multiple
texts. These annotations ensure high-quality data for object-text
correspondence learning.

The dataset is split based on the number of construction plan
images, with 80% used for training and 20% for testing, main-
taining a representative balance of the visual appearances of
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Table 1. Statistics of the test dataset, including the number of
positive and negative object-text pairs, object counts, text box

counts, and the total potential correspondences.

Plan Positive
Pairs

Negative
Pairs

Object
Counts

Text Box
Counts

Potential
Correspondences

Plan 1 5 235 20 12 240
Plan 2 1 230 33 7 231
Plan 3 2 163 15 11 165
Plan 4 7 175 14 13 182
Plan 5 7 185 12 16 192
Plan 6 5 145 10 15 150
Overall 27 1133 104 74 1160

the construction plans (i.e., formatting, line styles, font types,
etc.). The data representation and preprocessing steps follow
the structure outlined in Section 3.2.

Table 1 summarizes the key statistics of the test dataset, includ-
ing the number of positive and negative pairs, objects, and text
boxes for object-text correspondence detection. The number of
all potential correspondences is computed as the product of the
object counts and the text box counts.

4.2 Training Configuration

Model Architecture. For our correspondence model, we use a
ViT-L/14 (Dosovitskiy, 2020) for both the image encoder and
the text encoder. Since Contrastive Language-Image Pretrain-
ing (CLIP) (Radford et al., 2021) has demonstrated strong per-
formance in aligning visual and textual representations by train-
ing on large-scale image-text pairs, we initialize all models with
weights from CLIP (Radford et al., 2021). CLIP (Radford et al.,
2021) employs contrastive learning, where images and text are
mapped into a shared latent space, encouraging semantically re-
lated pairs to be close while pushing unrelated pairs apart. This
enables our model to effectively learn the correspondence bet-
ween textual and visual information.

Training Hyperparameters. For all experiments, we use the
following hyperparameters. The batch size is set to 8, and the
learning rate is initialized at 1 × 10−6. The model is trained
for a total of 300 epochs. The optimization process utilizes
the AdamW optimizer (Loshchilov and Hutter, 2019) with a
weight decay of 0.001, ensuring effective weight regularization
and preventing overfitting. Furthermore, we employ early stop-
ping based on the performance on the test dataset.

Balancing positive and negative object-text pairs. As shown
in Table 1, the number of negative object-text pairs is signi-
ficantly higher than that of positive pairs within the same con-
struction plan. To address this imbalance, we ensure that in
each epoch, all positive pairs are included in the training, along
with an equal number of randomly sampled negative pairs, in
order to maintain a 1:1 ratio during training.

Hardware and Acceleration: The training process is fully op-
timized for GPU acceleration, using an NVIDIA A100-PCIE-
40GB GPU with CUDA enabled.

4.3 Evaluation Metrics

To assess the effectiveness of the proposed framework in estab-
lishing correct object-text correspondences, a comprehensive
set of evaluation metrics is employed. The formal definitions
and computation of these metrics follow standard formulations
in classification tasks (Manning et al., 2008):

• Precision quantifies the proportion of correctly estab-
lished object-text correspondences among all pairs pre-
dicted as valid.

Algorithm 1: Evaluation Logic
Input : A dataset from Section 3.2, i.e., each potential

correspondence contains a [Binary-label]
Output: TP, FN, FP, and TN
foreach Correpondence ∈ dataset do

label← [Binary-label];
S ← model.predict(Correpondence);
if label = 1 then

if S ≥ τ then
TP← TP + 1;

else
FN← FN + 1;

else if label = 0 then
if S ≥ τ then

FP← FP + 1;
else

TN← TN + 1;

• Recall measures the model’s ability to correctly retrieve
all true object-text correspondences from the dataset.

• F1-Score is the harmonic mean of Precision and Recall,
providing a balanced measure of classification perform-
ance. This metric is particularly useful in scenarios where
an optimal trade-off between Precision and Recall is re-
quired.

• Accuracy measures the overall proportion of correctly
classified object-text pairs, encompassing both valid and
invalid correspondences.

Evaluation Procedure. Algorithm 1 outlines the evaluation
logic used to compute classification performance metrics, spe-
cifically the counts of True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN). TP repres-
ents the number of correctly established object-text correspond-
ences, while FP denotes incorrectly established correspond-
ences. Similarly, FN corresponds to actual correspondences
that the model failed to establish, whereas TN represent the
number of correctly identified non-correspondences. The pro-
cess relies on a scoring mechanism to determine the validity of
object-text correspondences in a given construction plan. For
each object-text pair, the model assigns a confidence score S,
which is then compared against a predefined threshold τ . Based
on this comparison and the ground truth label, the pair is clas-
sified into one of the four categories, providing the foundation
for assessing the model’s overall performance in terms of pre-
cision, recall, and other relevant metrics.

5. Results

This section presents the evaluation results of our proposed
framework on the test dataset. First, we describe the quantitat-
ive results that focus on the four evaluation metrics: Precision,
Recall, F1-Score, and Accuracy, as well as qualitative results
of our model with optimal parameter settings. Thereafter, we
describe various ablation studies that justify the model’s archi-
tecture and parameter choices.

5.1 Overall Performance

The performance of our method across all test images is sum-
marized in the right column of Table 2. Almost all correspond-
ences predicted by our method are indeed valid correspond-
ences, but not all correspondences are found, which is reflec-
ted in the high accuracy and slightly lower recall. This can be
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Table 2. Performance of our method with optimal parameter
settings. The right column shows the results of our method,

whereas the left column shows the considerably worse results
obtained with a smaller encoder (cf. Section 5.2).

Metric ViT-B/32 ViT-L/14
Precision (%) 23.5 86.3
Recall (%) 50.1 79.2
F1-Score (%) 32.3 82.6
Accuracy (%) 91.8 99.2
Parameters (M) 151.28 427.62
Inference Time (ms) 27.4 45.2

Figure 4. Ground truth correspondences (left) and predicted
correspondences (right) for a successful example (cropped). The

predicted correspondences match the ground truth exactly,
demonstrating the model’s reliability when trained with

sufficient plans with a similar visual appearance.

attributed to the relatively high number of negative pairs com-
pared to positive pairs, which are inherent to the task. The reli-
ability in distinguishing negative pairs from actual correspond-
ences underscores the robustness of our method.

Figures 4 and 5 illustrate the qualitative results. In each fig-
ure, the left side presents the ground truth annotations for the
correspondences between objects and text in the construction
plans, while the right side shows the predicted correspondences
generated by our model. If the confidence score between an ob-
ject and a text exceeds the predefined threshold τ (in this case,
τ = 0.88), the model establishes a correspondence, represen-
ted by a red arrow linking the object and text. Additionally, the
confidence score is displayed on the arrow.

Figure 4 shows a case where the predicted correspondences
match perfectly with the ground truth. This highlights the ro-
bustness of the model in scenarios where there is no knowledge
gap, that is, when sufficient training data of the given planning
style is available.

In contrast, Figure 5 demonstrates a limitation of the model.
When faced with construction plans with a divergent appear-
ance compared to the majority of training data, the model
struggles to establish the correct correspondences. This case
emphasizes the importance of diverse and representative train-
ing data to improve generalization.

5.2 Impact of the Encoder Size

In a first ablation study, we test the impact of the encoder size.
For this, we use ViT-B/32 (Dosovitskiy, 2020), which is a smal-
ler encoder compared to ViT-L/14 with a patch size of 32 to
assess efficiency. The results are shown in the left column of
Table 2. The performance of ViT-B/32 is significantly lower
than that of ViT-L/14 in all relevant metrics even though the

Figure 5. Ground truth correspondences (left) and predicted
correspondences (right) for an unsuccessful example (cropped).
The model struggles to recognize the correct correspondences

due to insufficient construction plans with this visual
appearance.

model has fewer parameters and a shorter inference time. This
highlights the limitations of smaller encoders in complex clas-
sification tasks. Due to its lower F1-Score, ViT-B/32 is not con-
sidered further in our analysis.

5.3 Impact of the Weight Parameters α, β, and γ on Model
Performance

To further analyze the models’ behavior, we investigate the im-
pact of the weight parameters α, β, and γ = 1− α− β, which
control the contribution of different features in the correspond-
ence model. Their values significantly affect the model’s ability
to correctly associate textual and object elements. To analyze
this effect, we systematically vary these parameters and evalu-
ate their impact on F1-Score.

For this analysis, we fix the threshold τ at its default value of
0.8 and explore different weight combinations. Since it is in-
feasible to exhaustively evaluate all possible parameter com-
binations, our analysis is based on a representative subset of
configurations rather than an absolute global optimum. From
the resulting performance map in Figure 6, we observe that the
best-performing region is characterized by relatively high val-
ues of α and lower values of β and γ, with γ being noticeably
larger than β. This suggests that object features have a signific-
ant impact on performance, while text box features contribute
relatively less, additionally, the overlay image feature also plays
an important role, providing essential global contextual inform-
ation.

The best of the tested parameter combinations is α = 0.62, β =
0.05, γ = 1 − α − β = 0.33. This parameter combination is
used in Section 5.4 to analyze the impact of the threshold τ .

5.4 Impact of Threshold τ on Evaluation Metrics

After determining the optimal weight parameters, we now ana-
lyze how different values of the threshold τ affect Precision,
Recall, F1-Score, and Accuracy. In this experiment, we fix the
weight parameters at the values from Section 5.3.

The results are presented in Figure 7. It illustrates how Preci-
sion, Recall, F1-Score and Accuracy change as we adjust the
threshold τ . Lower thresholds generally lead to higher recall
and lower precision due to an increased number of positive
predictions. Conversely, higher thresholds improve precision
by reducing false positives but may also slightly impact recall.
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Figure 6. Effect of weight parameters (α, β) on F1-Score.
Lighter regions indicate better performance.

Figure 7. Effect of different threshold values τ on F1-Score,
Precision, Recall and Accuracy.

However, since we only consider threshold values starting from
0.6, recall remains relatively stable across this range, with no-
ticeable changes only for values above 0.88. This trade-off must
be carefully adjusted based on the application’s requirements.

6. Discussion

Our method enables the identification of corresponding objects
and texts in highly complex construction plans using a simple
threshold-based determination system, a task that has not yet
been addressed by previous work. By fine-tuning a CLIP-based
ViT within a contrastive learning framework, we achieve ro-
bust performance with a balanced trade-off between precision
and recall. Notably, the larger encoder ViT-L/14 offers signi-
ficantly better performance than the smaller encoder ViT-B/32,
which is particularly interesting given that we are training on a
very limited number of training samples. A possible explana-
tion for the superior performance of ViT-L/14 is that its more
potent feature representations, derived from CLIP pre-training,
enable more effective generalization – even with limited fine-
tuning data. These results underscore the benefits of using ad-
vanced models like ViT-L/14, pre-trained on vast amounts of

data, for real-world applications such as parsing complex con-
struction documents. The ability to achieve strong performance
with limited training data further demonstrates the practical vi-
ability of our approach, especially in domains where annotated
data is scarce.

Limitations. While our approach offers clear advantages, it
is important to address potential limitations and explore op-
portunities for improvement. One key aspect is dataset com-
position. As shown in Table 1, the test dataset includes three
images that have the same visual appearance regarding format-
ting, linestyles, and font types. Although unbiased, this relat-
ively uniform structure may lead to an overestimation of model
performance. To enhance robustness, future evaluations should
incorporate more diverse datasets with variations in text styles,
annotation conventions, and document quality as well as real-
world scanned documents that often contain noise, distortions,
and inconsistencies in text placement. Next to the expansion
of the dataset with real-world samples and synthetic augment-
ations, leveraging domain adaptation techniques can improve
generalizability and ensure reliable performance across various
document conditions.

7. Conclusion

This paper introduces a completely novel approach capable of
linking objects and texts in construction plans. By exploiting
CLIP (Radford et al., 2021), a Vision Transformer pre-trained
to connect text and images, we establish semantic correspond-
ences between visual and textual elements. Our correspondence
model, fine-tuned within a contrastive learning framework, ef-
fectively resolves even complicated cases where a single text
corresponds to multiple objects or vice versa, employing a
simple yet highly effective threshold-based decision system.

Experimental results demonstrate robust performance in terms
of Precision, Recall, F1-Score, and Accuracy, reinforcing the
feasibility of deep learning for construction plan analysis.
Based on a limited yet representative test dataset, our corres-
pondence model with a ViT-L/14 encoder achieves an impress-
ive F1-Score of 82.6% and a remarkable Accuracy of 99.2%.
By capturing spatial and semantic relationships, our method re-
duces reliance on explicit rule-based parsing, paving the way
for more automated workflows in architecture and engineering.

Future Work. Looking ahead, our findings underscore the
broader potential of deep learning-based approaches for auto-
mated construction plan analysis. A promising direction for
future research lies in the development of an end-to-end frame-
work that integrates object detection, text recognition and cor-
respondence establishment. This would not only streamline the
processing pipeline but also enhance efficiency and scalability.
By sharing feature representations across tasks, such a frame-
work could improve generalizability while reducing computa-
tional overhead.
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